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INTRODUCTION 


During the last years an interest to Maxwell electrodynamics principles, to 
results arising from them, and to their possible interpretation [1-3] has been 
renewed. First of all this interest is related with transfer processes of electromag­
netic field energy under conditions of different regimes [4] of charged particles' 
movement. Of great interest are also the processes of energy absorption and its 
radiation in a strong electromagnetic field, the investigation and interpretation of 
accompanying effects [5], nonstationary interference of electromagnetic waves 
[6], etc. Main attention in the cited works is focused on the study of localiza­
tion and propagation of electromagnetic field energy. In addition, in a part of 
the discussed problems the effects of so-called «tachyons» [7-9] take pkice, i. e. 
exchange of energy between sources located in points with space-like interval 
between them, dislocation of interference maximums' with velocity higher than 
the speed of light. Some authors noted the misbalance in an energy-momentum 
4-vector during calculation of its variations caused by radiation reaction force, 
etc. A number of authors see the roots of these difficulties in the existence 
of singularities of point sources (or, generally, central-symmetric fields), which 
complicates correct analysis of obtained results and realistic conclusion-making 
process. 

In the present article two new contradictions are found in the framework of 
classical electrodynamics. While deriving the first result we used the quantity of 
field energy (but not its explicit form) localized in the vicinity of the point charge, 
and that's why this contradiction may be explained by the causes mentioned above. 
The second result appears in the area of weak fields and therefore its explanation 
requires different ideas. 

Two systems are discussed in the framework of classical electrodynamics. 
In the first system a charge moves at a constant velocity VI, the second system 
is identical to the first one until moment t'; then work A is done on it, causing 
change of the velocity of a charge from VI to V2 (vIllv2). Based on the energy 
conservation law it is derived that starting from moment t -00 the energy 
of the electromagnetic field of a charge moving at a constant velocity does not 
depend on the velocity of movement. 

1. ENERGY OF LAYER 

Let us consider a linear but nonunifonn movement of a charge (Fig. 1). Fields 
radiated by the charge during its movement along AB interval are being localized 



for moment t in an eccentric spherical layer between AD and Be spherical sur­
faces. Calculation of the energy localized in this layer gives the following (see 
Appendix A, formula (28»: 

(1) 

Be = c(t t f ~tf),AD = c(t _tf). 
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Fig. 1 


From formula (1) for a particle moving at a constant velocity we obtain 


2 e 3 + {32 ( 1 1 )W t , t'+At'·t (v) = - --2 (2)
' , 6cl-{3 t t f - ~tf - t - tf . 

2. WORK OF RADIATION REACTION FORCE 

A charge moving with acceleration is impacted by radiation reaction force 
of its own field. The work of this force during period of time (tf, tf + ~tf) is 
calculated by means of the following formula (see Appendix B, formula (37»: 

ARRP (3) 

Here again {3 = Vx(tl) (motion of the particle is linear). 
c 
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3. LAW OF ENERGY CONSERVATION 

1) Let us consider two systems: 

I - a charge e moves at conserved velocity VI from t = -00 up to obser­
vation moment t; 

II - a charge e moves at velocity VI from t -00 up to tf moment, tf < t; 
then during (tf , t' + ll.t') time interval. tf + ll.t' <t, it undergoes work A as a 
result of which its velocity becomes V2. From t' + ll.t' up to the moment of 
observation t the particle moves at constant velocity V2. In accordance with the 
law of energy conservation, 

(4) 

On the other hand, the work done on system II consists of the work done 
against the radiation reaction force and the work for the change of kinetic energy 
of the particle: 

2 2
A - A moc moc 

- - RRF + VI - f3~ - VI - f3f (5) 

Here /31 VIx/C, /32 V2x/C. 

2) Let us calculate ElI and EI energies in formula (4) (Fig. 2, a and 2, 
b). In these figures AD = c(t tf), Be = c(t - tf - ll.tf), Wt1 ,t2;t3(V) is the 
energy of fields radiated by the particle moving at a constant velocity V during 
the time interval (tI, t2), the localization of which is being observed for the 
t3 moment. Wt',t'+~t';t is the energy of fields radiated by the charge moving 
at a variable velocity during the time interval (t' , t' + ll.t') , whose localization is 
being observed for the moment t. 

WI'. I'+ At'; t ( v.z) 

x 

b 

Fig. 2 
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From Fig. 2, a and 2, b we can obtain 

En 

2m c
- Wtl,tl+~tl;t(Vl) - Wtl+~tl,tjt(VJ) - ~. (6) 

3) Let us insert formulae (5) and (6) into formula (4): 

With account of formulae (1) and (3) the last equation turns to the following: 

The integrals in both sides of equation (7) are annihilated, and the second sum­
mand on tRe left side of the equation can be rewritten, with the use of formula 
(2), in the following way: 

Inserting the obtained expression into formula (7) we get the following: 

(9) 

If the velocity of a particle is changing smoothly, then /J(t') = /J(t' + 6.t') = 0 
and it follows from equation (9) that for the time interval (-00, t) the energy of 
the electromagnetic field induced by a charge moving at a constant velocity does 
not depend on the velocity of the charge's movement. 
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CONCLUSIONS 

The two main results obtained in the paper are the following: 
1) The energy of the electromagnetic field induced by a charge moving a 

constant velocity does not depend on the velocity of the charge's movement. 
2) According to formula (2) the energy of the electromagnetic field induced 

by a charge moving along (A, B) section (Fig. 1) at a constant velocity and 
localized within the asymmetric layer formed by spheres with C B and AD radii 
depends on the observation moment t (it decreases as t- 2 ). It is unclear where 
this energy disappears, because the field and, therefore, its energy outside the 
layer is unambiguously determined by motion of the charge beyond the (A, B) 
section (by Lienar-Wiechert potentials). 

The aforementioned results are based on the standard idea that the electro­
magnetic field's energy and momentum in a volume enclosed by some surface is 
calculated by integrating the densities of these quantities in the considered area. 
But it is known that Lorentz transformation for energy and momentum densities 
generally includes the densities of flows of energy and momentum [10]. If these 
flows are not equal to zero, the quantities obtained by integrating energy and 
momentum densities do not have proper transformational qualities. That is why 
these quantities cannot be considered as the energy and momentum of the field 
localized in some space area. It means that if we cut some area from space filled 
by electromagnetic field, we cannot consider it as an independent physical object 
because it does not satisfy Maxwell equations and its energy and momentum do 
not have proper transformational qualities. 

We think that the reason for the appearance of nonphysical results when we 
consider complicated nonstationary processes and try to reach energy-momentum 
balance by traditional methods is that we just do not take into account the cir­
cumstances mentioned above. 

APPENDIX A. ENERGY OF LAYER 

1) The field of a moving charge is described by potentials: 

1
H(r,t) = "R[R,E]. (11) 

In formulae (10) and (11) [a, b] is a vector product of a and b vectors, the 
values of E and H are M(r) defined in some point (Fig. 3) at moment t, and 
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the values of f3 and R in the right-hand parts of the fonnulae are given for the 
moment t' which is defined by the following relation: 

R(t')
t' +-- =t. {I2)

c 

z 

M(r) 

x 

Fig. 3 

2) Let us discuss the case of a charge moving along the Ox axis (Fig. 4). 
Fonnulae (IO) and (11) are rewritten in the following way: 

e { 1 {32 (A A) 1 /3 (A A) } E(r t) = -- R - x{3 + -- Rcoso: - x , (I3) 
, (1 - (3 cos 0:)3 R2 R c ­

e 1-{3 1{3A A 

2 '] (14)H(r,t) = (1-.8cosa)3[x,R] [ -W!3+ R7; , 

Vx X RA A 

where (3 = ~' x = ~' R IRI (Fig. 4). 

M(r) 

x 

Fig. 4 
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Let us calculate the density of field energy: 

w 

(15) 

3) Let us assume that the particle at the moment t' was in point A (Fig. 5) 
and at the moment t' + /j.t' was in point P. For the moment t (t > t' + /j.t' > t') 

Fig. 5 

during the motion on AP section the field radiated by a charge is localized in a 
layer formed by spherical surfaces with AD and PQ radii. Let us calculate the 
volume element of this layer. According to formula (12), 

AD = c(t t') = R(t'), (16) 

PQ = c(t - t' - dt') = R + dR, (17) 

i. e. dR = -edt', AP vdt'. (18) 

Let us consider the triangle /j.APQ. According to cosine theorem, 

PQ2 = AQ2 + AP2 2AQ AP cos a. (19) 

Inserting formulae (16) and (18) into Eq. (19) gives the following: 

c2(t - t' - dt')2 = AQ2 + v 2dt'2 - 2 AQ vdt' cosa. 

Let us solve this equation relative to AQ (in the first approximation to dt'): 

AQ = c(t - t') - (c v cosa)dt'. 

7 



Therefore, 
QD = (c v cos o.)dt'. (20) 

Let us transfer to spherical coordinates and measure radius R from point A 
(Fig. 5). Then we obtain 

dV (c - coso.)dt' R2 sino.do. dIP = -(1 - (3 coso.)dRR2 sino.do.dIP· (21) 

Formula (17) was used in deriving the last equality. 
4) Let us use formula (15) for the energy density and calculate the amount 

of energy localized in an infinitely thin layer drawn on Fig. 5: 

7f 27f 

dW - j j w(r, t) (1 - (3 cos a) R2dR sin a do. dIP = 
o 0 

e2dR { (1 {32? j7f (1 + 2{32 - 2{3 cos a - /32 cos 2 a) sin a do. + 
4 . 	 R2 (1 {3 cos 0.)5 

o 

3 

+ (2!: +4
1:2~~) !_s_in_o._do._}. (22) 

The calculation of integrals in this expression gives the following: 
7f 

j (1 
sin Q: do. 

{3 cos 0.)5 = 
2(1 + (32) 
(1 (32)4 ' 

(23) 

o 

12 = 
7fj sin a do. = 

(1 - (3 cos a)4 
2 3 + {32 
3 (1 - (32) 3 ' 

(24) 

o 
7f 

h J sinada 
(1 jJ cos 0.)3 = (1 

2 
jJ2) 2 ' 

(25) 

o 

14 _ 
-

7fj sin3 a do. 
(1 - jJ cos a)5 

jJ2 - 1 2 1 
~h + jJ2 12 - jJ2 h = 

4 1 
3' (1 _ jJ'2)3 . (26) 

o 
After inserting the obtained results into (22) we get the expression 

(27) 
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5) Let us calculate the energy LlW (Fig. 1) localized in a layer of finite 
thickness. Let us remember that dR = -edt', R = e(t - t'), and {3 is taken for 
the moment t'. Integration of expression (27) from the t' to t' + Llt' moment 
gives the following: 

2e2 e2 

x {3 ( ) edt' = -3 ({32)3 dt1 + - --2-­
1] t'j+6.t' /32 [3 + {32 11tl =t'+6.t' 

et-t' e 1- 6e 1-{3 t-tl tl=t' 
t' 

(28) 

APPENDIX B. WORK OF RADIATION REACTION FORCE 

1) Four-vector of radiation reaction force acting on a nonuniformly moving 
charge is given by the following expression (Landau, Lifshitz, vol.2. §76 (76.2)): 

2 2 i 2 
i _ 2e (d u _ i kd U k ) (29)g - 3e ds2 U U ds2 ' 

iwhere u e)l- {32dt, i. k = 0,1,2,3.= (h,h). ds
1 - {32 1 - {32 

Component gO of this four-vector has the meaning of the work done by the force 
acting on the charge during a unit of time - a power of radiation reaction force. 
Let us write the equation of motion in covariant form: 

d i (30)ds P , 

Here pi (=e' p) = (~,~) is the four-vector of momen­
1 - {32 1 - {32 

tum, c and p are relativistic energy and three-dimensional momentum, respec­
tively. Taking into account these notations, from equation (30) we can obtain 
that 

d 1 1 d mov m{3({3i3) mi3 1 F 
g 

ds P = ) 1 - {32 e dt VI - {32 = (1 {32)2 + 1 - {32 = V1 - {32 e ' 

1 (F{3)Ode 1 1 d moe 
(g{3) = VI _{32 e ' g = ds;; = )1 - {32 e dt VI _{32 

(31) 
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where F is the vector of three-dimensional force acting on the particle. 
2) It is easy to obtain that 

i
du _ ~ ( (f3, fj) L + f3(f3, fj) ) (32) 
ds - c (1 - {P)2' 1 - {32 (1- {32)2 , 

id2u 1 [/32+ (f3{;) 4(f3fj) 2 
ds2 = c2 (1 {32)5/2 + (1 - {32)1/2' 

{; 3fj(f3, fj) + f3/3 2 + f3(f3{;) 4f3(f3fj)2] (33) 
(1 - {32)3/2 + (1 - {32)5/2 + (1 {32)1/2 ' 

t 
. d2ui d2u i /32 (f3fj) 2 

u ds2 = ui ds2 = c2(1 _ {32)2 + (1 {32)3' (34) 

Let us insert expressions (33) and (34) into formula (29), and after some simpli­
fications we obtain 

(35) 

3) From formulae (31) and (35) we can obtain the work done by the radiation 
reaction force (RRF): 

t'+.1.t' t'+.1.t' [.. .]2e2 (f3f3) 3(f3f3)2 ,
Ar.z. ! (F, v)dt' 3c ! (1 - (32)2 + (1 (32)3 dt. (36) 

t' 

If a charge moves along the Ox axis, then we can introduce the notation {3 = Vx / c 
and expression (36) can be rewritten in the following way: 

(37) 
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t:IaqaBa H. H)lp. E2-2005-180 
06 O)lHOM npOTHBOpeqHH B KJIaCCHqeCKOH 3neKTpO)lHHaMHKe 

PaCCMaTPHBaeTC5l CTaH.ll.apTHa5l 3a,rJ.aQa KJIaCCHqeCKOH 3neKTpO.llHHaMHKH, H3nyqe­
HHe, nornOIlleHHe H HHTepnpeTaUIDI conyrcTBYIOIllHX 3cpcpeKToB. PaccMaTpHBaeTC5l 
.llBH)I(eHHe 3ap5l)l(eHHOH qaCTHUbI C nOCT05lHHOH CKOpOCTblO. BHeWH5l5l CHna Me­
H5leT CKOPOCTb )lBH)I(eHH5l. H3MeHeHHe 3HeprnH CHCTeMbI paBH5leTC5l pa60Te BHeWHeH 
CHnbI. H3 3Toro OqeBH.D.HOrO paBeHCTBa nonyqaeTC5l HecpH3HqeCKHH pe3ynbTaT: 3Hep­
rn5l 3neKTpOMamHTHoro non5l .llBH)I(YIlleHC5l C nOCT05lHHOH CKOPOCTblO 3ap5l)l(eHHOH 
qaCTHUbl He 3aBHCHT OT CKOPOCTH .llBH)I(eHH5l. 

Pa60Ta BbInOnHeHa B fla6opaTopHH 5l)lepHbIX rrpo6neM HM. B. II. ,LbKenerroBa 
OH.SlH. 

Coo6111eHHe O61.e)J.HHeHHoro HHCTHTYfa SlJJ.epHblX HCCJle)J.OBllHHH. ,lly6Ha, 2005 

Chachava N. et al. E2-2005-180 
About One Contradiction in Classical Electrodynamics 

A standard problem is considered which arises in classical electrodynamics when 
the processes of energy absorption and its radiation, and accompanying effects are 
studied and interpreted. It primarily concerns the processes of energy propagation in 
electromagnetic fields of charged particles moving in various regimes. 

We consider two identical isolated systems; in each one we have a charged particle 
moving at a constant velocity. One particle's velocity is changed by an external force. 
Thus the difference between the energies of the considered systems is equal to the 
external force's work. From this obvious equality we have obtained a nonphysical 
result: the energy of the electromagnetic field of the charged particle moving at a 
constant velocity does not depend on the velocity of movement. 

The investigation has been performed at the Dzhelepov Laboratory of Nuclear 
Problems, JINR. 
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