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1. INTRODUCTION 

It is believed that traditional approach to the description of fully developed 
turbulence based on the stochastic Navier-Stokes equation is the most realistic 
one [1]. The complexity of this equation leads to great difficulties which defend 
to solve it even in the simplest case when one assumes the isotropy of the 
system under consideration. On the other hand, almost all real hydrodynamic 
turbulent systems are more or less anisotropic, and strictly isotropic situations 
are rather rare. Therefore, if one wants to model realistic developed turbulence, 
one is pushed to consider anisotropically forced turbulence rather than isotropic 
turbulence. Without doubt, this, of course, rapidly increases complexity of the 
corresponding differential equation which itself has to involve a part responsible 
for a description of the anisotropy. However, even in the isotropic case we have 
no exact solution of the Navier-Stokes equation. In this situation, one is forced 
to find some convenient methods to treat the problem at least step by step. 

Among other approaches which were applied in the theory of fully developed 
turbulence during the last decades, one of the most suitable and also powerful 
tool is the so-called renormalization group (RG) method* which was widely 
applied as an effective method of ·studying self-similar scaling behavior, e. g., it 
was successfully used in the theory of critical phenomena to explain the origin 
of critical scaling and to calculate universal quantities (critical dimensions and 
scaling functions). During the last two decades the RG technique was widely used 
in the fully developed turbulence, and gives answers to some principal questions 
(e. g., the fundamental description of the infrared (lR) scale invariance) and is also 
useful for the calculations of many universal parameters (e. g., critical dimensions 
of the fields and their gradients, etc.). A detailed survey of these questions can 
be found in Refs. [7, 8, 9], and references therein. 

In early papers, the RG approach was applied only to isotropic models of 
developed turbulence. However, the method can also be used (with corresponding 
modifications) in the theory of anisotropically developed turbulence. A crucial 

"'Here we consider and discuss quantum-field renormalization group (or also known as field­
theoretic renormalization group) approach [2] rather than Wilson renormalization group technique [3] 
(see also [4-6]). It is this version of the RG that is the simplest and the most convenient in practical 
calculations, especially in higher orders of the perturbation expansion. 



question immediately arises here: whether the principal properties of the isotropic 
case and the anisotropic one are the same, at least at the qualitative level. If 
they are, then it is possible to consider the isotropic case as a first step in the 
investigation of the real turbulent systems. Maybe the most interesting question 
is the following one: does the scaling regime remain stable under transition from 
isotropically developed turbulence into the anisotropic ally developed turbulence? 
In the framework of the RG approach the stable regimes correspond to the very 
existence of the stable fixed points of the corresponding RG equations. Thus, 
the aforementioned question can be reformulated in other words, namely, do 
the stable fixed points of the RG equations remain stable under the influence of 
anisotropy? 

During the last decade a few papers have appeared in which the above 
question was considered in the framework of the RG approach in fully developed 
turbulence and related problems (magnetohydrodynamic developed turbulence, 
advection of passive and vector fields by a given turbulent environment, etc.). In 
some cases, it ,was found that stability actually takes place (see, e. g., [10, 11 D. 
On the other hand, the existence of systems without such a stability has also been 
proven. As was shown in Ref. [12] in the anisotropic* magnetohydrodynamic 
developed turbulence a stable regime generally does not exist. In Refs. [11, 
13], d-dimensional models with d > 2 were investigated for two cases: weak 
anisotropy [11] and strong anisotropy [13], and it was shown that the stability of 
the isotropic fixed point is lost for dimensions d < de ~ 2.685. In Ref. [13], 
where strong anisotropy was investigated, it was also stated that stability of the 
fixed point, even for dimension d 3, takes place only for sufficiently weak 
anisotropy. In the present paper, we would like to return to the problem of 
the influence of strong anisotropy on the stability of the scaling regime in fully 
developed turbulence which was studied in Ref. [13]. The reason is the suspicion 
that their results are, at least. not precise. Our conclusion will be the following: 
the numerical results and conclusions of Ref. [13] are not exact and must be 
specified although the conceptual framework of their approach is accurate. It will 
be discussed in detail in the subsequent sections in the present paper. 

Another problem in these investigations was that it is impossible to use them 
in the physically important case d = 2, because new ultraviolet (UV) divergences 
appear in the Green functions, when one considers d 2, and they were .not taken 
into account in the papers [11,13]. Let us analyzed this problem a little bit more, 
even thougha solution of this problem is not the aim of our investigations below. 
In Ref. [14], a correct treatment of the two-dimensional isotropic turbulence 
was given. The correctness in the renormalization procedure was reached by 

*Now and in what follows we always have in mind the uniaxial anisotropy, i. e., the anisotropy 
defined by one specific direction (see next section). 
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introducing a new local term (with a new coupling constant) into the model, which 
allows one to remove additional UV divergences. From this point of view, the 
results obtained earlier for anisotropically developed turbulence, presented in [15] 
and based on [16] (the results of the last paper are in conflict with Ref. [14]) 
cannot be correct because they are inconsistent with the basic requirement of 
the UV renormalization, namely, with the requirement of the localness of the 
counterterms [5,6]. 

The authors of the recent paper [17] used the double-expansion procedure 
introduced in [14] together with minimal substraction (MS) scheme [18] for an 
investigation of developed turbulence with weak anisotropy for d = 2. The 
double-expansion procedure is a combination of the well-known Wilson dimen­
sional regularization procedure and an analytical one. In such a perturbation 
approach the deviation of the spatial dimension from d = 2, 8 = (d 2)/2, and 
that of the exponent of the powerlike correlation function of random forcing from 
their critical value €, play the role of expansion parameters. The main result of 
the paper was the conclusion that the two-dimensional (20) fixed point is not 
stable under weak anisotropy. It means that 20 turbulence is very sensitive to the 
anisotropy, and nonstable scaling regimes exist in this case. In the case d = 3, for 
both isotropic and anisotropic turbulences, the existence of a stable fixed point, 
which governs the Kolmogorov asymptotic regime, was established by means of 
the RG approach and by using the analytical regularization procedure [10,11,13]. 
Using the analytical continuation from d 2 to the three-dimensional (3~) tur­
bulence (in the same sense as in the theory of critical phenomena) one can also 
verify whether the stability of the fixed point (or, equivalently, stability of the 
Kolmogorov scaling regime) is restored. From the analysis made in Ref. [17], 
it follows that it is impossible to restore the stable regime by transition from 
dimension d = 2 to d = 3. In Ref. [19], it was supposed that main reason 
for above-described discrepancy is related to the straightforward application of 
the standard MS scheme. In the standard MS scheme one works with a purely 
divergent part of the Green functions only, and its tensor part is neglected. In 
the case of isotropic models, the stability of the fixed points is independent of 
dimension d. However, in anisotropic models the stability of fixed points depends 
on the dimension d, and the tensor structure of the Feynman diagrams becomes 
to be important. 

In Ref. [19], it was suggested to apply a modified MS scheme. The modi­
fication is based on the keeping of the d dependence of the UV divergences of 
diagrams. After such a modification d dependence is correctly taken into account, 
and can be used to investigate whether it is possible to restore the stability of 
the anisotropically developed turbulence for some dimension de when going from 
two-dimensional system to three-dimensional one. Thus, after renormalization 
which is made for the value d 2, the d dependence of the tensor parts of 
counterterms is remained. In Ref. [19] the influence of weak anisotropy on the 
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stability of the fixed point and the corresponding dependence of the borderline 
dimension de on weak anisotropy were studied. It was shown that in the limit 
of infinitesimally weak anisotropy for the physically most reasonable value of 
€ = 2, the value of the borderline dimension is de ~ 2.44, which is lower than 
the value de ~ 2.68 obtained within the traditional € expansion [11.13]. Below 
the borderline dimension. the stable regime of the fixed point of the isotropically 
developed turbulence is lost by influence of weak anisotropy. 

Further step is the inclusion of a nonrestricted axial anisotropy or the so-called ' 
strong axial anisotropy. Within € expansion it was investigated in Ref. [13]. 
where the influence of anisotropy on Kolmogorov constant was also studied. 
In Ref. [20]. the influence of the strong anisotropy on the scaling regime was 
studied within double-expansion scheme for some special situations. During the 
calculations, the results obtained in Ref. [13] were also recalculated (part of 
results were published in Ref. [20]). and numerical inconsistences with earlier 
results of Ref. [13] were obtained. In this situation, it is necessary to return and 
verify conclusions of the above-mentioned paper. This is the aim of the present 
paper to specify these results in detail. 

The paper is organized as follows: In Sec. 2 we discuss the field theoretic 
functional formulation of the stochastic problem of fully developed turbulence 
with strong anisotropy. In Sec. 3 the RG analysis of the problem is given. In Sec. 4 
we discuss the stability of the fixed point under influence of strong anisotropy. 
Our results are compared to the results of Ref. [13]. In Sec.5 we discuss in 
detail the numerical method which was used in calculations. In Conclusion 
discussion of the results is presented. Appendix I contains explicit expressions 
for the divergent parts of the important Feynman diagram. In Appendix II the 
necessary and sufficient conditions for convergence of some integrals are proven. 

2. DESCRIPTION OF MODEL. FIELD THEORETIC FORMULATION 

We are going to study anisotropically driven fully developed turbulence. The 
anisotropy is characterized by one specific direction, i. e., we shall work with 
uniaxial anisotropy. The value of the anisotropy parameters will not be restricted. 

In the statistical theory of anisotropically developed turbulence, the turbulent 
flow is characterized by the random velocity field v(x, t), where v and x are 
supposed to be d-dimensional vectors. Its evolution is governed by the randomly 
forced Navier-Stokes equation 

{]v
at + (v . 'V)v 1I0~V - fA = f, (1) 

where the incompressibility of the fluid is assumed, which is given mathematically 
by the well-known conditions 'V . v = 0 and 'V . f = O. The parameter 110 is 
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the kinematic viscosity (hereafter all parameters with a subscript 0 denote bare 
parameters of unrenormalized theory; see below). The term fA is related to 
anisotropy and will be specified later. The large-scale random force per unit mass 
f is assumed to have Gaussian statistics defined by the averages 

(2) 

The two-point correlation matrix 

(3) 

is convenient to parametrize in the following way [10,12]: 

(4) 

where a vector k is the wave vector, d is the dimension of the space (in our case: 
2 < d), € ~ 0 is dimensionless parameter of the model. The physical value of 
this parameter is € 2 (so-called energy pumping regime). We shall not discuss 
here more complicated case d = 2. The value € 0 corresponds to a logarithmic 
perturbation theory for a calculation of Green functions when 90, which plays 
the role of a bare coupling constant of the model. becomes dimensionless. The 
problem of the continuation from € = 0 to the physical values was discussed 
in Ref. [22]. The (d x d)-matrices Pij and ~j are the transverse projection 
operators. Their explicit forms are defined by the relations (in the wave-number 
space) 

k·k· (k.) ( (5)...!:....1... R· ·(k) = n· - ~k--': n·k2' 1.J ~ I:. k J 

where ~k is given by the equation 

(6) 

In Eq. (5), the unit vector n specifies the direction of the anisotropy axis. The 
tensor Dij , given by Eq. (4), is the most general form with respect to the con­
dition of incompressibility of the system under consideration and contains two 
dimensionless parameters a1 and a2. The positiveness of the correlator tensor 
Dij leads to restrictions on the above parameters, namely, a1 ~ -1 and a2 ~ -l. 
In what follows, we assume no further restrictions on these parameters. 

Using the well-known Martin-Siggia-Rose formalism [23-26], the stochastic 
problem (I) with correlator (3) can be transformed into the field theoretic model 
of fields v and v', where v'is independent of the velocity field v auxiliary 
incompressible field, which we have to introduce when transforming the stochastic 
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problem into a functional form. After this transformation the action of the fields 
v and v'is given in the form 

S = ~! ddxldtlddx2dt2 [V~(Xb h)Dij(Xl - X2, tl - t2)vj(X2, t2)] 

+ ! ddxdt {v' (x, t) [-OtV - (v· \7)v + Vo \72v + fA] (x, t)} . (7) 

The functional formulation gives the possibility to use the quantum field theory 
methods, including the RG technique, to solve the problem. Standardly, the for­
mulation through action functional (7) replaces the statistical averages of random 
quantities in the stochastic problem (1)-(4) with equivalent functional averages 
with weight exp S(v, v'). Generating functionals of total Green functions G(A) 
and connected Green functions W (A) are then defined by the functional integral 

G(A) = eW(A) = !ViP eS(CP)+ACP, (8) 

where iP = {v, v'}, A(x) {AY, AY'} represents a set of arbitrary sources for 
the set of fields iP, ViP == VVVV' denotes the measure of functional integration, 
and linear form A iP is defined as 

(9) 

By means of the RG approach it is possible to extract large-scale asymptotic be­
havior of the correlation functions after an appropriate renormalization procedure 
which is needed to remove UV divergences. 

Now we can return to give an explicit form of the anisotropic dissipative term 
fA (see, e. g., Ref. [13]). In our case we suppose that d > 2. In this situation, the 
UV divergences are only present in the one-particle-irreducible Green function 
(v'v). To remove them, one needs to introduce into the action, in addition to 
the counterterm v'\72v (the only counterterm needed in the isotropic model), 
the following ones: v'(o· \7)2v, (0' v')\72(0 . v), and (0' v')(o . \7)2(0 . v). 
These additional terms are needed to remove divergences related to anisotropic 
structures. Therefore, in order to arrive at a multiplicatively renormalizabfe model, 
we have to take the term fA in the form 

where bare parameters XlO, X20 and X30 characterize the weight of the individual 
structures in Eq. (10) on the viscous dissipation. 

Action (7) with kernel (4) is given in the form convenient for a realization 
of the field theoretic perturbation analysis with the standard Feynman diagram 
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technique. From the quadratic part of the action, one obtains the matrix of bare 
propagators (in the wave-number frequency representation): 

where 

~1!Y(k Wk) - -~p,.. + 1 
lJ ' - KIK2 lJ K 1 (K2 + K(l _ ~~)) 

K Ka + K(K3 + :<4(1 - ~~)) K4] Rij
[ K2 (Kl + K(l - ~~)) 

~1!Y'(k Wk) - ~p,.. - K R .. (11)
lJ ' - K2 lJ K 2 (K2 + K(l _ ~~)) lJ' 

with 

iWk + vOk 2 + vOXlO(n. k)2 , 

-iWk + vOk 2 + vOXlO(n· k)2 , 

-gov8k4-d-2~(1 + alO~~), 
9 

Jl3k4-d-2~", 
- Ovo <A20, 

vOX20k2 + vOX30(n . k)2. (12) 

In the case of weak anisotropy one can make the expansion and work only with 
linear terms with respect to all parameters which characterize anisotropy [19]. 
The interaction vertex in our model is given by the expression 

i 'I/ 
~ =V;jl 

l 

where wave vector k corresponds to the field v', Now one can use the above 
introduced Feynman rules for computation of the needed diagram, 
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3. RENORMALIZATION, RG FUNCTIONS, AND RG EQUATIONS 

The analysis of the UV divergences is based standardly on the analysis 
of canonical dimensions (see, e. g., [5, 6, 8]). Our model has two scales [2, 
7, 8, 9], i. e., the canonical dimension of some quantity F is defined by two 
numbers, the momentum dimension d} and the frequency dimension d'F. The 
total canonical dimension is introduced as dF d} + 2dp. (because, in the free 
theory, at ex: ~), which plays in the theory of renormalization of dynamical, 
models the same role as the conventional (momentum) dimension does in static 
problems. To find the dimensions of all quantities it is appropriate to use the 
standard normalization conditions d~ -d~ 1, d~ = -d't = 1, d'k = d~ = 
dt = df 0, and the requirement that each term of the action functional 
must be dimensionless separately with respect to the momentum and frequency 
dimensions. The dimensions for our model (7) are given in Table 1, including 
the parameters which will be introduced later on. The model is logarithmic (the 
coupling constant 90 is dimensionless) at f = O. It means that the UV divergences 
have the form of the poles in f in the Green functions. 

Table 1. Canonical dimensions of the fields and parameters of the model under 
consideration 

F V v' m,A,p, Vo,V go g,XiO,Xi,Ctl,Ct2 
d} -1 d+l 1 -2 2e 0 
a:;.. 1 -1 0 1 0 0 

I d 1 1 0 2e 0 

The total canonical dimension of an arbitrary one-irreducible Green function 
r = (<<p ••• «ph-ir is given by the relation 

(13) 

where N v and Nv' are the numbers of corresponding fields entering into the 
function r. The total dimension dr is the formal index of the UV divergence. 
It is well known that superficial UV divergences, whose removal requires coun­
terterms. can be present only in those Green functions r for which the total 
canonical index dr is nonnegative integer. 

Detail analysis of divergences in our anisotropic stochastic model is the same 
as in the case of isotropic fully developed turbulence model, and it was presented 
in Ref. [2] (see also, e. g., [8,9]), therefore we shall not repeat it here. The 
conclusion of this analysis is that the UV divergences can be present only in the 
I-particle-irreducible Green function (VV'h-ir. 

It can be shown (for example by direct calculations) that the field theoretic 
model (7) with anisotropic terms (10) is multiplicatively renormalizable, i. e., all 
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terms needed for removing of the divergences are included in action (7). Thus 
one can immediately write down the renormalized action (in the wave-number­
frequency representation, where V ---t ik, at ---t -iWk, and all needed integrations 
and summations are assumed) 

SR (v, v') = ~V; [gV3/12, k4-d- 2, ((1 + Ct, (n P,; + Ct2R;;) ] vj ~ 

+ v; [(iWk - Z,Vk2)p;; vk2 (Z2X' ~~P'j + (Z3X2 + Z4X3~~) R;;) ] Vj + 

1 ,
+ '2ViVjVll!ijl, (14) 

where J.L is a scale setting parameter with the same canonical dimension as the 
wave number. Quantities g, Xi, i 1,2,3, and v are the renormalized counter­
parts of bare ones, and Zi are renorma1ization constants which are expressed via 
the UV divergent parts of the function (VV'h-ir. In the one-loop approximation 
their general form is 

(15) 

In standard MS scheme the amplitudes Fi are only some functions of g, Xi, i 
1,2,3, at. a2, and d and are independent of L 

The transition from the action (7) to the renormalized one (14) is given by 
the introduction of the following renormalization constants Z: 

(16) 

where i = 1, 2, and 3. By comparison of the corresponding terms in the action 
(14) with definitions of the renormalization constants Z for parameters (16), one 
can immediately write the following relations between them: 

(17) 

where again i 1,2, and 3. 
In one-loop approximation divergent one-irreducible Green function (VV'h-ir 

is represented by the Feynman diagram: 

(V'Vh-ir 

(18) 
The divergent part of this diagram has the following structure: 

v'v vgA [2 )2 2 2]r ij = -~ aloijk + a20ij(n· k + a3ninjk + a4ninj(n· k) , (l9) 
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where parameter A is defined as A = Sd_l/((21T')d(d2 -1)), Sd is d-dimensional 
sphere given as Sd 21T'{d/2) Ir(dI2), and functions ai (i 1, ... ,4) are given 
in Appendix 1. They are expressed in an integral fonn. The counterterms are 
built up from these divergent parts, which lead to the following equations for 
renonnalization constants: 

g g
Zl = 1 A aI, Zl+i = 1- A 2 a1+i, i = 1,2,3. (20)

2€ Xi € 

From these expressions one can define corresponding anomalous dimensions 
ri = j.d:Jj.L In Zi for all renonnalization constants Zi (the logarithmic derivative 
j.L8j.L is taken at fixed values of all bare parameters). The {3 functions for all 
invariant charges (running coupling constant g, and parameters Xi) are given by 
the following relations: {3g = j.L8j.Lg, and {3Xi j.L8j.LXi (i = 1,2,3). Now using 
Eqs. (17) and definitions given above, one can immediately write the {3 functions 
in the forms: 

-g(2€ + rg) = g( -2€ + 3r l), 


-XirXi = -Xi(rHI rd, (21) 


where 
Ag.; 1 2 3 r1 Agal, rHl = -ai+l, " ". (22) 
Xi 

By substitution of the functions ri (22) into the expressions for the {3 functions 
one obtains: 

4. STABILITY OF THE KOLMOGOROV SCALING REGIME 

Fully developed turbulence is characterized by the large Reynolds number 
Re. On the other hand, the large Re corresponds to the existence of a large 
inertial interval, which is defined by the inequalities IIA 1« r « L = 11m, 
where l corresponds to an inner scale (the scale where dissipation forces are 
dominated, or the scale of the smallest eddies), and L is an outer scale of the 
system (the scale of the energy pumping into the system, or the scale of the 
largest eddies). In fully developed turbulence we are interested in the behavior 
of the correlation functions of velocity field, ( ViI (Xl, t), ... , ViN (XN , t), deep 
inside of the inertial interval, i. e., far away from the dissipation effects as well 
as far away from energy pumping scale. Within the field theoretic approach they 
are given by the following functional integral (see also Sec. 2): 

10 
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(ViI (Xl, t), ... ,ViN (XN, t») / Vip ViI (Xl, t), .. . ,ViN (XN' t)eS(~), (24) 

where <P {v, v'}, 1 ~ ij ~ d,j = 1, ... , N, and S(<p) is given by Eq. (7). 
The behavior of the correlation functions inside the inertial interval is the main 

issue of the famous Kolmogorov-Obukhov phenomenological theory [27,28] (see 
also Ref. [29]). It was formulated in the form of two hypotheses which lead to 
the scaling behavior of the correlation functions within the inertial interval. In 
what follows we will discussed only the second Kolmogorov hypothesis related 
to the IR scaling and our aim is to investigate the influence of the axial anisotropy 
on this scaling behavior. . 

As was mentioned in Introduction the appropriate method to investigate self­
similar systems is the RG method. Within the RG technique the correlation 
functions are obtained directly in the scaling form (with correct critical dimen­
sions) and their large-scale limit (i. e., IR limit) is described by the stable fixed 
points of the renormalization theory, i. e., the scaling regime is stable if the corre­
sponding fixed point is IR stable. The IR fixed point is obtained using the system 
of differential equations (also called the flow equations) which drive the effective 
variables (j = {g, Xl, X2, X3} which are the functions of the dimensionless scale 
parameter (wave number) t = kjA. Their explicit forms are the following: 

d­t-.!t (25)
dt 

dX-' 
t-~ (26)

dt 
The dimensionless wave number t belongs to the interval 0 ~ t ~ 1, and the initial 
conditions for the above differential equations are taken at t = 1. The IR stable 
fixed point corresponds to the values in the limit t --+ 0, i. e., (g, Xl, X2, X3) 1t---tO = 
(9* ,X* 1, X2'* X3*) . 

In principle, one has two possible ways how to find the IR fixed point of the 
model. First of all, one can solve the system of four equations 

(27) 

where we denote C* {g*, xi, X2' X3}' In this case, the IR stability of the fixed 
point is determined by the positive real parts of the eigenvalues of the matrix 

8{3CI)
Wlm = ( 8e ' l,m 1, ... ,4. (28) 

m c=c. 

This is a comfortable way for the determination of the fixed point but in our case 
it cannot be used. The reason is the presence of the integrals in the {3 functions 
(see Appendix I) which makes this way rather complicated. 

II 
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The second possibility is to solve directly the system of the differential 
equations (25) and (26). It is the way which can be used, and will be used, in our 
case. This method was also applied in Ref. [13]. More about numerical methods 
will be said in the next section. 

Now we have all necessary tools at hand to investigate the fixed point and its 
stability. Because the aim of the present paper is to specify the results obtained 
in the Ref. [13], in this sense, first of all, we have to discuss their results, and 
we shall try to argue why they are not precise. After that, we shall present our 
recalculated results. 

As for results of Ref. [13], we shall concentrate on Fig. I therein. It shows 
the dimensional borderline (in the spatial region 2 < d ~ 3) between the IR 
stable regime (Kolmogorov scaling regime) and unstable regime as a function of 
the anisotropy parameters 0:1,0:2 (see Fig. I in Ref. [13]), The main conclusions 
in [13] are the following: 

• 	 They confirm the existence of a universal kinetic scaling regime. It corre­
sponds to a stable fixed point of the renormalization group. 

• 	 The Kolmogorov scaling regime becomes unstable when anisotropy para­
meters are even not too large. This situation concerns mainly the parameter 
0:2, when even very weak anisotropy represented by the parameter a2 leads 
to the destruction of the Kolmogorov scaling regime. When value of the 
parameter a2 > 0.0235 then for all values of parameter al the Kolmogorov 
regime is destroyed. 

• 	 According to their investigation the authors declare that in the limit of the 
weak anisotropy. the nonzero X3 parameter is irrelevant for the stability of 
the scaling regime at d 3. 

Let us analyze what is inaccurate in these conclusions. The first one is a 
general statement which is correct but the other two are a little bit problematic. 

First problem in Fig. 1 of Ref. [13] is related to the isotropic limit of the 
model. It is well known (see Ref. [11]) that in the isotropic limit (a1,2 ~ 0) the 
borderline dimension de between stable and unstable regimes is de = (3y'l7­
7)/2 ~ 2.6846. This result is also confirmed in Ref. [13] (Eq. (3.4». On the 
other hand, in Fig. 1 of Ref. [13], the borderline dimension in this limit is closed 
to the value de = 2.72. and the contour which corresponds to the borderline value 
de = 2.68 is rather far away from the point (ab (2) = (0,0) especially in the a1 
direction. This is the first and the most important discrepancy. 

The second problem is the rather strong dependence of the de on the parameter 
a2 (the region of the stability of the scaling regime is very narrow in 0:2 direction). 
Why is it a problem? The answer is the following: the values of a2 from the 
interval -0.025 < a2 < 0.025 belong to the weak anisotropy limit, i. e., one 
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3.00 

d 
c 

2.85 

2.55 
-1.0 

-0.5 a 
l0.0 

Fig. 1. The three-dimensional view on the dependence of the borderline dimension de on 
the parameters a1 and a2 

can expand all f3 functions into the series in anisotropy parameters and keep 
only the linear parts. This is what we have in mind when we are talking about 
the weak anisotropy approximation. The region close enough around the point 
(at, a2) = (0,0) fulfils this condition. In Ref. [19] the influence of the weak 
anisotropy was studied in the similar problem but in the double expansion scheme 
to be able to study also two-dimensional turbulence. The dependence of the 
borderline dimension de on the small parameters a1 and a2 was calculated, and 
it was shown that this dependence is very simple and without radical increase or 
decrease of de near (aI, a2) (0,0). It can be shown that the same situation takes 
place also in the weak anisotropy limit of the present model. These linear parts of 
the f3 functions must also play the principal role in the case of unrestricted uniaxial 
anisotropy if the parameters of the anisotropy a1 and a2 are small enough. It is 
fulfil comfortably in the square area a1 x a2 (-0.025, 0.025) x (-0.025, 0.025). 
From this point of view the drastic dependence of de on the parameter a2 in Fig. 1 
of Ref. [13] is a little bit strange. 

The third conclusion is not exact too. As was shown in Ref. [19], exactly 
the parameters X3 and a5 (the last one in related to the double expansion model) 
play the crucial role in the determination of the IR stability of the fixed point. 
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Fig. 2. The dependence of the borderline dimension de on the parameter Ct2 for concrete 
values of the parameter Ctl 

Again, it can be shown that in the weak anisotropy limit of the model under 
consideration the parameter X3 alone plays the same role as the parameters X3 
and a5 in double expansion case. Even though that the value of the fixed point 
for parameter X3 is xi 0, namely the eigenvalue of the matrix of the first 
derivatives related to this parameter iB responsible for the very existence of the 
borderline dimension de E (2,3). 

In Figs. 1 and 2 our results for the de as a function of the anisotropy 
parameters are presented. The difference between our results and those of 
Ref. [13] can be seen immediately. Figs. 1 and 2 show that in three dimen­
sions the Kolmogf)rov scaling regime is unstable in the limit al,2 ---+ -1 and for 
large enough values of parameter al together with negative or relatively small 
positive values of the parameter a2. Our conclusion is the following: to destroy 
stability of the Kolmogorov scaling regime in three-dimensional space by the uni­
axial anisotropy, which is in our model represented by the parameters a} and a2, 
it is necessary to apply anisotropy with rather specific values of these pC\fameters. 

5. NUMERICAL METHODS 

One possible way how to solve the problem of the IR fixed point of the 
four differential RG equations (25) and (26), with /3 functions (23), and corre­
sponding integrals (34) of Appendix I is based on the analytical calculations of 
the integrals. The integrands of (34) have the form of fractions of two poly­
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nomial Pi(X2)/Q(x2) (i = 1, ... ,4). with different numerators Pi(X2) = bi(X2) 
but with the same denominator Qi(X2) = (MIM2M3)3. It is possible to ex­
pand the expression 1/(MIM2M3)3 into a sum of partial fractions of the type 
R(x2)/(a+x2)i, where R(x2) is a polynomial, a is, in general, complex function 
of parameters Xi, i = 1,2,3, and j = 1,2,3. Now using the following result (see, 
e. g., Ref. [30]): 

one can represent the integrals in the form of a combination of hypergeometric 
. ab a( a + 1)b(b + 1) 2 

functlons2Fl(a,b;c;z)definedas2Fl(a,b;c;z) = l+-,-z+ 2' ( ) z + 
I.c .c c + 1 

... Eq. (29) is held when Re[d] > 1 (Re[x] means the real part of x), Re[n] > 
-1/2, and Arg[a] =1= 1r. In our case, these conditions are fulfilled because 
d E (2,3), n is 0 or positive integer, and it can be shown that the last condition 
is also held. 

By using of this representation of integrals (34) it is possible to find the IR 
fixed point of differential equations (25) and (26) by solving of the system of 
equations (27) together with the matrix of the first derivatives (28) to test the IR 
stability of the fixed point. But this way is rather complicated and we shall not 
use it here. 

The most comfortable way how to find the IR fixed point of the system of 
four differential RG equations (25) and (26) with (23) is to solve it numerically 
using some appropriate numerical method. In what follows, we work with the 
fourth-order Runge-Kutta method with the adaptive choice of the integration step. 
It is convenient to transform the system of differential equations (25) and (26) 
into an autonomic system by the substitution t = e- S Using this transformation • 

one obtains 

where s E (0, (0). The initial conditions correspond to s = 0, and the IR fixed 
point is found in the limit s ~ 00. The first step for the variable s was taken as 
As = 10-3 . The initial values of the parameters can be chosen arbitrary but the 
most convenient choice is to take them to be the fixed point of the 3D isotropic 
model (see Ref. [13]). 
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As was already discussed our differential equations are made of the linear 
combinations of the following integrals: 

(32) 

where explicit forms of the functions Mi , i 1,2,3 are given in Appendix 1. 
Therefore, the first step to solve the problem is the necessity to guarantee their. 
convergence within the interval x E (-1, 1), i. e., to determine the allowed values 
of the parameters Xl> X2, X3. That is why, let us first discuss the conditions 
under which the integrals will be well defined. 

Assume that one (or more) of the expressions Mil (i = 1,2, 3) (defined in 
Appendix I) is vanished in respect to the variable x within the interval (-1, 1). 
Let us denote as Xl the point in which one of the Mi is equal to zero. Then, from 
the convergence point of view, the integral (32) is equivalent to the integral of the3
type J~l 1/ (x - xd dx. Hence, if one of the expressions Mil i = 1,2,3 vanish 
in the interval (-1, 1) then the integrand will be nonintegrable. Thus, to guarantee 
the convergence of the integrals, we are looking for such conditions on variables 
Xl> X2, X3 which give nonzero values for Mi within the corresponding interval. 
The necessary and sufficient conditions of the convergence of the integrals (32) 
are as follows: 

The detail proof of these conditions can be found in Appendix II. They are also 
important in the numerical solution of our system of differential equations and 
they must be tested on each step of the Runge-Kutta method. 

An important question is related to the choice of a numerical method for 
calculation of the integrals. It can be shown that the most appropriate method is 
the using of the Chebyshev quadrature formula. The question of the number of 
divisions of the integration interval is another important one. In our calculations, 
we used the division to 1024 subintervals, which was found as the best choice 
from the point of view of the accuracy and needed time of the calculation. On 
the other hand, in Ref. [13], the division to the 128 subintervals was used. We 
suppose that this fact could lead to the difference between our and their results 
because the division to 128 subintervals can be not sufficient in some critical 
situations. 

To find the borderHne dimension it is enough to use the bisection method. 
Our results were calculated with the accuracy of 0.005. The same accuracy 
was supposed in Ref. [13] but, as was already discussed, this accuracy was not 
achieved even in the isotropic limit where exact result exists (see discussion in 
the previous section). 
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From numeric calculations point of view, the problem is rather time-consu­
ming, i. e., the calculations take relatively long time. Therefore, the question 
of using of a modem computational methods arises. In what follows, we shall 
analyze possible speed up of calculations based on the utilization of the parallel 
programming methods using of the Message Passing Interface (MPI) (see, e. g., 
[31, 32]). Let us discuss this problem in more detail. First of 'all, we have 
to calculate our system of differential equations at large number of points. For 
example, Fig. 1 was obtained by using of results on the lattice of the size 16 x 16 
in the plane of anisotropy parameters al and a2, i. e., we had to repeat the 
calculational procedure 256 times. 

Suppose first that we have to calculate the borderline dimension de for one 
concrete value of the parameters al and a2. How can the MPI help in this 
situation? To find the borderline dimension with a precision fld when the start­
ing interval for d has the length lone has to carry out prescribed number of 
calculations n. By using of the one-processor computer the best way how to find 
the de is to use the bisection method. In this case, the result is obtained after 
n pog2 (l / fld)1calculations <rx1means the smallest integer greater or equal 
to x). On the other hand, in the case of the multiprocessor computer with m 
processors, one can divide the interval into m + 1 subintervals and carry out the 
calculations in m points of the division at the same time. Thus, the result is 
obtained after n pogm+1(l / fld)1 serial calculations (of course, in this case, 
the total number of calculations is larger but the total time of the calculations 
is shorter). Let us demonstrate it by an example. Suppose that l = 1 and 
fld 0.005. The results are shown in Table 2. The table shows the effective 
numbers of processors which are 1,2,3,5,14, and 199. If we suppose that the 
calculations take the same time for all values of dimension d then n is directly 
related to the time of calculation. For example, the calculation with three proces­
sors (the same holds also for four processors) is two times shorter than calculation 
with one processor, see Table 2. On the other hand, the calculation takes the 
same time for the computations with three, and four processors. The same is 
held for the computers with number of processors from the intervals m = [5,13], 
m = [14,198], and m = [199, (0). Therefore, our conclusion is the following: 
if one needs to do only one computational process (in our case, it means to find 
one borderline dimension de for concrete value of the parameters of the model) 
then it is appropriate to use the advantage of the parallel computing. 

Table 2. The number of needed serial calculations n as a function of the number of 
processors m 

m 1 2 3,4 5-13 14-198 ~ 199 
n 8 5 4 3 2 
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Now let us analyze the situation when one needs to calculate the borderline 
dimension de as a function of the anisotropy parameters (it is our case). Thus, 
it is necessary to carry out two or more independent calculations for different 
values of the parameters of the model. The simplest situation occurs when the 
number of independent calculations are much more larger than the number of 
processors. Because this is our case, we shall analyze it in detail. The situation 
is shown in Fig. 3, where total number of computational processes N is shown 
as a function of the number of processors m and of the desired precision ~d. It 
is seen immediately that the most effective utilization of the processors is to give 
to each processor to calculate independent borderline dimension de alone . 

. 
N 

35 .,.' 

./Ad=5 '1O~!30 ­ .. ' ~ .. ~ ~ ..... 
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Fig. 3. The dependence of the total number of calculational processes as a function of the 
number of processors m and the precision l::.d. The length of the initial interval is l = 1 

We have analyzed two special cases, namely, the case with one independent 
calculation, and the case with the large number of independent calculations. The 
situation becomes more complicated when one needs to carry out the number of 
calculations which is comparable to the number of processors. But each such 
situation needs special analysis and we shall not analyze it here. 

In concrete calculations we used advantage of the parallel programming. Our 
situation is the case with a large number of independent calculations, therefore, 
each processor has calculated borderline dimension for defined values of the 
parameters of the model. 
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CONCLUSION 


By using of the field-theoretic RG method the influence of the uniaxial 
anisotropy on the stability of the Kolmogorov scaling regime in fully developed 
turbulence was investigated. The stability of the regime is defined by the very 
existence of the IR stable fixed point. The fixed point was found numerically 
by the solving of the corresponding differential RG equations. It was shown 
that the earlier results obtained in Ref. [13] as well as their conclusions about 
the dependence of the borderline dimension de as a function of the anisotropy 
parameters al,2 are not precise enough. We have found th~t the stability of the 
three-dimensional scaling regime is destroyed only in the case of rather large (in 
the sense of the absolute value) and special values of the anisotropy parameters. 
We have also analyzed the optimal way how to calculate the numerical problem 
by using of the parallel programming methods. 
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APPENDIX I 

The explicit form of the functions ai, i = 1, ... ,4 from the divergent parts 
of the one-loop diagram of the model (see Sec. 2) is as follows: 

1 fl (1 - x 2)(d-3)/2 . 
ai = 4i-I dx (MlM2 M 3)3 bi, 1, = 1, ... ,4, (34) 

with 

bl Cl,l + 4M2M 3x 2xi(cl,2 + Cl,3) 

+ Ml X2x l (Cl,4 + M 2Mjr4x l cl,5 + M~Cl,6 2MiMjCl,7) ' (35) 

b2 = C2,1 - M;M~rl(c2,2 + C2,3) 4M2M3Xl(!3 + Xl)c2,4­

Ml ( 2M:r~wlxi(!3 + Xt)Y4 + M~(2xic2,5 2!3C2,6 + dlM3rlr~xlY7)+ 

+ 2MiMi(2a2M 3c2,7 + C2,S) + M2 M i r4(C2,9 + C2,1O)), (36) 
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b3 = C3,l + M'f Mir lC3,2 + 4M2M3(C3,3 + M2M3r4(C3,4 + XlC3,5)+ 

+ M?(C3,6 + XlC3,7» + Ml (C3,8 - 2M?M;(C3,9 + 2f3C3,1O + C3,U)+ 

+ M 2M;r4( -XlC3,12 - 4f3C3,13) + M~(-dl C3,l4 + 2f3C3,15 - 2xic3,l6»)' 

(37) 

b; = C4,l - 2c4,2M'fM~rl + 2M2M3( -C4,7 + (C4,5 - C4,6dt}M?+ 

+ (C4,3 - C4,4dl)M2M3r4) + Ml (dl (C4,10 + C4,1l/t) + C4,9f2 + 3C4,8f3)M~+ 
+ 2(dl (C4,20 + 2C4,l9/t) + C4,l8f2 + 3C4,17f3)M?M;+ 

+ (d1(C4,15 + 2C4,16/t) + C4,14f2 + 3C4,13f3)M2M;r4 - C4,12Mir~XlY4)' 
(38) 

where 

Cl,l 4M'fMir l x2xI(-dIM3r4 + (-X2 M3 + r4(1 + 3M3))xt} 

+ MrM~rl(dIM3(d_l 3XI) + 2(1 + 2M3)X~), 


CI,2 -M;dxI(rl + a2xI) + M?(-4a2M; + 


+ rlr4(2M3 - q(l + wt}xt}) , 


CI,3 M2M3r4(4a2M3xI + rl(2M3 r4(2 + wt}xt}) , 


CI,4 -2Mtr~wlxi(rl + a2x I) , 


CI,5 a2M3x I(4(WI + h2XI) + r4Yl) + 


+ Tt (4X2 M3XI + r4( -4WIXI + M3YI» , 


CI,6 dIM3(402M; + rlr4( - 2M3 + r4xI» 


2xI(8a2Mt + rlr4( -4M; + r4xI - 2M3(1 + WI - Y2») , 


CI,7 = dlr4(202M3XI + rl(M3 - r4x t}) 


4xI(rlr4(M3 - Y2) + a2M3(r4x I + Y2» , 

C2,1 2MrMir l(f3 - dl /tM3 + 2f3M3) , 

C2,2 -4f3M3r4( -2 + 3x2) + dIM3r4(d_1 4/t + 3ftx2 - 5XI) , 

C2,3 4f3( -X2M3 + r4)xI + 4( -X2M3 + r4 + 2M3r4)xf , 

C2,4 -402M2M;(M2 - r4 x t) 

r4(M2rl( -2MIM3 + r4(MI + M3 + MIWI)Xl) + M;QXIY4) ' 
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C2,5 -4a2M; + TIT4(-T4(M3X4 + xd + 2M3(1 + M3 + WI + X2 XI», 

C2,6 4a2M;X2 + TIT4 (T4 (xi + M 3Y3) 2M3(M3X2 + xI(l + Y5») , 

C2,7 xi( -2X2XI + T4(X4 + Xl» 

+ !s( -2X2Xi + T4(1 + 4X4 + Xl - 2X2(3 + Xl»), 


C2,S 2f3TIT4(M3X2 + 2X2Xi T4Y3) 


+ T4XI (2TIXI (M3 - T4 X4 + 2X2Xd + d1Y6Y7) , 


C2,9 -2TI(-2X2M3X~ + T4(xi(M3X4 + 2WI(f3 + Xl» + f3 M 3Y3» , 


C2,10 M3XI (a2(4f3WIXI 2T4X4Xi - 2!sT4Y3 + 4xiY5) 

+Y4(4!sX2XI + dIT4Y7») , 

C3,1 MfMiTI (-d1fIM3 + 2/3(1 + Xl + 2M3) + 2XIxi) , 

C3,2 -4(-X2M3 + T4 + 3M3T4 + X3M3X2 XIT4 X2 )xi 

d l (d_IM3T4 + fIM3T4( -2 + x2) + (-5M3T4 4X3M3X2 + 

4XIT4X2)xd+ 
+ 4f3(M3(-X3x2 + X2 XI) + T4( - 3M3XI + Ys» , 

C3,3 = -M;T~XIY4( -dI XIX 
2 

XI + f3YS + XiY9) , 

C3,4 !s(4a2M3xIYS + Tt{-T4XI(-2 - WI + x2(2 + 2XI + WI + W2» + 

+ 2M3ys» , 


C3,5 -dIX2(2XI(2a2M3xI + TI(M3 - T4 Xt» - TIT4 XIW2) 


+ Xl (4a2M 3XIY9 + TI(T4XI(WI X2W2 - 2Y9) + 2M3Y9» , 


C3,6 = - !s(4a2M;yS + TIT4(T4XI (-1 WI + x2(1 + Xl + WI + W2» 


2M3YS» , 


C3,7 dIX2(XI(4cx2M; + TIT4( -2M3 + T4Xt» + TIT~XIW2) 


+ Xl (-4CX2M;Y9 + TIT4(T4 XI(WI X2W2 - Y9) + 2M3Y9» , 

C3,S -2M;T~Xl(f3(-WlXl + X2W2) - Xl(WIXI + x2(d + X2)W2»Y4, 

C3,9 2xi (TIT4(3M3 2T4X3 + 2X2XI - 2X3X2X I) 

+CX2 M3 (-2(X2 - X3 X2 )Xl + T4(2x3 + 3XI») , 

C3,10 cx2M3(2xI(X3X2 - X2 XI) + T4(2 + 4X4 + 3XI 2X2(4 + xd» 

+ TIT4(3M3 - 2M3X2 - 2X3X2X I + 2X2Xi 2T4YlO) , 

C3,1l dl (Xl ( cx2M 3(T4(-X5 - 4XI) - 4X3X2Xt) + 

+ TIT4(-4M3 + T4X5 + 4X3X2Xd) + d- IM 3T4Y4 + 

+ fIM3T4( -2 + X2)Y4) , 
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C3,12 = dl (a2M3XI(T4X5 + 4X2(X3Xl + W2)) 

+TI(4X3M3X2XI + T4(M3X5 - 4X2XIW2))) 

4XI ( a2M3XI (-WI + T4X3 - X2XI + X3X2XI + X2W2) 

+TI (M3( -X2 + X3 X2 )XI + T4(M3X3 + WIXI - X2XI W2))) , 

2C3,13 a2 M3XI (WIXI - T4YlO - X (X3 Xl + W2)) 

TI(X3 M3X2X I + T4(WIXi + M 3ylO - X2XIW2)) + X2 M 3XiY4, 

C3,14 2d_ IMi( - 2a2M 3 + TIT4) 

+ 2hMi( -2a2M3 + TIT4)( -2 + x2) + Xl (16a2M: 

+ TIT4(T4(M3X5 2XIX2XI) + 4M3(-2M3 

+ X2(XI + X3XI + W2)))) , 

C3,15 	 4a~M:(3 - 2x2) + TIT4 (Mi( -6 + 4x2) 

2+2M3(XIX2 - Xl + X3 x2xI - WIXI x2xi + T4YlO + X W2) ­

T4 XIYa) , 

C3,16 = -12a2M: + TIT4 (2M3(3M3 + WI + X2XI X3x2xI 	 X2W2 yg) 

-T4(2M3X3 XIY9)) ' 

C4,1 MrMi(3f3XI + 12(1 + Xl + 2M3))TI , 


C4,2 -3f3(2X2M3 - X3 M3X2 + T4( - 5M3 + xa)) 


+ f2(M3(X3X2 + X2X7) - T4(M3( -5 + 3x2) + xg)) 

+ d l (ft (M3(X2 + X3 2X3X2 ) + T4( - 2M3 + XlO)) + X3 M3XI ­

- XIT4XI) ' 

C4,3 3f3(4a2M3xsxI + TI(2M3Xa + T4XI(2wI - 2xs X2W2))) 


+ f2(4a2M3xgxI + TI(2M3X9 T4XI(-2(2 + WI) 

+ x2(2 + 2XI + WI + W2)))) , 

C4,4 	 Xl ( - 2XI (M3TI + 2a2M3Xl - TIT4Xt) + TI T4XIW2) 


+ ft(4a2M3XlOXI + TI(2M3XlO + T4XI(2 + 2XI - 4XIX2 + 


+ WI + X2W2))) , 

C4,5 	 3f3(-4a2Mixs + TIT4(2M3XS T4XI(-2wI +XS + X2W2))) 


+ f2(-4a2Mixg + TIT4(2M3Xg - T4XI(-2(1 +Wt) + 


+ X2(1 + Xl + WI + W2)))) ' 
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C4,6 Xl (Xl (402M; + rlr4( - 2M3 + r4x I)) + rlr~xlw2) 
+ ft( -402M;XlO + rlr4(2M3x lO + r4x I( -XIO + WI + X2W2))) ' 

C4,7 M;r~xI (-d1ftxlO + 3!3Xg + !2X9 + d1XIXI)Y4 , 

C4,g 1602Mi 

+ rlr4(r4(M3x6 - X8Xt) + 2M3 (-4M3 - 2WI + Xg - 2X2XI + 

+ X3 x2xI + x2W2)) ' 

C4,9 -802Mix7 + rlr4 (r4(-X9XI + M3Y13) 

+2M3(XIX2 + (1 + 2M3 + Wt)X7 + X3x2xl - X2Yll + X2W2)) , 

C4,10 	 rlr4(d_ 1M3r4 + xl(2X I M 3 - 5M3r4 + 2X3M 3XI ­

Xlr4xl + 2M3W2)) , 

C4,ll 	 - 802M: + rlr4 (4M;- r4(xl + XIY12) 

+2M3(2X3 X4 - XIO + r4x ll + WI + X3 x3 + X2 Xl + X2W2)) , 

C4,12 = 	 -6!3Wl + !2WIX7 + !2x2w2 + 3!3X2w2 + d1(XIW2 + 

+ ft(WI + X2W2)) , 

C4,13 02M3Xl (-4Wl + r4X6 + 2x2(X3Xl + W2)) 

+ rl(2X3M3X2xl + r4(M3x6 + 4WIXl - 2x2xIW2)) - 4X2 M3XIY4, 

C4,14 02M 3( - 2WIYll + r4xIY13 + 2x2xl (X3Xl + W2)) 

'+ rl(2X3M3X2xl + r4(M3Y13 - 2Xl(WlX7 + X2W2))) - 2X2M 3YllY4, 

C4,15 d_ 1M3r4Y4 - xI(rlr4(5M3 + 2XIW2) + 

+ M3XI (502r4 - 202W2 2X3Y4)) , 

C4,16 rlr4(M3 x ll - Xl(Wl + X2W2)) 

+ M 3 (02r 4x ll x l + 02WI X I + 02Y12W2 + X2XIY4 + X3Y12Y4) , 

C4,17 rlr4( - 4M3 + r4x6 - 4X2XI + 2X3X2x I) 

o2M3(r4x6 - 4X2Xl + 4r4xl + 2X3X2X t) , 

C4,18 rlr4(2M3x7 + 2X3X2x l - 2X2Yll + r4Y13) 

02M3(2X3X2X l + 2r4x2Xl - 2X2Yll + r4Y13) , 

C4,19 rlr4(M3 + r4Xll + X2 x I + X3Y12) ­

o2 M3(r4x U + X2 Xl r4Xl + X3Y12) , 

C4,20 (d_ 1r4 +xl(-5r4 + 2X3XI))Y6, 
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and 

MI = 2(1 + XIX2) + (X2 + x2X3)(1 - X2) , 

M2 = 1 + XIX2 + (X2 + x2X3)(1 - X2) , 

M3 1 + XIX2 , 

rl = 1 + OIX2
, 

r4 X2 + X3 x2 , 


!I x2 d 1, 


12 -(d+2)x4 +(d+3)x2 1, 


13 (d + 4)(d + 2)X4 - 6(d + 2)X2 + 3, 


WI 1 + X2 + X3 x4 , 


W2 = Xl - X2 + X3(1 - 2x2) , 


YI -3 + d + 8x2 , 


Y2 r4(1 - 2x2) X2(1 - x 2) , 


Y3 1 - 6x2 + 4x4 , 


Y4 rl + 02X I, 


Y5 WI + X2 X I, 


Y6 rlr4 02M3, 


Y7 1 - 3x2 + !IXI , 


Ys -1 + (1 + Xdx2, 


Y9 = -1 + Xl X2 , 


YlO 1 - 4X2 + 2x4 , 

Yll 2 - 3X2 + X4 , 

Yl2 1 3x2 + 2x4 , 

Yl3 3 - 12x2 + 4x4 , 

d l d + 1, 

d_ l d - 1, 
2

Xl 1 - x , 


X2 1 - 2x2 , 


X3 1 3x2 
, 


X4 1- 4x2, 


X5 1 - 5x2, 


X6 3 -10x2 , 
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X7 = -2 + X
2 

, 


Xs -2 + XIX
2 

, 


Xg -2 + (1 + xdx2 
, 


XlO = -1 + XI(-l + 2X2) , 

Xu -3 + 5x2. 

APPENDIX II 

In this Appendix we shall prove the necessary and sufficient conditions 
needed for the convergence of integrals (32). First of all, we prove the fol­
lowing theorem: 

Theorem 1: If the expressions Mil (i = 1,2,3) (see Appendix I) are nonzero 
at each point X E (-1, 1) then they are positive on whole interval. 

Proof: The expressions M i , i 1,2,3 are continuous functions in respect 
to x on the interval x E (-1,1). On the other hand, M3(0) 1 > O. If one 
supposes that there exists y E (-1, 1) such that M3 (y) < 0 then according to the 
property of continuity there must exist a point at which the function is vanished. 
But it is a contradiction with the assumption of the theorem. Thus, M3(X) > 0 
for all x E (-1,1). 

Because M2(1) 1 + Xl = M3(1) > 0, then using the same arguments we 
come to the same conc~usion, namely, M 2(x) > 0 for all x E (-1, 1). Finally, 
because lVh = M2 +M3 , then MI(X) is also positive for all x E (-1,1). This 
is what we had to prove. 

Now we are able to prove the necessary and sufficient conditions of the 
convergence which are the contents of the following theorem. 

Theorem 2: (Necessary and sufficient conditions of the convergence of 
integrals (32». Expressions Mi , (i == 1,2,3) are nonzero for each x E (-1,1) if 
and only if the following conditions are fulfilled: 

i) Xl E (-1,00); 

ii) X2E(-I,00); 

iii) X3 E ( - (VI + Xl + vI + X2)2 ,00). 

Proof: First we shall prove the statement that if the expressions Mi are 
nonzero for each x E (-1, 1) then the conditions i), ii), and iii) are fulfilled. 

Suppose that the implication is not true, i. e., the expressions Mi are nonzero 
and at the same time some of the conditions i), ii), and iii) are not fulfilled. We 
shall show in items a), b), and c) that when the conditions for parameters Xl> X2, 
X3 are not held then one comes to a conflict. 
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a) Let us suppose that Xl ::::;; -1. It is enough to take x= J-1/Xh and it is 

evident that 0 < J-1/XI ::::;; 1, therefore.x E (0, 1) ~ (-1,1). But 

M3(X) = M3 ( / - :J = 1+ Xl ( /-:J 2 = 0, 

which is in conflict with assumption of the theorem. 

b) Suppose that X2 ::::;; -1, then M2(0) = 1 + X2 ::::;; 0, and according to the 
Theorem I it is in conflict with the assumption of the theorem. 

c) In the end, suppose that X3 ::::;; - (",1 + Xl + ",1 + X2)2. Therefore, X3 + 
(",1 + Xl + ",1 + X2) 2 ::::;; O. At the same time (as was already proven in 
items a) and b» Xl > -1 and X2 > -1. 

Let us take 

",1 + X2 AO<x= v'i+Xl v'f+X2 < 1, x E (0, 1) ~ (-1,1).
1 + Xl + 1 + X2 

Then 

and after some manipulations we have 

and according to the Theorem 1 it is again in conflict with the assumptions. 

Now we have to prove the second part of the theorem, namely: If the 
conditions i), ii), and iii) are fulfilled then the expressions M i , i = 1,2,3 are 
nonzero for each x E (-1,1). 

a) Suppose that the conditions i)-iii) are fulfilled and, at the same time, 
there exists a point x from the interval (-1,1) such that M3(X, Xl) = 
1 + XIX2 = O. Because M 3 (0, xI) = 1 then x f=. 0, and 

(iiO) 1 o => Xl = --=2 :::} Xl ::::;; -1, 
x 
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which is in conflict with assumption i). Thus, M3(X) > 0 for all x E 

(-1, I). 

x

b) As in the item a), suppose that conditions i)-iii) are fulfilled and at the same 
time suppose the existence of x E (-1, I) such that M2(X, Xl, X2,X3) = o. 
But M2(0, Xl, X2, X3) 1 + X2 > 0 and M2(±I, Xl, X2, X3) = 1 + Xl > O. 
Thus, if M2(x, XI, X2, X3) = 0, then x =1= 0 1\ x =1= ±l. As a result 

2 E (0,1). Then 

M2(X, XI, X2, X3) = 1 + XIX2 + (X2 + X3X2) (1 - i2) = 

x2 (1 _ x2)_[1 + ~l + 1 ~ X2 + X3] = O. 
x 2 x21 ­

Because x =1= 0 1\ x =1= ±1 then 

1 + Xl 1 + X2 
-1-2 + ---2- + X3 = 0,-x x 

which is equivalent to 

1+
Further, the maximum of the function f (t) = within

1 - t t 

th~ interval t E (0,1) is obtained at the point t* = ~~ 
1 + Xl + 1 + X2 

and its value is 

f( t*) = - (VI + Xl + VI + X2) 2 . 

Therefore 

X3~ (~+Vl+X2)2, 
which is in conflict with assumption iii). As a result M 2 (x) > 0 for every 
x from the interval (-1, 1). 

c) In the end, it is evident that 

and according to a) and b) one obtains 

MI (x, XI, X2, X3) = M2(X, XI, X2, X3) + M3(X, Xl) > 0 

for all x E (-1, 1). This is what we had to prove. 
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AHPSIH 3. A. H,llp. E17-2005-208 
YCTOHqHBOCTb CKeHJIHHra KOJIMoropoBa BTeopHH aHH30TponHoH 
pa3BHToH TYP6YJIeHTHOCTH 

MeTO,llaMH peHOpMaJIH3aUHOHHoH rpynnbI HCCJIe,llOBaHa pa3BHTasI TYp6YJIeHTHOCTb 
C aKCHaJIbHOH aHH30TponHeH B npocTpaHcTBax C pa3MepHocTSIMH d > 2. IlpoaHa­
JIH3HpOBaHo BJIHSIHHe aHH30TponHH Ha YCTOHqHBOCTb pe)f(HMa KOJIMoropoBa. IloKa­
3aHO, qTO HapYlIIeHHe aHH30TponHeH pe)f(HMa CKeHJIHHra B TpexMepHoM npocTpaH­
CTBe npOHCXO,llHT TOJIbKO npn ,llOCTaTOqHO cneUH~HqeCKHX 3HaqeHHSIX napaMeTpOB 
aHH30TponHH. fpaHHqHOe 3HaqeHHe pa3MepHocTH npocTpaHcTBa Me)f(.lly YCTOHqHBbIM 
H HeycTOHqHBbIM pe)f(HMaMH HaH,lleHO KaK ~YHKUHSI napaMeTpoB aHH30TpcnHH. 

Pa60Ta BbIllOJIHeHa Bfla6opaTopHH TeOpeTHqeCKOH ~H3HKH HM. H. H. Eoromo6oBa 
OM5U1. 

Coo6meHHe 061,etl,HHeHHOro HHCTHTYfa lItl,epHblX HCClIetl,OBaHUH. .ll.y6Ha, 2005 

Hayryan E. A. et al. E17-2005-208 
Stability of Kolmogorov Scaling in the Theory of Anisotropically 
Driven Developed Turbulence 

The fully developed turbulence with axial anisotropy for dimensions d > 2 was in­
vestigated by means of renonnalization group approach. The influence of anisotropy 
on the stability of the Kolmogorov scaling regime was analyzed. It was shown that 
there are only rather specific values of the anisotropy parameters in which the three­
dimensional scaling regime is destroyed by the influence of axial anisotropy. The 
borderline dimension between stable scaling regime and unstable one was calculated 
as a function of the anisotropy parameters. 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical 
Physics, lINR. 

Communication of the Joint Institute for Nuclear Research. Dubna, 2005 




