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INTRODUCTION 

The idea of colored quarks fundamental fermions possessing a specific 
quantum number, color, and representing elementary constituents of matter on an 
equal footing with leptons, - underlies modern concepts of elementary particles 
and of the microcosm. 

In 1964, when the hypothesis of quarks - hypothetical particles composing all 
the observed particles undergoing strong interactions, Le., mesons and baryons, 
was put forward by Gell-Mann [1] and Zweig [2], quarks were only considered 
to be mathematical objects, in terms of which it was possible, in a most simple 
and elegant way, to describe the properties, already revealed by that time, of the 
approximate unitary SU(3) symmetry of strong interactions [3]. At the beginning, 
these particles, exhibiting fractional charges and not observable in a free state, 
were not given the necessary physical interpretation. 

First of all, making up hadrons of quarks, poscessing spin 1/2, led to a 
contradiction with the Pauli principle and the Fermi-Dirac statistics for systems 
composed of particles of semiinteger spin. 

The problem of the quark statistics was not, however, the sole obstacle in 
the path of theory. No answer existed to the following question: why were only 
systems consisting of three quarks and quark-antiquark pairs realized in Nature, 
and why were there no indications of the existence of other multiquark states? 

Especially important was the issue of the possible existence of quarks in a 
free state (the problem of quark confinement). 

In 1965, analysis of these problems led N. Bogolubov, B. Struminsky and 
A. Tavkhelidze [4], as well as Y. Nambu and M. Han [5], and Y. Miyamoto [6], to 
the cardinal idea of quarks exhibiting anew, hitherto unknown, quantum number 
subsequently termeQ color [7]. 

For already 40 years this idea underlies the physics of elementary particles. 
It has permitted one to deal with colored quarks like with real fundamental 
constituents of matter; the hypothesis of colored quarks possessing color charge 
subsequently led to the creation of quantum chromo dynamics the gauge theory 
of strong interactions, it resulted in the origination of numerous versions of the 
«grand unification» theory. 

An essential step toward the development of the dynamical theory of hadrons 
was made by Nambu [8], who was the first, on the basis of SU(3) symmetry 
requirements relative to the new quantum number (color), to consider eight vector 
fields, carriers of the interaction between quarks, which were the prototype of the 
gluon fields of quantum chromo dynamics. 

Thus, quantum chromo dynamics (QeD) [14] resulted from unification of the 
hypothesized existence of a new quantum number (color), colored quarks, colored 
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SU(3) symmetry, the Yang-Mills local invariance principle, and the quantization 
of Yang-Mills fields [9]. 

In this anniversary article considered are the principal aspects of the early 
development of the theory of colored quarks, mainly implemented in Dubna 
at the JINR Laboratory of Theoretical Physics under the ideological influence 
and in collaboration with N. Bogolubov 1). In the article, particular attention is 
paid to the creation of the relativistically invariant dynamic model of quasi-free 
quarks, within the framework of which the results obtained most adequately 
reflect the essence of the quark structure of hadrons. The research mentioned also 
contributed to the development of the quark-bag model [10] and the quark-parton 
model. 

1. COLORED QUARKS AND HADRON DYNAMICS 

The Hypothesis of C~lo~ed Quarks [4, 11]. Creation of the 
relativistically invariant dynami~ quark model of hadrons was based, first of all, 
on the assumption of quarks rep~esenting real physical objects determining the 
structure of hadrons. . 

To make it possible for quarks to be .considered fundamental physical particles, 
the hypothesis was proposed that the quarks, introduced by Gell-Mann and 
Zweig, should possess an additional quantum number and that ~uarks of each 
kind may exist in three (unitary) equivalent states q == (ql, q2, q ) differing in 
values of the new quantum number subsequently termed color 2). Since at the 
time when the new quantum number was introduced, only three kinds of quarks 
were known ('U, d, s), the quark model with an additional quantum number was 
termed the three-triplet model. 

With introduction of the new quantum number, color, the question naturally 
arised of the possible appearance of hadrons possessing color, which, however, 
have not been observed. From the assumption that quarks are physical objects, 
while the hadron world is degenerate in the quantum number, or, as one may 
customarily say, it is colorless, it followed that solutions of the dynamic equations 
for baryons and mesons in the s-state should be neutral in the color quantum 
numbers. 

The wave function of the observed hadron family in the ground state, 
described by the totally symmetric 56-component tensor <Pabc(Xt, X2, X3) in 
the approximation of spin-unitary symmetry, was assumed to be totally 
antisymmetric in the color variables of the three constituent quarks, 

\]!ABC(Xt, X2, X3) = 1/6caP'Y<Pabc(XJ, X2, X3), 0., /3, -y = 1,2,3, 

where A = (a,o.), B = (b,/3), C = (c,-y), a, b, c are unitary quantum numbers, 
0., /3, -y are color quantum numbers. 

A more detailed discussion of these issues can be found in the review by N. Bogolubov, 
V. Matveev and A. Tavkhelidze [25]. 

2) We shall further use the term color for the new quantum number. 



It was verified that for· meson form factors, found without account of the quark 
colors, to remain intact it sufficed to assume the wave function of the mesons in 
the ground state to have the form 

W~(Xl,X2) = 1/v'38~q>~(Xl,X2)' 
Such solutions select mesons for which the states Wl, w~ and w~ appear with 

the same weight. 
The choice of baryon and meson wave functions, proposed above, leads to the 

conclusion that the observed mesons and baryons are neutral with respect to the 
color quantum number and that the known . mesons and baryons are composed of 
colored quarks and antiquarks as follows: 

qct(l)qa(2) - mesons, 

ca/hqa( 1)q,8(2)q,,(3}, -;- baryons. 

In principle, colored quarks could have ~I1.teger, as well as fractional, electric 
charges, if the charge operator is assumed to act not only on unitary indices, 
related to the quark flavors, but on color indices as well. 

We define the charge operator as follows: 
A' a' a'eA ea + ea . 

The operator e~' acts on the unitary flavor indices and has the form 

2/3 0 0)e:' = 0 -1/3 0 .( o 0 -1/3 

The operator e~' acts on the additional quantum numbers of quarks (the color 
charge indices) and has the form 

1/3 0 0)
e~' = 0 1/3 0 .( o 0 -2/3 

Consequently, colored quarks turn out to exhibit integer electric charges, 
a/a 1 2 3 

1 1 1 0 
2 0 0 -1 
3 0 0 -1 

Taking into account that e~' is a diagonal operator, we obtain 

a,8" a' o.ra a'.r,8 0 c ea ca',8" ,Q,8ea Qa, = . 

Hence we have 

, 1 ,8 , ,
ae - _ <:"a "(ea + ea )<:" - 0a - 6 <;. a a <;.a',8" - , 

a' _ 1 a (a' a' ).r,8 - 0ea - 38,8 ea + ea Qa, - . 
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With the aid of these equalities, relativistic hadron form factors, calculated 
in the lowest order of perturbation theory in the electric. charge, have also been 
shown to remain unaltered for colored quarks with integer charges. 

Dynamic Quark Models and Hadron Form Factors [4,11-13]. The 
introduction of colored Fermi quarks, representing physical fundamental particles, 
paved the way for the dynamic description of hadrons. 

The main obstacle, here, was the absence of quarks in a free state. Although 
it was evident that the issue of confinement· could be ultimately settled only 
by experiments, a series of attempts were undertaken to provide a logically 
non-contradictory explanation for the «eternal confinement» of quarks inside 
hadrons; thus, for example, the «quark-bag» model was proposed - the Dubna 
quark bag represented a preliminary version, followed by the improved MIT model 
[10]. 

The dynamic relativistic quark model, the development of which was initiated 
in Dubna in 1964, was based on the assumption of quarks being extremely heavy 
objects bound in hadrons by enormous forces, which on the one hand provide 
for the large quark mass defect in hadrons and on the other hand impede their 
leaving the hadron interior. 

The dynamic equations were required to have solutions for hadrons inside 
which quarks are in a quasi-free state, resulting in the property of approximate 
additivity, inherent in non-relativistic quark models, being conserved in the 
calculations of various physical quantities. 

The quasi-free quark model depends essentially on the satisfactory 
explanation of the magnetic moment enhancement of a heavy quark bound in 
a hadron. This effect can be demonstrated in a most simple way applying the 
example of the Dirac equation for a quark bound by a scalar field, described by 
a rectangular potential well U(r) = -Uo9(ro r), in the presence of a magnet~c 
field H: 

[E + ia(V + ieA)]\lI = {3M*\lI; r ~ ro; 

where M* = Mq - Uo, H = rot A. 
Resolution of this equation in the limit of an infinite mass of the free quark, 

M q , and given a fixed value of the effective mass M* , which we further set equal 
to zero, results in the following magnetic moment of the bound quark in the 
ground state: 

_ 2.04 
Eq- , 

ro 

where Eq is the energy of the bound quark state, and 8 is the mean component 
of its orbital momentum: 

8 = (t ILzl t), 

in the state in which the total quark momentum Jz = 1/2. 
We stress that the magnetic moment of an infinitely heavy bound quark 

being finite is a consequence of the binding.potential assumed to exhibit a scalar 
character and is not fulfilled, for instance, in the vector case [15]. 



In the model of quasi-bound quarks the constituent quarks of the hadron 
move independently in a certain self-consistent scalar field U(r), the relation with 
which leads to compensation of their large mass 1). 

In the model of quasi-free quarks the meson wave function represents a 
second-order mixed spinor ~~ (P) that satisfies the equations 

(p - m q )1'~~,(p) = 0 for the constituent quark, 

(p+~q )Z' ~~' (P) = 0 for the antiquark, 

mq is the effective mass of the quark (antiquark) in the meson, which is 
renormalized owing to compensation of the large quark (antiquark) mass by the 
strong scalar field. A = (a, a), B = ({3, b) are the color and unitary quantum 
numbers of the quark and antiquark, respectively. 

The wave function of a baryon composed of three quasi-free quarks represents 
a third-order mixed spinor ~ABC (P) that satisfies the equations 

(p-Mq)1'~A'BC(P) =0, (p·+Mq)g'~ABC'(P) =0, 

where Mq is the renormalized mass of the heavy quark in the hadron; A = (a, a), 
B = ({3, b), C(",(, c) are the color and unitary indices of the constituent quarks. 

Baryons ~ABC and mesons ~~ are represented by a superposition of all 
admissible states over the quantum numbers (A, B, C) and (A, B), satisfying the 
requirements of SU(6) symmetry, of quark statistics in hadrons and of hadron 
neutrality in the color quantum number. 

The dynamic composite quasi-free quark model has made possible the 
systematic description of both the statically observed characteristics of hadrons 
(p"gA/gV, etc.), and their form factors. We introduce weak and electromagnetic 
interactions in a minimal manner, 

eAJ.' - electromagnetic interaction, 
if} -+ if} + G 

J.' J.' { v'2 T±"'(5e~ - weak interaction, 

where AJ.' is the electromagnetic potential, e~ represent charged lepton weak 
currents, G is the Fermi weak interaction constant. For the ratio gA/gv of the 
axial and vector weak interaction constants and for the magnetic moment of, say, 
the proton we obtain 

9A/9V ~ -5/3{1 - 26), 
I'"V 

p,p = 2E
e 

(1 - 6), 
q 

where the parameter 

6 = (t ILzl t) -i Jd3r'lt*{r)[r x V]z'lt{r). 

Here L z and Eq are, respectively, the orbital momentum and the energy of a 
quark bound in the nucleon with the projection of its total angular momentum 

1) Abdus Salam figuratively termed such a picture of the hadron «Archimedes' bath". 
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equal to 1/2; the energy of a bound quark is approximately equal to one third of 
the nucleon mass, Eq ~ Mp/3. 

Note that the quantity 6 characterizes the magnitude of relativistic 
corrections. In the ultrarelativistic case, when (q) / E~ 1, and the value obtained I'V 

of 6 I'V 1/6, the resulting correction for the ratio gAlgv is of the order of 30%. 
This example shows how significant the effect can turn out to be of relativistic 
corrections to predictions of the non-relativistic quark model. 

The quasi-free quark model has permitted one to explain the lepton decays 
of pseudoscalar 1r and K mesons and, also, the electromagnetic decays of the 
vector mesons pO, wO and ~o into electron-positron pairs as annihilation of 
quark-antiquark pairs bound in the mesons [16]. 

Analysis of the data on the widths of these decays resulted in a conclusion 
on the dependence of the scales of distances (effective sizes) on the quantum 
numbers of a bound system, for example, 

1'l1k(O) 12 mkI'V 

2=-·I'l11r (0) I m1r 

In the case of the decay 1r0 -+ 2" determined by the triangular anomaly [17] 
of the axial current, the annihilation model points to the width of this decay 
being proportional to the number of different quark colors [16}. 

2. THE MODEL OF QUASI-FREE QUARKS AND 
THE LAWS OF SCALING AT HIGH ENERGIES (18, 19) 

Experiments in which inclusive reactions were studied [20] at high energies 
and momentum transfers, and the scaling regularities revealed, as well as their 
theoretical investigation, have extended our comprehension of the nature of strong 
interactions and have given an impetus to further development of the theory of 
hadron quark structure. 

Here, of essential significance was the investigation of deep inelastic processes 
in the inclusive scattering of electrons off nucleons, performed at the Stanford 
Center (SLAC, Stanford), which in 1968 resulted in observation of the scaling 
properties of reactions: Bjorken scaling indicating the existence of a «rigid» 
pointlike nucleonic structure [21]. 

Experiments carried out at other major accelerators for investigation of the 
scaling properties of inclusive hadron reactions (IHEP, Protvino) [40], and also of 
processes of deep-inelastic neutrino and antineutrino interactions with nucleons 
(CERN, Geneva; FNAL, Batavia) confirmed the idea of the pointlike behavior 
of the nucleon. In other words, the effective size of the nucleon seems to vanish 
in such interactions, when all the revealed reaction channels are taken into 
account 1). 

In 1964 the idea of the pointlike behavior of the total lepton-nucleon interaction cross 
sections was put forward by M. Markov on the basis of purely theoretical arguments concerning 
the dominant role of the newly revealed channels as compared to the suppression factor due to 
hadron form factors. 



In 1969, on the basis of the quasi-free quark model, the assumption 
was put forward in Refs. [18) that the scaling properties of electron-nucleon 
interaction processes, revealed in experiments, are common for all deep inelastic 
lepton-hadron processes and that they can be derived in a model-independent 
manner on the basis of the automodelling principle 1), or the principle of self
similarity. 

The essence of the- self-similarity principle consists in the assumption that in 
the asymptotic limit of high energies and large momentum transfers form factors 
and other measurable quantities of deep inelastic processes are independent of any 
dimensional parameters (such as particle masses, the strong interaction radius, 
etc.), which may set the scale of measurement of lengths or momenta. Thus, the 
form factors of deep inelastic processes turn out to be homogeneous functions of 
relativistically invariant kinematic variables, the degree of homogeneity of which 
is determined by analysis of the dimensionality. 

Now, consider a deep inelastic interaction process, in which the large 
momentum q is transferred from lewtons to hadrons with the momenta Pi. In 
the Bjorken limit Vi ,...., Sij ,...., Iq21 »Pi = mr, for fixed values of the dimensionless 
ratios of large kinematic invariants Vi/q2, Sij/q2, where Vi =qPi, Sij =PiPj (i ~ j), 
the observable physical characteristic of the studied process F(q,p) under scaling 
transformations of the momenta 

qJj ~ AqJj' (Pi)Jj ~ A(Pi)Jj 

transforms, in accordance with the self-similarity principle, like a homogeneous 
function of the order 2k 

F(q,Pi) => F(Aq, APi) = A2kF(q,Pi), 

where 2k represents the physical dimensionality of the quantity F(q,Pi). 
Consequently, the most general form of the form factor satisfying these 
requirements is 

where function f depends only on dimensionless ratios of large kinematic 
variables, which remain finite in the Bjorken limit. 

In the case of deep inelastic electron-nucleon scattering, the self-similarity 
principle for the structure functions WI (q2 , v) and W2 (q2 , v) leads to a scaling
invariant behavior of functions Wl.2, first found by Bjorken: 

VW2(q2,v) = F2(q2/v ), vW.(q2,v) = F.(q2/v ), 

since 
O 2[Wd = m , [W2] = m- . 

Application of the self-similarity principle resulted in the scaling law being 
found for the first time, which describes the mass spectrum of muon pairs, 

1) Automodelling behavior in high energy physics is closely analogous to the property of self
similarity in problems related to gases and gas dynamics, from which the term cautomodelling. 
was adopted. 
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produced in proton collisions at high energies, p + p -+ 1-'+ + 1-'- + hadrons, 
namely [19], 

where M is the effective mass of the muon pair, and E is the initial energy of the 
colliding particles. Experimental studies of this process, initiated in 1970 by the 
group of L. Lederman at Brookhaven [22], confirmed this scaling law, and it was 
precisely in these processes that a new class of hadrons, the J / 1/J particles, was 
subsequently observed. 

Quark Counting Rules [23]. Especially interesting and important 
consequences that originated from the idea of quasi-free quarks are related to 
the field of deep inelastic or exclusive hadron interactions, for example, the 
investigation of binary large-angle hadron scattering reactions at high energies. 
In this kinematic region all momentum and energy transfers are large, so, 
consequently, we deal with interaction processes mainly restricted to the region 
of small distances and time intervals, where the «rigid» pointlike quark structure 
of hadrons should be directly manifested. 

In 1973, in Refs. [23], a general formula, based on the self-similarity principle 
and the quasi-free quark model, was established, which determines the character 
of the energy dependence of the differential cross section of any arbitrary binary 
large-angle scattering reaction at high energies E = yfS as well as the asymptote 
of form factors at large momentum transfers Q = A: 

(du/dt)ab-tcd = s-(na +nb+nc+nd -2), 

F (t) I'V t - (na -1 ) , 

where ni=a.b.c.d represent the amounts of elementary constituents participating 
in the hadron reaction. 

These formulae, known as the quark counting formulae, establish a direct 
relationship between the power decrease rate of the differential cross section of a 
binary large-angle scattering reaction with the increase of energy and the degree 
of complexity of the particles participating in this process, i.e., the number of 
their elementary constituents. 

The discovery of the quark counting formulae opened extensive possibilities 
of experimental investigation of the quark structure of hadrons and light atomic 
nuclei [23, 24]. 

We shall briefly dwell upon derivation of the quark counting formulae on the 
basis of an analysis of dimensionalities (<<dimensional quark counting» ). 

Consider a binary reaction of the general form a + b -+ c + d. Assume particle 
a to behave like a composite system composed of na pointlike constituents 
quarks. The state vector of such a system can be written in the form 

la) = Nalna quarks), 

where the symbol Na stands for the operation yielding the product of the state 
vector of free quarks and the appropriate wave function of the system and 
integration (summation) over the quark variables. 



The differential cross section of the binary reaction can, correspondingly, be 
represented in the form 

(da) ( II ..... 00)dt = Tr Pi dt ' 
ab-+cd i=a.b.c.d 

where 

The dimension of a one-particle state, normalized in a relativistically invariant 
manner, is known to be 

[lone-particle}] =m-1
, 

Hence follow the dimensionalities of the factors Pi and 00/dt. 
Considering, in accordance with the self-similarity principle, the interaction 

between quarks to be scaling invariant at small distances, i.e., not to depend on 
dimensional dynamic parameters, we arrive at the conclusion that the quantities
Pi and 00/dt exhibit a power behavior as the energy and momentum transfers 
increase, as does the differential cross section of the exclusive reaction: 

(da) (1)n-2 (t)
dt ab-+cd -+ -; f -; , 

The function f (t / s), which only depends on the relation between large kinematic 
variables or, which is the same, on the scattering angle, is by itself a dimensional 
quantity, while a natural scale is represented, here, by the effective size of the 
particles. Thus, the asymptotic power law points to factorization of the effects of 
large and small distances. 

The power law of the decrease of the hadron form factor reflects a particular 
case of an exclusive reaction - the scattering of a structureless lepton on a hadron 
composed of na quarks. 

The success of the quark counting formulae rendered their substantiation 
within the framework of quantum chromo dynamics a problem of utmost 
importance, and a series of studies have been devoted to this problem. A review 
of these works can be found, for example, in Refs. [25, 42]. 

In a number of important works of the last years there was suggested an 
impressive non-perturbative derivation of the asymptotic power laws of the quark 
counting for form factors and the exclusive scattering cross sections of hadrons in 
the framework of the conformal versions of QCD dual to the string theory [41]. 

3. ON THE SCALING-INVARIANT ASYMPTOTICS 
OF QUANTUM FIELD THEORY [26]" 

As has been noted, the experimentally observed scaling properties of 
elementary particle interaction processes can be described in a unique manner 
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on the basis of the self-similarity principle, proceeding from the laws of physical 
similarity and an analysis of dimensionalities. 

At the same time, the question arises as to the degree of scaling-invariant 
behavior being consistent with the principal ideas and requirements of quantum 
field theory, such as the locality principle, micro causality and the spectral 
property. 

The most complete investigation of this problem was presented in 1972 in the 
works of N. Bogolubov, V. Vladimirov and A. Tavkhelidze, in which the sufficient 
and, in certain cases (the free field case), the necessary conditions for the existence 
of scaling-invariant asymptotes in quantum field theory. One of the results of 
this approach is establishment of the exact relationship between the asymptotes 
of observed quantities - amplitudes and cross sections - and the interaction 
property in the vicinity of the light cone. 

To this end, in the aforementioned work the process was considered of deep 
inelastic scattering of electrons on nucleons, studied earlier in 1968 by Bjorken, 
and under certain intuitively plausible assumptions asymptotic properties were 
established of the form factors WI,2, which are widely known as Bjorken scaling. 

Now, consider the deep inelastic process of electron scattering on nucleons. 
The cross section of deep inelastic scattering of an electron on a nucleon is 
determined with the aid of the Fourier image of the commutator 

Wl'v(q,p) = 8~ L J(p, al[Mx),jv(O)lIp,a) eiqzdx = 
(j 

= (-g"" + q~~v) W.(q,p) + (PI' - ~ql') (pv - ~qv) W2(q,~), 
in which jp. represents the components of the electromagnetic current, q is 
the four-momentum of the virtual photon, q2 < 0, and the matrix element is 
calculated between identical one-nucleon states Ip, a) with .the 4-momentum p, 
mass p2 = 1 and spin a = ±1/2. . 

The problem consists in finding the asymtotics of the form factors WI,2 in the 
Bjorken region 

Iq21 ~ 00, v = 2pq ~ 00, 8 = _q2/2pq = const 

(8 > °is the physical region) and relating it to the behavior of the current 
commutators in the vicinity of the light cone. 

First of all, the form factors W1,2 were shown to be causal 1); i.e., their Fourier 
images turn to zero at x2 < O. 

For investigation of the asymptotics of form factors it is convenient to 
introduce the invariant causal functions 

FI (p, q) = "E.gp.p.gvvPp.PvWp.v == pp.pVWp.v, 

F2(P, q) = FI (p, q) - ~gp.p.Wp.p., gOO = 1. 

1) The previously existing proof [27] was not convincing, since used were commutator 
relations between currents, which did not follow from the general principles of quantum field 
theory. 



In the laboratory system (p = 0, p ( 1,0» the following notation is used: 

Fi(q) == Fi(q; 1,0), Wi == Wi(q; 1,0). 

And below F(x) will denote the Fourier image 

F{q) ~JF{x) ei'f.'dx. 

From the definition of Fi it follows that these functions are odd with respect 
to qO, radially symmetric, i.e., depend only on qO, Iql and turn to zero in the 
region (_q2 j2lq"l) > 1 (the spectral property condition), and besides, 

c(qO)Fi(q) ~ 0, if q2 < 0, 

c(q")Wi(q) ~ 0, if q2 < O. 

Bjorken made the assumption that for currents of interacting fields, like in 
the case of free fields, the quantities Fl and F2 - Fl in the physical region tend 
toward finite and differing from zero limit distributions. Then, in the Bjorken 
region we obtain the asymptotic relations . 

analogous to the exact equalities of free fields (see below). Denoting in the Bjorken 
region 

we obtain the scaling-invariant Bjorken formulae in the physical region: 
v 

WI«(,V) rv II«()' 4W2«(,v) rv 12«(), 

1 
II «() = 2'[F2 - Fd, 12«() = (II «() > O. 

Thus, for such asymptotic formulae it suffices to require, as proposed by 
Bjorken, the functions F. and F2 - Fl to tend in the physical region toward 
finite, differing from zero, limits. Therefore, the question naturally arises as to 
what additional requirements, following from the dynamics of the process, must 
be imposed on the functions Fl and F2, so as to provide for the scaling-invariant 
Bjorken formulae to be valid. 

Thus, we investigate the behavior of the distribution F(q,p) (of its slow 
growth) in the Bjorken region, satisfying the following conditions: 

1. F(q,p) = -F(-q,p), 

II. F(q,p) = 0, if - q2 jl2pq > 1, 

III. F(x,p) = 0, if x2 < 0, 

IV. F(Ap, Aq) = F(p, q) for all A C Lt. 
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By virtue of IV it suffices to consider the problem in the rest reference system 
p = 0. In this system functions F(x) and F(q) depend only on xo, Ixl and qOlql, 
and, consequently, they satisfy the following conditions: 

I'. F(q) = -F(-q), 

II', F(q) = 0, if - q2/12qOI > 1, 

III'. F(x} =0, if x2 < 0, 

IV'. F(q) = F(qO, Iql). 
The asymptotic region assumes the form 

Iq21 --t 00, v = 2qo --t 00, _q2/2qo = (, qO Iql.f'J 

For function F(~), which satisfies conditions I'-IV', there exists a (unique) 
distribution \lI(lul,.\ ) of slow growth, such that the integral Jost-Lehman-Dyson 
representation [28] holds valid: 

F((, v) = 2: j d)\2 jldpw(p, )\2) j dllO (( + ,; : )\2 - PIlV1+ ;) . 

° ° -1 
Here, the carrier \lI is contained in the region 

(u, .\2) : lui ~ 1, .\2 ~ (1 - VI - u2 )2. 

Note that from condition II it follows that F(C, v) =0, if C> 1. 
We stress that the properties of the weight function \lI, listed above, generally 

speaking, do not provide for a definite asymptotic behavior of F(C, v). It is 
necessary to find the conditions that would provide for the scaling-invariant 
behavior of function F in the Bjorken region. 

The asymptote of F«(, v) can be expressed in terms of the distribution over 
(. Therefore, in selecting the class of principal functions f «(), which are finite, 
infinitely differentiable, turn to zero at ( < 0, one can consider the following 
expression to serve as the definition of the distribution F(C, v) for v > 0: 

IF((,v)f(()d( = 

2= ~Jd)\2 Jp dpw(p, )\2) Jdll Id(f(()o ((+ ,;: )\2 - PIlV1 + ;) . 

° ° -1 

Hence, in the limit of v --t 00 the asymptote of the distribution F«(, v) within 
the physical region 0 ~ ( ~ 1 is determined by the expression 

00 1 1 2IF«(, v)f(()d( --t 2: Id)\2 I';dpw(p, )\2) Idllf ( - ~ + pv). 

° ° -1 



Now, we shall restrict the class of weight functions W to be considered by 
assuming that at sufficiently large A2 the distribution w(p, A2) is an ordinary 
function in A2 and that at certain k > -1 there exists a non-zero limit (in the 
sense of a distribution over p): 

1 · w(p, A2) _ .T. ( ) J. 0 
1m '2k - '!1'0 P r 

A2-.+00 1\ 

or 

W(p2, A2) = 8(A2)A2kWO(p} + WI (p, A2), WI (p, A2)jA2k -t 0, if A2 -t 00. 

Hence, in the Bjorken region for physical values of (2 ~ 0 follows the 
asymptotic equality 

I 
2

F(, /I) ~ /l
k F(), F() = k : I JpWo(p)(p - ()k+1d(. 

( 

Thus, when the aforementioned restrictions are imposed on the weight 
function, the behavior of F(x) in the physical region 0 ~ ( ~ 1 is scaling-invariant. 
Note that for integer k the asymptotic formula represents an antiderivative of the 
order k + 1. 

Let us now study the asymptotic behavior of F(x) in the vicinity of the light 
cone x 2 '" 0: 

F(x) = (2~)4 JF(q)eiqXdx = - 2~ 
00

JD(x, ).2)~(lxl, ).2)d).2, 

° where D(x, A2) is the commutator function for free scalar particles of mass A: 

D(x, ).2) = (2!)3 Je-iqxe(qo)o(l- ).2)dq, 

while the spectral function A{lxl, A2) is expressed by the formula 
) 

1 

~(r, ).2) = 471" Jw(p, ).2) Si:pr pdp. 

° In an arbitrary reference system we have 

F(x) = -2~ 
00

JD(x,).2)Ll. (J(P.x)L x2,).2) d).2. 

° If a spectral function satisfies the restrictions we adopted above, then we 
obtain the followin~ formula for the asymptotic behavior of F(x,p) in the vicinity 
of the light cone x '" 0: 

F(x,p) ~ .!.G(p,x)c(xo)(-D)k6'(x2 ), 
1f 
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I 
sin pp. x 

G{p· x) = 47r wo(p) pdp.
p·xJ 

° Thus, the coefficient G{p· x) at the principal singularity F(x,p) in the vicinity 
of the light cone is expressed via the spectral function that determines the 
scaling-invariant behavior of function F(q,p) in the Bjorken region. 

In conclusion, we note that in the case of the free-field weight function 
\}IO(p, .\2) the restrictions lim \}IO(p, .\2)/.\2k are naturally satisfied at k = 0: 

\}IO(p, .\2) :: \}Io(p), if .\2 > 4, 

and for \}Io(p) we have an explicit expression [26]. The form factors of free 
nucleons, W~2«(' v), calculated with its aid, satisfy the following asymptotic 
relations exactly in the Bjorken region: 

o 1 ° 0 ° 2( ° 0 vWI = 2'(F2 - FI ), W2 = -;;-(F2 - F) ), WI0 = 4(W2
0• 

Thus, the class of weight functions introduced above includes in a natural 
manner the weight functions of free fermion fields, which justifies application of 
the quasi-free quark model. . 

An important role in forming concepts of the quark structure of hadrons has 
been played by the investigation of sum rules, following from the algebra of local 
hadron currents [291. Note in this connection that the form factors of mesons and 
baryons, constructed from equations of the model of quasi-independent colored 
quarks, reproduce these results to a significant degree [25,39). 

Note that the subsequent discovery of the phenomenon of asymptotic freedom 
[30) of an invariant charge [31] in quantum chromodynamics was an essentially 
important step in substantiation of the picture of quasi-free quarks in hadrons. 

4. 	BROKEN COLOR SYMMETRY AND THE PROBLEM· 
OF QUARK CHARGES (32,33] 

Colored quarks may have fractional or integer charges. The assumption 
that color symmetry exhibits an absolutely exact character is consistent only 
with colored quarks having fractional charges. However, in QCD, owing to 
quark confinement, quark charges can only be spoken of as effective constants 
characterizing the electromagnetic interaction between quarks at quite small 
distances. 

In the case of integer quark charges color symmetry is not exact, and it is 
broken (locally or globally), at least in electromagnetic interactions. 

Indeed, in models with integer quark charges the electromagnetic current is 
a sum of the singlet and octet terms in the SUe(3) group: 

J~m = J~=o(I) + J~~o (ft). 

Thus, in the model of three color triplets 
2u::(u l ,u ,u3), d::(d1,d2,d3), 8::(8 1,82,83) 



selection of integer quark charges 

Qu = (1,1,0), Qd = Qs = (0,0,-1) 

is implemented in accordance with the formula 

Qq = Qo+Qc. 

Here, Qo is the charg~ operator of SU(3) quarks, and Qc acts on color indices 
and is a generator of the color group: 

Qc= ~A8= G'~'-D· 
It is to be stressed that correspondence can be established between quarks 

with integer electric charges· and integer baryon numbers, in accordance with the 
Nishijima-Gell-Mann formula 

1 
Qq = T3 + "2Bq, Bq = (1, L -1). 

The dependence of quark charges on their color state, apparently, leads 
to violation of global color symmetry in electromagnetic interactions, which is 
manifested, for example, in the mass splitting of the color quark triplet and so 
on. It has, however, been shown that the neutrality of hadrons with respect to 
color, i.e., correspondence between the observed hadrons and singlet color wave 
functions, provides for the disappearance in all observed hadron characteristics 
(charges, magnetic moments, form factors, etc.) of any manifestation of the 
aforementioned violation of global color symmetry. 

Quark charges and baryon numbers being integer provides the possibility for 
them to transform into leptons and other observable particles. As a result, we 
should arrive at the conclusion that quarks are not stable, which would explain 
the negative results of their searches. Subsequently, it was shown [34] that quark 
instability does not contradict the observed high stability of the nucleon and the 
extreme suppression of effects of non-conservation of the baryon number. 

In taking into account the quantum-chromo dynamic interaction of quarks, 
the introduction of quarks with integer charge raises a fundamental problem. 
Straightforward selection of the electromagnetic current in the form of a sum of 
the singlet and octet terms in the SUc(3) group leads to the violation of local 
SUc(3) symmetry and, as a consequence, to the theory not being renormalizable. 

The problem is removed if one considers spontaneously broken color SUc(3) 
symmetry, which requires introduction in the theory of new degrees of freedom, 
for example, of color scalar Higgs fields [32]. An essential consequence of such 
models consists, also, in the possible existence of a new family of hadrons, 
composed of quarks and Higgs color scalars, bound strongly by chromo dynamic 
forces [33]. 

The issue of whether color symmetry is exact or broken cannot be resolved 
a priori. In other words, the ultimate answer to this question can only be given 
by experiments. A most complete analysis of theoretical models involving broken 
color symmetry can be found in the review [25]. 

15 
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5. PARASTATISTICS FOR QUARKS 

The first attempt at resolving the problem of quark statistics, made by 
Greenberg in 1964, was based on the hypothesis of quarks being parafermions 
of rank three [35). Within the framework of this approach an explanation was 
successfully given of the existence of baryons described by completely symmetric 
spin-unitary wave functions. 

Although it was already stressed in early publications [36] that the application 
of para-Fermi statistics for quarks and the introduction of a new quark quantum 
number, color, and of color SUc(3) symmetry, corresponding to it, were two non- ~ 
equivalent approaches in elementary particle theory that led, generally speaking, 
to different physical consequences, there, nevertheless, do appear publications in 
which the two are unfoundedly considered equal. 

To clarify this important issue of principle, we shall briefly expound the main 
results presented in the works of A. Govorkov [37), in which the properties of gauge 
symmetry of the local interaction of parafermion and paraboson vector fields 
are studied and a proof is given that the use of parastatistics is not equivalent 
to the introduction of color and of the corresponding gauge SUc(3) symmetry, 
underlying quantum chromodynamics. 

For particles with spin 1/2, the wave functions of which satisfy the Dirac 
equation, para-Fermi fields are represented in the form of a Green ansatz 1) [38]: 

3 

W=L WA(X), 

A=l 


[WA(X), WB(Y)]2/S _l = -i8ABS(y - x), [WA(X), WB(Y)]26AB_1 = O.

AB

The brackets indicate an anticommutator or commutator for A = B and A =F B, 
respectively, S(x) is a singular function for the Dirac field. . 

In the case of vector particles the Green ansatz of the para-Bose field IS of 
the form 

3 

BI-'(x) = L B~(x), [B~(x),BB(Y)] 1-26AB = -i8ABDI-'V(x - V), 
A=l 

DI-'V(x) is the commutator function for vector fields. 
The Fermi and Bose parafields satisfy the trilinear Green relations. We note, 

however, that in Ref. [36] the proof is given that the representation of parafields 
in the form of a Green ansatz is only unique strictly in the case of free fields. In 
the same work it was shown that no additional restrictions arise in the theory if 
for the para-Bose and para-Fermi fields of the same rank, 3 in the case considered, 
the following relations of the paraboson type hold valid: 

[WA(X), WB(X)1!-2/SAB = [WA(X), WB(y)L-26AB = 0, 

1) We recall that in applying the model with parafermion fields of rank 3, it only turns 
out to be possible to resolve the problem of baryon spectroscopy, which requires up to three 
identical quarks to be found in one and the same quantum state. 



which jointly provide the conditions necessary for construction of a local theory 
of interacting parafermion and boson fields. 

The anomalous character of the commutator relations for Green components 
does not permit one to assign any physical meanin? to the.m d~rectly. . 

There exists, however, the Klein transformatIon, whIch IS ~on-lInear and 
non-local, and which permits one to reduce the commutator :elatlOns for Green 
components to the normal canonical form, both for para-FermI and for para-Bose 

fields. 	 . d h' al
For these parafields, the components of which can be assIgne. a ~ YSIC 

meaning, the Yang-Mills Lagrangian exhibits 80(3) symmetry and IS wrItten as 
[37] 

L(x) = -~F~v(X) + 'l1(x)[i-yp.8P. - m]\f!(x) - igBP.(x)[\f!(x) x -yp.\f!(x)], 

F p.v = 8p.B v - 8vBp. + g[Bp. x B v], 

where 
'II == (wJ, W2, W3) and B = (BJ, B2, B3) 

are vectors of the 80(3) group. 
Note that, unlike quantum chromo dynamics , the theory with 80(3) 

symmetry' contains only three gluons, and in the particle spectrum there are to be 
found diquarks, fermions with quark-meson quantum numbers, and other exotic 
hadrons. Moreover, the theory with 80(3) symmetry exhibits the property of 
asymptotic freedom only under the condition that there exist no more than two 
quark flavors. Thus, the hypothesis of para-Fermi and para-Bose statistics is not 
equivalent to the introduction of color and of color 8U(3) symmetry, and it leads 
to results not confirmed experimentally. 

It can be noted that many of the works of priority presented in this article were 
only published as preprints or in the proceedings of international conferences, in 
accordance with the opportunities that existed at the time. 

.... Acknowledgements. The authors are grateful to V. Kadyshevsky, 
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MaTBeeB B. A., TaBxeJIH,lne A. H. 

KBaHToBoe qHCJIO LJ6em, LJ6emHbie KBapKH HKX.1l 

(K 40-JIeTHIO OTKpbITH.sI LJ6ema) 


,naeTC.sI KpaTKHH 0630p npHopHTeTHblx pa60T, BblllOJIHeHHblX B OCHOBHOM Bna
60paTopHH TeOpeTHqeCKOH 4lH3HKH 0115111 H nOCB,SllueHHblX BBe,neHHIO B 4lH3HKY 
anpOHOB KOHuenUHHUBeTa, u~eTHblX KBapKoB H onHcaHHIO anpOHOB B paMKaX MO
,neJIH KBa3HcB060,nHbIX KBapKOB. 3TH JVl,eH ,HrpalOT KJIlOqeBYIO POJIb B COBpeMeHHOH 
TeopHH CHJIbHblX B3aHMo,neHCTBHH - KBaHTOBOH XPOMo,nHHaMHKe. 

Pa60Ta BblllOJIHeHa B na60paTopHH 'TeopeTHqeCKOH 4lH3HKH HM. H. H. Boro
JII060Ba 0115111. 

npenpHHT 061.e.nHHeHHoro HHCTH1yra SI,llepHbIX HCCJIe.noBaHHH. .lly6Ha, 2005 
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The Quantum Number Color, Colored Quarks and QeD 
(Dedicated to the 40th Anniversary of the Discovery of Color) 

A brief review is given of the priority works which were mainly carried out at the 
Laboratory of Theoretical Physics, JINR, and devoted to the introduction to hadron 
physics of the concept of color and colored quarks, and to the description of hadrons 
in the framework of the model of quasi-free quarks. These ideas playa key role in 
the modern theory of strong interactions - quantum chromodynamics. 

The investigation has been performed at the Bogolubov Laboratory of Theoretical 
Physics, JINR. 
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