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of the excitation in the resonator of the linac due to the transient beamloading. The concept of the 

directional selective coupling is applied for the RF system to defme the main characteristics and to 

optimize the RF control parameters. 

Keywords: Accelerator, RF control, Beamloading, Transient, Resonator, Directional Selective Coupling 

* Research Fellow 



JAERI-Research 98-041 

~7 .::L -1 - (J) 1) =-7 ';I 7 ,;: 


~~B'g 1:'- 1.:.. ~fJj,j{tJ\,j\ ~ij}~(J)~Ja1 iJttfj~ 


8 *Mt -r1JIiJf~jiJT.#iIiJf~jiJT~it'4$IiJf~$ 
Mi chae 1 A. CHERNOGUBOYSKY*· ~* ~. 

(1998$ 7 Ji 9 8 §l:!M) 

\7.::L -T -1 -7: 1)'::'7';1 7 ~:iI~T~ij}~,;:*~ tJ:ra'llic tJ: ~(J)';i ... lMI~B'gtJ: 1:'-1.:..~m(J) 

T7:tzDfnJI;:WJ~J:: <~mJ7JtO)trJ~~rr~ \... 1:'-1.:.. 0 A~1>tJ: <T ~,j\c ~ \ oj ,~7:i1J ~o -f(J)J:: oj tJ: 

Ji~(J)~JaJiJtifjfHiQJjjA~«E1LT ~~I;: ... lMI~ft-JI;:~m,j{~b ~ J:: oj tJ: 1:'- 1.:..{;: J:: ~~ifoJ(J)JiJJJ~*f1: 

~~tfiT ~::. c ';:J::"? -C ... trJ~O)Mt!M&a~~jj~A~~~ \t::.o jjfOJf1:~m~~(J)~;t~~Ja17Jt Y 

AT1.:..I;:;lfflT ~::. c-c:... YAT 1.:..(J):±'~tJ:%f1:~~~ L... ~Ja1vttrJ~/{5 j. -7 (J)a:)i~Ht~~"? 

*#ij~~PJT =r319-1195 $(Jnt~Jj~IiiJtlnJ!#ij;f.tB1JB'H 2 - 4 

* lij{~ I) 11--77:L. 0­

ii 



lAERI-Research 98-041 

Contents 

1. Introduction ....................................................................................................................................... 1 


2. RFGeneral Characteristics ................................................................................................................ 1 


2.1 Setting of the Problem ................................................................................................................. 1 


2.2 Accelerator RF System ...................................... ; .......................................................................... 2 


2.3 Control Principles ........................................................................................................................ 3 


2.4 External Characteristics .............................................................................................................. 6 


2.5 Control Signal Properties ............................................................................................................ 7 


2.5.1 RF Signal Energy- Relations ................................................................................................... 7 


2.5.2 Modulation Laws ..................................................................................................................... 9 


2.5.3 Tuning Characteristics ........................................................................................................... 9 


2.6 Resume ....................................................................................................................................... 10 


,3. General for Optimization ................................................................................................................. 10 


4. RF Signal Determination ................................................................................................................ 12 


5. Accelerating Channel Characteristics ............................................................................................. 16 


6. Conclusion ........................................................................................................................................ 17 


References ............................................................................................................................................ 19 


Appendix 1. Detailed Analysis of Resonator Electromagnetic Field 


at Arbitrary Excitations ................................................................................... , ............... 21 


Al.l Electrodynamical Set Properties ................................................................................................ 21 


Al.2 Excitation ..................................................................................................................................... 22 


Al.3 Wall Losses .................................................................................................................................. 23 


Appendix 2 ............................................................................................................................................ 26 


Appendix 3 ............................................................................................................................................ 26 


Appendix 4 ............................................................................................................................................ 27 


Appendix 5 ............................................................................................................................................ 28 


Appendix 6 ............................................................................................................................................ 29 


iii 



IAERI-Research 98-041 

1. 'i tQ.),~··················································.......................................................... 1 


2. ~~ iJJl. 0.) -~tt-J~tt ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 1 


2. 1 rJ:l,aO.)~):£ ... ...... ......... ... ...... ..................... ......... ... ...... ............ ......... ......... 1 


2. 2 1JIl:ii~0.)~~iJJl..y A T k ...... ......... ............... ... ... ... ...... ...... ... ... ... ... ............ ... 2 


2. 3 $I1tfUO.)Jjj{Im ... ... ... ... ... ......... ... ...... ........................ ... ........................... ... ...... 3 


2. 4 ;;"$~tt ......... ......... ... ... ... ... ... ... ...... ... ......... .................. ... ... ...... ... ... ... ...... 6 


2. 5 $IJ~{gi5-O.)tt~ ...... ...... ......... ............ ......... ...... ...... ... ............... ... ...... ...... ... 7 


2. 5. 1 ~~iJJl.{gi5-.:x:.*)v¥-O.)M1* ............... ......... ............ ..................... ......... 7 


2. 5. 2 ~~O.)mJ~,IJ ... ......... ... ... ...... ...... ... ... ...... ... ... ...... ......... ... ... ...... ... ... ... ... ... 9 


2. 5. 3 fOJ~~tt .............................................................. ~ ............... ,.............. 9 


2. 6 ~ *9 ... , ...................................................................... ,... ......... ...... ... ...... 10 


3. :ft:il1tO.)t.:Q.)0.)~~jlIJ ... ... ......... ... ............ .................. ...... ......... ...... ...... ............ 10 


4. ~~'i2tl{g~0.)~):£ ............ ............... ...... ...... ••• ...... ...... •.• ......... .•. ......... ••. ...... ...... 12 


5. 1JD:iir-y /*)ltO.)~tt ....................................................................................... 16 


6. *6 ~ ............................................................................................................ 17 


~~::>c~ ...... .............................. .................................... .................. ......... ............ 19 


Mij 1. ~iFuJt:PO.)f1mtlO.)€E~tJUlIJgO.)~*HItJM~JT ... ......... ... ......... ... ... ... ............ ... ...... 21 


A 1. 1 .~jJ~tt-J~~O.)~~ ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 21 


A 1. 2 UlIJ ~ ... ... ... ... ... ... •.• ... ... ••. ... ... ... ... ... ... •.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 22 


A 1. 3 rJ ::t - )VC A··· ..··....·· .. ·.... · ............... ............... ...... ..................... ......... ... 23 


Mij 2. ............................................... '.... ......... ............ ... .................. ............ ......... 26 


Mij3. ........................... ............ ........................... ...... .................. ...... ...... ...... ...... 26 


Mij4. ... ......... ......... ............... ......... .................. ............ ......... ...... ............ ... ......... 27 


Mij5. .................. .............................. ......... ............ ......... ............ ............ ............ 28 


Mij6. .................................................................................................................. 29 


iv 



JAERI-Research 98-041 

1. Introduction 

IFMIF high-duty-factor deuteron linac main specifications are 40 MeV energy and 125 mA 

beam intensity with pulse operating condition at forcing into continuous-wave operation, 

[1]. These lead to a need for excellent control of the accelerating fields to obtain the 

specified high-quality output beam characteristics and to minimize the possibility of the 

beam loss and the resulting activation, so that the effective RF control is one of the key 

issues for the linac implementation [2]. 

Electrodynamics of the high-duty-factor linacs is substantially different from the pro­

cesses in a few-cells resonator of the ring resonator accelerators, where the beamloading 

effect of the well-bunched beam is slow varying at the synchrotron frequency, [3,4]. The 

well-developed [5,6] complex amplitudes (phasor) approximate method assumes a slow 

variation of amplitude and phase for the field in the form of the single harmonic. The 

method is exact only for invariable single harmonic and is inadequate for the rigorous 

analysis of the linac's real transient processes. In addition, the conventional equivalent 

circuit model for the beamloaded resonator should contain nonlinear elements [7] even at 

the approximation [5,6]. So the merits of powerful linear circuit methods are disappeared 

and complete consideration of external properties of the linac's resonator is required. 

The present method is based on in-depth analysis of the transient beam excitation 

of the resonator. After setting of the problem in sec.2, this analysis at the directional 

selective coupling RF system [8] application allowed to form basic idea for the control, to 

define the beamloaded resonator external characteristics, to determine the control signal 

modulation and its possible optimization. General results for optimization are obtained in 

sec.3, and the optimized RF control signal with the main RF system parameters are com­

pletely determined for IFMIF RFQ in secA. The excited field carries the bean1 dynamic's 

information, and the total characteristics of the accelerating channel are also defined by 

optimization results in sec.5. The bases for the analysis are obtained in Appendix 1, where 

the resonator field is considered in time domain for arbitrary excitations. 

2. RF general characteristics 

2.1 Setting of the problem 

The resonant accelerator design usually employs the single mode principle that assumes 

the single-harmonic time dependence of the electric field, 

el ( t) = A cos ( Wo t + c.p) • (1) 

The particles dynamics analysis also uses the above field approximation with addition of 

the gradient (self-Coulomb) field. After all the beam characteristics for the optimized 

- 1 ­
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operating condition are known, the tolerable deviations ~A, ~wo, ~c.p of the Eq.(I) pa­

rameters can be determined. The RF control system design for this operating condition 

implementation1 is the main objective of the work. 

2.2 Accelerator RF system 

Generally, the resonator field is represented in the form of Eq.(65), Appendix 1; the gra­

dient summand is taken into account at the beam dynamics simulation, so the rota­

tional v-type resonator modes to be analyzed (operating mode is denoted by index 1). 

The dimensionless time functions ell(t), hll(t) are defined by Eq.(80) in Appendix 1 at 

iii(R, t) = 0: 

1)" WII I 2 -WII ( )(1+ QII hll + QII hll + wllh ll = W InL + InB ,II 
InL(t) = J(EII(R),IL(R,t)) dV, InB(t) = J(EII(R),IB(R,t)) dv, (2) 

v v 
1 ( 1) I 1ell =-I+- hll +-hll;

WII QII QII 

where IB and IL are the beam and the coupling elements current densities respectively. 

The use of grid-control device (e.g., tetrode) for RF source output stages gives the possi­

bility to synthesize RF signal in relatively wide band (the typical bandwidths are 1 ... 5%). 

In addition, the high linearity in the transfer function 2 allow to form all control signals 

at low power leveL In this case the application of directional selective coupling principle 

[8] puts away the problem of undesirable modes excitation by the relatively wide-band 

signal, because for any signal InL = 0 \Iv -f:. 1 and at the beam excitation the undesirable 

mode quality factors QIII"':#1 will be lowered, so the operating mode processes present the 

main interest. 

Assuming the operating mode magnetic field does not contain the low frequencies 

components and Q1 ~ 1, the last equations take the form 

(3) 


where Wr = w1(1 + J1 )-t, Qr /1 + Qi. To define InL the linear RF feed system 

can be presented by the equivalent current source Is with active output impedance p in 

the reference plane of each coupling loop, Fig. 1, and integration over the loop conductor 

1 It is better to know the admissible speeds d~/, d~~Q ,~ or other admissible time-domain characteristics for the 

complete design; however, such an information seems to be inaccessible now. 
2These are noteworthy differences from a klystron, and the tetrode operating condition can be corrected under DC 

control for its optimal efficiency obtaining at processing of the input signals. 

- 2 
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length lu and transverse cross-section Se yields 3 

oinL= j jUfl';L)dScdl=h jUft,Jt)=h j(rotEI,dS)=h [-WI/' jUlt,dS)], 
Iv. Sc Iv. Sl Sl 

where SI is the loop space. 

Fig. 1. Equivalent circuit of RF feed system in the reference plane. 

As far as Is = IL + UL/p, where the induced loop voltage 

UL = - j(€l·Et,dz) = €1'WIP j(iit,lS), 
Iv. Sl 

set (3) for the m identical loops feeding case takes the form 

I
h~ + ~:lh; +W;hl = Ss(t) + V(t), 

(4) 

€1 = h1-· 
Wr 

The loaded quality factor of the operating mode QL is determined by 

Wr m ( T)2 Wr
-Q + W wrpli l = Q ' Iii = j (iit, lS); (5) 

r P 1 L 
Sl 

the beam excitation and RF source signals are 

2 

Ss(t) = Is(t)· w~lm Iii; (6) 

and the input conductance is 

IL h~ +~h~ +W;h1 - V(t)
Yin = - = -------------- ­ (7)

UL h~ 

2.3 Control principles 

Without loss of generality, consider the beam with as much as desired but finite duration 

Tin,4 which leading front (Fig. 2) enters the resonator at t = 0, so V(t) = 0 at t ::; O. Also 

3The constant loop current h distribution over the loop length and El independence over Sc are asslUUed. The countour 

is closed by adding the path on the resonator wall where (Et, dl) == 0, Stokes theorem is applied with the use of the mode 

field spatial distribution definition (Eq.(60) in Appendix 1). 
4 For the real TB duration pulses operating condition it will be enough to add to the final result the same TB-delayed 

one with opposite sign since Tin:> TB' 

- 3 ­
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for the general case the source signal can be presented as Ss(t) = S_(t) + S(t), where 

S_ (t) was started before t = 0 and sets Up5 the specified by Eq.(I) field, 

Fig. 2. Beam current iB in the resonator input with the forestalling S_ and 

compensative S control signals. 

whereas S(t) starts simultaneously with the leading front at t = O. Then, the linear form 

of Eq.( 4) yields the condition for S(t) synthesis: the solution h of 

h" + Wr h' + w;h = S(t) + V(t) at h"(O) =h'(O) =h(O) =0 (8)
QL 

must be zero for t > 0 in the ideal S(t) case and the control system must hold up variations 

of V(t) + S(t) + S-(t)lt>o in required limits_ 

Trivial solution for ideal signal S(t) = - V(t) may be unrealizable since the limited 

bandwidth of the source, in addition this solution is far from the best in the meaning of 

the required RF energy. 

To reveal the physical sense of V (w) spectrum under Fourier transform F {iw} applica­

tion, consider the energy variation Ea of the beam particle a with charge e, which moves 

on r:(t) trajectory with v:(t) velocity in a mode field E = ev(t)-Ev(.R), [9]: 

d!" = e- (v-;.(t), E) = eAt)·e- (v-;.(t), Ey(r-;' (t») . (9) 

As far as the beam current is formed by all the particles: )B(R, t) =Eev:(t)8(R - r:(t)) , 
a 

the integral in Eq.(2) takes the form 

if a particle is in the resonatorInB(t) = L [ e (v: (t ), Ev (r: (t ) ) ) (10) 
a 0 otherwise. 

Comparison of the Eq.(9),(IO) yields 

ev(t)·InB(t) = L dd
Ea 

, (11) 
a t 

where the extension of Ea(t) function definition on the constant value (which is equal to 

the final Ea energy from the time of leaving the resonator or from the instant of the loss 

on the wall) eliminates the bivariant condition. The last result is exact for any mode or 

5The synthesis of S_(t) for RF source predictive energy minimization at t < 0 will be considered separately. 

-4­



lAERI-Research 98-041 

for any resonator without any assumptions on the particles velocities range, for different 

particle charges also. Thus, the operating mode beam excitation signal V(t) satisfies the 
equation 

rA cos(wot + 'P)' V(t) = -W L dEa = F(t) , (12)WI a dt 

where the total energy derivative dependence, denoted by F(t), and its spectrum F(w) 

are known functions, sec.2.1. The spectrum V(w) transformation according to Eq.(12) 

is presented on Fig. 3. As far as Wo is near Wr, and Fourier operator of the Eq.(8) left­

hand side has the narrow bandwidth (the loaded resonator frequency characteristic), the 

desirable zero solution of Eq.(8) with required precision is obtained at V(w) compensation 

by S(w) only in [WL,Wh] band in Wo vicinity, Fig·.3a. Exact values of WL and Wh are 

determined by the concrete structure of the control system under admissible ~A, ~wo, ~'P 

deviations. 

a) 

b) 

2000 

-F{ S(t)Acos( ooot+q»} 

Fig.3. 	a) Input conductance Yin(w), beam excitation V and compensative sig­


nal S spectrums, b) the spectrums transformation in compliance with 


Eq.(12). 


The [WL' Wh] width is expected to be less than hundred bandwidths of the loaded resonator, 

so that S signal remains narrow-band. However, the appealing possibility to use the 

principle of F(w) compensation by F { S (t)A cos(wot +'P)} only in the low frequency band 

(Fig. 3b) for S synthesis and for the control system design is inconsistent because of the 

"mirror channel" effects6
• 

6Well-known effect at heterodyne receiving of radio-signals, e.g., consider one of the V components in the form V = 
cos«wo+ro)t+'Y+c,o), ro < Wo, and the signal S = - cos(rot+-y) cos(wot+c,o) = - Hcos«wo+ro)t+-y+c,o)+cos«wo-ro)t--y+ 

c,o)]: the compensation is absent. However, the spectrums F{S(t)A cos(wot+ c,on = -;A [e-i')'S(w+ro)+ei')'S(w- ro)]+HFI 

and F(w) = 1ft [e-hS(w + ro) + ehS(w - ro)] + HF2, where HFl, 2 are the high frequency components, give zeT(~ sum in 

the low frequency band. 

- 5 ­
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2.4 External characteristics 

At the obtained zero solution of Eq.(8) the second Eq.(4) gives hI ==A~ sin(wot+<p) since 

eI(t) has Eq.(l) form, and the frequency domain conductance is defined under Fourier 

images consideration for Eq.(3)-(7), 

Wr (l + i~) V(w) ) WI (13) 
Yin(w) == ( Qr - A1rwr[eic,oh'(w - wo) + e-ic,oh'(w + wo)] . m (wrpI<d2 

, 

2 2 
where t == W -Wr Qr is the generalized deviation of the resonator. The conductance 

I::. WWr 
takes finite values only at W == ±wo, shown schematically on Fig.3a, since the Is source 

(Fig. 1) spectrum width is finite, while the resonator field contains single harmonic and 

the induced voltage UL is different from zero only at Wo frequency. So, at w =1= Wo all the 

source power will be reflected and absorbed in matching devices7 (decoupled port of the 

circulator), and this property of the reflectance can be used to provide support signals for 

the control system. 

The value on Wo is determined by selecting the component Vo1r[eiv°h'{w-wo)+e-ivoh'{w+ 

wo)] 8 in the beam excitation signal, 

v. ( ) _ (wr(l + i~o) _ Vo i(VO-c,o»). WI 
I. in Wo - e 2 • (14)

Qr AWr m (WrpI<d 

For bunched beam the (vO - <p) parameter has the meaning of synchronous (equilibrium) 

phase, and since in the majority of cases vo - <p =1= 0, the resonator must be tuned in 

accordance with 
2 2 Wo Vo . ( )Wo - Wr == -. - sIn vo - <p (15)

Wr A 
for ~{Yin(WO)} == 0 resonance condition; therewith RF source matching will be realized at 

~ == ?R{Yin{WO)} == (wr _ Vo cos(vo _ <P)). WI 2 • (16)
P Qr A~ m~rP~) 

It is worthy of note that the same Yin{WO) value is obtained for the resonator without 

the beam (Vo == 0 in Eq.(14)) but with new resonant frequency Weq and new unloaded 

quality factor Qeq: 

Jw; + ~.~ sin(vo - cp)Wo Vo . 
w; + -'-A sln{vo - <p), Qeq = W v;: (17)

Wr tf- - ....!JL cos(vo - <p)
~r AWr 

Usually, the real coupling device properties remain constant with frequency in vastly wider 

band than [WL' Wh] (Fig.3a) even for much more complicated than Fig. 1 model devices. 

7The effect can be interpreted as the following: without signal S the beam excited the resonator field in the wide band 

and some beam's energy was loosed in the resonator walls; with the signal the above energy losses disappear since the field 

is single harmonic, but this energy of S is loosed in the matching devices. 
8This form assumes continuous extension of the harmonic onto t E (-00; +00) that does not give any distortions for 

the following results in the finite time interval of Vet) definition because the second term in Eq.(I3), as well as in Eq.(7), 
presents only the ratio of time functions. 

- 6 ­
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Because of this, nothing more than inconsistency between the real and determined by the 

second Eq.(5) coefficients, some indeterminacy of the reference plane (Fig. 1) position, 

and the resonant frequency shift due to the device elements reactance take place in the 

real case. The last expressions do not contain these factors and can be used for precise 

tuning of the resonator. 

2.5 Control signal properties 

+00 

The extension of £a(t) definition delivers J 1 E £aldt > 00, so that analysis of the 
-00 a 

Eq.(12) integral F {~Ea(t)} is hampered since the Fourier image may be nonexistent. 

For rigorous treatment consider the functions £ac(t) == £a(t) - £a(t Tc), Tc > 0; 
+00 

Fc(t) == F(t) - F(t - Tc) and also J Fc(t)dt == O. These functions integration yields 
-00 

-Wr } 1 - e-
F { W L £ac(t) == F(w)· . 

iwTc 

, 
1 a ZW 

and 

I'2 00 ( ) 2 1 +00 2 wT. 12~2 f L £ac(t) dt == 211" f 1 F(w) 1 • Tc Sl~ dw. 
lOa -00 2 

The second factor in the integral over w brings out the 1F(w) 12 filtering in ~ 1fTc band­

width. The a particle is inside the resonator at t E [Tai' Tao]; for max{ Tao - Tai} ~ Tc < Tin 

with Tin increase the left-hand side integral approximates to Tin· (~Ea(Te)) 2, and for 

Te ~ Tin with Te increase it approximates to Te· (~ Ea (Tao) ) 2, but Tin, Te must remain 

finite. Nevertheless, the Eq.(12) integration by parts result for spectrum 

(18) 

at w == 0 gives 

(19) 

Thus, the value of J IF(w) 12 dw over the low frequency band may be taken as preassigned, 

since it presents the main characteristics of the accelerated beam. 

2.5.1 RF signal energy relations 

To analyze the required S(w) characteristics consider the symmetrical band signal So(w) == 
S(w) +Sad(W), as shown on Fig. 3; in the general case 

So(w) == Co(w - wo)eia(w-wo) +Co(-w - wo)e-ia(-w-wo) , (20) 

- 7 ­
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where modulus Co(Y) and phase a(y) are defined in symmetrical interval y E [-Yo, +Yo] , 

Yo == Wo - WL == Whad - Woo Now the spectrum 

F {-So(t)· A cos(wot + 'P)} = -2A [ei'" (Co(w - 2wo)ei<>(w-2Wo) + Co(-w)e-i<>( -w») 


+e-i<p (Co(w)eia(w) +Co(-w - 2wo)e-ia(-w-2wo»)] 


coincidence with F(w) in the low frequency band w E [-Yo, +Yo], Fig.3b, at the squared 

modulus integration over [-Yo, +Yo] yields 
Yo 

E7r = Eo7r - fC~(w )dw, (21) 

Yb 

where E = 1 f
00 

IS(w)1 2dw is the S signal energy, Yb = Wh - Wo, and the So energy 
11" 0 

Eo = ~ 
YO
f Co(w)2dw obeys the equation 

-YO 

2 
yo

f IF(w)1 
2 

dw Yo 

Eo7r = -Yo A2 - f Co(w)Co(-w) cos(2cp-a( -w)-a(w))dw. (22) 
-Yo 

The first term value is prescribed, and for any Co(Y) functions the minimal Eo, E energies 

will be delivered at 

2cp - a( -w) - a(w) = 0 (±27rn). (23) 

Therewith the application of Cauchy-Schwarz inequality for the second term in Eq.(22) 

yields 

-YO
2Eo7r ~ -----------­A2 

and the further minimization of Eo, E will be obtained when the latter turns into equality, 

i.e., at 

Co(w) == Co( -w). (24) 
Yo 2 

The Eq.(23,24) interpretation is the following: for prescribed f IF(w)1 dwjA2 value the 
-YO 

minimal RF energy of S signal will be obtained if V(w) spectrum in [WL,Whad] band is 

the spectrum of an amplitude modulated signal only. Usually the resonant frequency 

deviation (Eq.(15)) is commensurable with the resonator bandwidth while the required 

for compensation the symmetrical refer Wr band [WL' Wh] is expected to be not smaller 

than several tens of the bandwidths, so that Yb ~ Yo and the Eq.(21) second term is much 

smaller than the first one. Because of this, the further S(w) analysis will be conducted for 

wider than required but symmetrical refer Wo band: Wh = Whad, that increase the control 

accuracy but deliver insignificant loss in RF energy meaning9
• Thus, the engineering 

synthesis of the optimal signal is the simplest since it is only the amplitude modulated.. 

9Final result can be corrected by simplest filtering to avoid this assumption. 

- 8 ­
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2.5.2 Modulation laws 

In the general case the signal can be presented in the quadrature form 

S(t) = Ao(t)·cOS(Wot + cp) + Bo(t)·sin(wot + cp), (25) 

where Ao(w), Bo(w) spectrums are defined in w E [-Yo, +Yo] band. The required compen­

sation of F(w) by F { S (t) .A cos(wot + cp)} not only in the low frequency band Fo(w) = 

F(w)lwE[-yo,+yo], but also in the F+2(W) = F(w)lwE[2wo-YO,2wo+yo] with 

F-2(W) = F(w)lwE[- 2wo-YO,-2wo+yo] bands gives 

-2 
Ao(w) = AFo(w) , 

-4e-i2cp _4ei2cp. . 
Ao(w-2wo)-zBo(w-2wo) = A F+2(w) , Ao(w+2wo)+zBo(w+2wo) = A F_2(W); 

the existence of these three equations proves the realizability of Ao(t), Bo(t) and 

Bo(w) = ~ (Fo(w) - 2F+2(W +2wo)e-;2",) . 

Thus, returning to Eq.(25), the required control signal S(t) = Amod(t)COS(wot+cp+({>(t)) 
in the general case contains the amplitude modulation 

and the phase modulation 

.n..( ) _ (F-1 {i(Fo(w) - 2F+2(W + 2wo)e-i2CP)}) (27)
'J!' t - arctan F-1 {Fo(w)} , 

where F(w) spectrum is defined by Eq.(18) at the determined Ea(t). The energy of the 

signal will be minimal under fulfilment of the conditions 

i2CP ~ {2F+2(W + 2Wo)e- } _ (). 
:;s Fo(w) - const w , (28) 

in this case the phase modulation will be absent. 

2.5.3 Tuning characteristics 

The condition at Wo harmonic selecting for (14) form is zero correlation of the residual 

V(t) - Yocos(wot + vo) signal with cos(wot + cp) in the finite interval of V(t) definition, 

since h; cxcos(wot + cp), and with the any other phases Wo harmonics also: 

70J([V(t) - Yo cos(wot + vo)] . cos(wot + cp)) dt = 0 Vcp, 
o 
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where Yo COS(Wot + vo) presents chosen harmonic in t E [0; To] interval - the last particle 

leaves the resonator at t == To, evidently To 2 Tin+min{Tao-Tad· The condition is fulfilled 

under the quadrature components equality 

J V(t) cos(wot)dt == JVo cos(wot) cos(wot+vo)dt , 
o 0 
To To

( J V(t) sin(wot)dt == J Yo sin(wot) cos(wot+vo)dt; 
o 0 

and at the satisfiable with any finite precision WOTo ~ 1 it yields 

2 
Vo == arg (V(wo)) , Yo == -IV(wo)l· (29) 

To 

The characteristics on Wo frequency for Eq.(14-17) can be expressed in F(w) terms with 

the use of Eq.(25) since V(wo) == -S(wo): 

4 2Fo(0)
Yo == -A IF+2(2wO) I , Vo == arg (F+2( 2wO)) - <p, Vo cos(Vo - <p) == A . (30)

To To 

2.6 Resume 

1. Basic idea for the control and the condition (Eq.(8)) for state equation are obtained in 

sec.2.3. 

2. Accelerating resonator external characteristics for RF feed system design are defined 

in sec.2.4, Eq.(17) determine beam's equivalent for the system precise tuning. 

3. The reflected wave properties, derived from Eq.(13): full reflection at W =f. Wo with zero 

reflection on W == Wo form the possible support for the control. 

4. Spectrum F(w) completely determines the control signal (Eq.(26,27)) and the tuning 

characteristics (Eq.(30,17)). This spectrum is defined from dynamic's simulation by scalar 

functions ca(t), Eq.(18). 

5. Optimal control signal delivers minimum of RF source energy, the signal is simple for 


realization since it is only the amplitude modulated. The optimum conditions (Eq.(28)) 


are also expressed in terms of F(w) spectrum. 


The conditions (Eq.(28)) are used for RF system optimization in the following section. 


3. General for optimization 

Assuming the required signal Ss(t) is synthesized and the control system operates ideal, so 

that resonator field time dependence has Eq.( 1) form, the beam particles energy variation 

will be T == 271'"/Wo periodic 10 

N 

~ £a(t) == Et'o(t - (n -1)T) , (31) 

laThe difference between the self-Coulomb field for the leading front particles and for the inside the beam ones is 

disregarded now, however it can be taken into account at final simulation. 
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where NT (N ~ 1) is the beam duration; £o(t) is the total energy variation of the particles 

that enter the resonator at t E [0, T], the last particle from these leaves the resonator at 

t = KT+( (1< < N, 0:::; ( < T), and £o(t)k~:KT+( = £out = const(t). Fourier transform 

of the principal function F(t), defined by Eq.(12), is 

F(w) =;rD(w)P(w), P(w) =t e-iw(n-1)T = si~(~~) e-i::(N -1) , (32) 
1 n=l . sln( Wo ) 

where D(t) = dedit) and also D(t)lt{l(O,KT+() = 0, 

KT+( 
D(w) = £oute-iw(KT + () + iw J £o(t)e-iwtdt. (33) 

o 

The P(w) function brings out ID(w)1 2 filtering at determination of the prescribed value 

under RF optimization (sec.2.5); according to Appendix 2 this prescribed value 

1 YO £2 N 2- JIF( )1 2 d = ~.WOwr (34)A2 W W A2 Wi 
-YO 

even for rather wide band (Yo < ~) case. It includes basic specifications of the acceler­

ated beam for prescribed resonator indeed, but the optimization is essentially restricted 

from the Eq.(23) condition, because the condition requires the phase 0 fixation for the 

amplitude modulated signal carrier ex cos(wot + 0). Nevertheless, comprehensive analysis 

in Appendix 3 shows that the amplitude modulated signal is optimal at any 0, delivering 

the global minimum for required energy of the compensative control signal 

YO 2
J IF(w)1 dw 

-YO (35)Eo7r = A2 2( 0) .cos i.p-

With the use of Eq.(32) where P(w + mwo) = P{w), m = 0, ±1, ±2, .. _, the optimiza­

tion conditions (Eq.(28)) take the form 

?R {2D+ 2(W + 2wo)e-
i2

<P} = 
Do(w) 1, (36) 

where 0 and +2 indexes denote the same frequency bands as for F(w) in sec.2.5.2. The 

solutions are presented by the form 

Db(t) = M(t)·cos(wot + i.p)·cos(wot + 0), (37) 

where M(t) spectrum is not wider than w E (-wo, +wo) band but not narrower than 

[-Yo, +yo] and 0 is some angle; Appendix 4 contains the direct yerification_ Since the 

conditions specify D{w) (and F(w)) properties only in (0) and (±2wo) bands (Fig.3b), 

with the other bands excitation the general form is 

D(t) M(t)·cos(wot + i.p)-cos(wot + 0) + L(t)·cos(wot + i.p), (38) 
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where L(t) spectrum is not wider than w E (-wo + Yo,Wo - Yo) band and also L(t) = 
M(t) = 0 at t ¢ (0, ](T + (). 

Thus, returning to Eq.(32) and (12), the general form of the beam excitation signal in 

the optimized accelerator is 

V(t) = ~;1 (COS(wot +0) ~M(t - (n - l)T) +~ L(t - (n -1)T)) ; (39) 

the output energy is defined by M (w) function only 

KT+( ) 2 

[out = D(O) = M(O) cos('P -In , ! M(t)dt , (40)
(2 

since F {L(t) cos(wot + 'P)} does not contain a constant component. 

4. RF signal determination 

According to L definition for Eq.(38), the first term in Eq.(39) presents just the (wo) band 

excitation, which is to be compensated by S signal, Fig.3a. As far as M(t)lt~(O,KT+() = 0, 

the envelope will be T periodic 

N N

L M(to- (n-1)T) = L M(to+T- (n -l)T) for to E [((K -l)T + (), (N -l)T]ll. 
n=l n=l 

However, for sufficiently large t the envelope is to be constant, because at t ~ ](T the 

time-dependence of the first term in Eq.(39) could be obtained from the infinite duration 

periodic excitation in (wo) band, i.e., it would be a single harmonic from the line spectrum. 

Without loss of generality the M(t) form 

M(t) = f(t) - f(t - T), (41) 

f(t)lt$o = 0, f(t)lt~(K-l)T+( = const = fs, f'((K - l)T +() = 0, (42) 

11 Integer interval of M{t) definition can be singled out in the form M{t) = Ml (t) + M2{t) , 

Evidently, f, M2 (t - (n - l)T) function is periodic; and for M, sum consider any "m" interval t= 
{m + K - l)T + Tt, °~ Tl < T for m E [0, N - K], where the limited interval [0, KT] of Ml definition 

restricts the number of terms, so that 

N ( ) m+K-l ( ) K-l ( )
?;Ml t-(n-l)T = ~ Ml t-nT =~Ml Tl+{K-n-l)T 

is the same for any m; selection of the common periodicity range for Ml and M2 sums gives the result. 
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satisfies this condition, the envelope 

N 

ME(t) =:;M(t - (n -l)T) = f(t) - f(t - NT), (43) 

and direct integration of Eq.( 41) with the use of Eq.( 40) yields the stationary level 

fs == 2£out (44)
T cos(<p - fJ) 

Since the envelope energy in [-Yo, +Yo] band is determined for any Mr:.(t) by Eq.(35,34), 

YO £2 N
~IIF{f(t)-f(t-NT)}12dw== out Wo , (45)
4 cos2 ( <p - (}) 

-YO 

the most complete compensation by S signal will be obtained if the envelope spectrum 

width will be minimized. The time interval [0, (I{ - l)T + (] of Mr:.(t) variation can 

be prescribed (e.g., in the RFQ case by the number of cells) and Mr:.( t) energy in this 

interval is defined since the stationary level is determined. That's why the minimal 

width is achieved by Gauss time-dependence, Appendix 5, and the closely approximating 

acceptable form is 

2 2uf s u2 (~e - a - e - a

2

) , t E [0, (K - l)T + (] 
f(t) == f(x·T) == 1 - e- a2 (46)

[ 
fs, t E [(I{ l)T+(,oo); 

where x == tiT, u == (I{ -1) +(IT; parameter a still remains free, because for sufficiently 

large N the low-frequency filtering in Eq.( 45) gives the same stationary level fs for any 

a, so that the equation yields only 

N ~ 2I{ + Wo ( 47) 
Yo 

additional estimation for the N lower bound. 

To define the required bandwidth Yo consider the errors of RF control system. 

Since the beam excitation signal spectrum is infinite in the any case (the finite time 

duration signal), the uncompensated signal (Eq.(39)) outside of the 2yo band (Fig.3.a) 

excites the field, which is defined by Eq.( 4): 

etun(t) = 2~ I V(w) w;(l ~~L(w)/wtdw = AW~;1C'Wr 

I
YT 

ei(arg(Mdw»+wt) e-i(arg(Mdw))+wt) I 
cos(wot + (} + (}')·IMr:.(w)/ .~ ( ) + .~ ( ) dw, (48)

1 + 't L W+Wo 1 + 't L -w + Wo 
Yo 

2 2 
where ~L(W) = W~~r QL, f)' is argument of the expression under the modulus sign; the 

integrand function resonance filtration allows to bound the upper integral limit gr and 
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to neglect the L functions sum contribution. The estimation of the maximal normalized 

amplitude error from Eq.(48) is 

(Ielunl/A) ~ 
r 

b j9 IMEl(W)1 [1 1]d elunM (49)
27r(2+b) cos(<p-lI) Yo f. JIHl(w+wo) + J1+f"l(wo-w) w=~, 

where bis the beam power to the cavity power losses ratio, Appendix 6. Here the spectrum 

modulus IMEl(W)1 == IF {/(t)}1 of the leading front dependence from Eq.(43) 

2 . ~ 
(waT) [ ] 1 twuT-""2

T a::lf-e- 4 erf(; - i w~T) + erf(i w~T ) + - e zw' e a 

IMEl(W)1 
- ~------------------------~------------------~ (50)

Is 
is used instead of the general IME(W)I, because the Eq.(48) form excludes the constant 

component and the maximal elun(t) value is attained at the commensurable with KT 

instant12 ; erf - error function. This type error dependence on a and Yo is presented on 

Fig. 4 at concrete parameters for IFMIF RFQ [1,10]' but Eq.( 49) with Eq.{ 46) analysis 

shows that the similar dependence takes place in the general case also. 

(elunM/A)~or 

a 140 0.006 

Fig. 4. Reciprocal off-band overshoot (normalized); b==1.1/1.68, u==366, 

Qr == 104 values are taken from [1,10], cos( <p-o) == 0.5. 

The second type error is caused by non-ideal compensation inside 2yo band. Assuming 

the autocontrol system will hold up the difference between V and S signals with random 

error, which power density spectrum is w(w), the mean square field error is 

As far as this error increases with the band extension while the off-band overshoot (Eq.( 49) 

and Fig. 4) error decreases, the optimal YOm value in the meaning of the minimal total 

error (elunM + ela )/A can be presupposed; however, the normalized ela value 

All WO+YOm 1 QL 12 
A = A ;: j w(w) w;(1 + if"dw)) dw (51 ) 

WO-YOm 

12The use of the general Eq.(48) allows to determine this instant, however it is of no interest now. 
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must be prescribed since this error exists during all the accelerating time interval; there­

with the autocontrol system precision aa can be characterized by the normalized power 

error, because S power is determined by Eq. (35), 

WO+VOm 

~ f w(w)dw·NT 
aa = -------- (52)

Eo 

Assuming the autocontrol error to be white noise (at least in 2yo band), the use of Eq.(49­

52) and Appendix 6 parameters yields the equation for the bandwidth values Yo = Yex, 

which deliver extremums to the total error: 

l+1JexA b 
[K(l + 1}ex) + ]{(1 -1}ex)] f ]{2(1})d1} 

1-1Jex 

where normalized frequency 1} w/wo; 1}ex = Yex/WO, r = wr/wo, the resonant character­

istic 

A 7r(2+b)cos('P B) 
(53) 

b2 2
1 tan ('P-O) _ (1 btan('P 0)). 
+ 4Q; + 2Qr ' 

the frequency functions in Eq.(48,49,51,53) depend almost not at all on the I sign13 
, so 

that 

I ~ 2(2:b)QL JCOS2(~_(}) ­ 1; 

and Eq.(52) for the total error minimizing bandwidth 1}ex = 1}m = YOm/WO takes the form 

(54) 

The Eq.(53) has the minimal bandwidth 1}m solutions; the number of extremals from 

Eq.(53) is restricted by determining the range of a from the overshoot dependence (Eq.(49) 

and FigA), and under the reasonable condition 

elunM A--<­
A A 

the optimum (aopt, 1}mopt) can be determined. In Fig. 5 the bandwidth dependencies for 

elunM < 10-2 ·A at 1}m < 0.025, which corresponds to RF source 5% bandwidth limit, are 

presented for IFMIF RFQ. In reference to unattainable limit of the infinite Gauss front 

13It would be absolutely correct if the resonant characteristic would be exactly symmetrical refer resonance frequency. 
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Goc/t) (Appendix 5), the use of, e.g., the upper band on Fig. 5 (aopt s:5 184) gives the loss 

1.019, Fig. 7, so that any other possible solutions could give not more than 2% advantage 

in the bandwidth value. 

(~a=2.8·10-4; elunM/A=3.1.10- 6 )
"lm 

(8.8.10- 4 ; 1.5.10-6 ) 

0.0224 

0.0222 

0.0220 r--......--­

0.0198 

0.0196 

0.0194 

0.0171 

0.0169 

0.0167 

170 180 190 200 210 a 

Fig.5. Minizing bandwidths "lm V.s. parameter a at A/A == 10-3
, and required 

control precision Aa with off-band overshoot elunM / A values in optimal 

points for nominal (-), doubled (-) and half (-) beam currents; 

u == 366, b= 1.1/1.68, Qr = 104 values are taken from [1,10], cos( cp-O) = 0.5. 

Thus, the required signal is 


bw; {J(t) - J(t - NT) }

S(w) = AQrCOs(cp-8)F Js cos(wot +8) IWE[wo-yo,wo+yo], (55) 

where J(t) is defined by Eq.(46),(44) for prescribed [out, N, K, 8 values; the opti­

mized aopt, bandwidth value "lmopt, and required autocontrol precision are determined 

by Eq.(53,54) at prescribed random error A/A and maximal tolerable overshoot error 

elunM/ A in the field magnitude. 

5. Accelerating channel characteristics 

The use of Eq.(38), where M(t) is already defined (Eq.(41)): 

J(t) J(t-T), tE[0,(K-1)T+(] 
M(t) == Js - J(t - T), t E [(I{ -l)T + (,I{T + (] (56)

[ 
0, t E [I{T + (,00), 
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determines the energy variation in the accelerating channel 

t 

[O(t) = COS(~ - 0) JM(t')dt'+ (57) 
o 

F-1 {4~W ([M(w- 2wo)e,("H) +M(w+2wo)e-*,+6)J+2[L(w-wo)ei" +L(w+Wo)e-i"J) } . 

Since the second term presents only the high-frequency oscillations, the energy variation, 

averaged over the period, is 

afi [erf(X~U)+erf(*)] _xe-(~)2, X E [0,1] 
~ [ f(X-U)+ f(X-u-l )] __(.!!.)22 er a er a e a , XE[l,u] (58) 

_(.!!.)2 ~ f(X-U-l)( X - U ) - e a - 2 er a ' X E [u, U + 1] 
1_e-(~)2 , XE[u+1,oo), 

where x = tiT, u = (K - 1) + (IT as before. Eq.(58) presents rather different £OA(t) 
laws for different a, Fig. 6, 

1 

100 200 300 tiT 
Fig.6. Normalized averaged energy £oA(t)1£out for different a; u = 367. 

but under the optimized a value the optimal RF field characteristics (secA) are obtained 

with actually insensitive to the beam current variations, Fig. 5, so that the channel with 

a = aopt is the best. 

6. Conclusion 

The method of transient beamloading analysis in high-duty-factor linacs gives the solu­

tion of key problems at the effective RF control implementation, RF matching realization, 

and the accelerating structure precise tuning. The developed optimizations provide the 

following. (1) The beam excitation does not contain phase (and frequency) modula­

tion (Eq.(39)). (2) The required RF source power is minimal for prescribed resonator. 

(3) RF source bandwidth is minimal for prescribed random error and maximal admissi­

ble overshoot error in the field magnitude. The optimization gives only a few percents 

disadvantage in reference to _unrealizable minimal bandwidth limit. (4) RF signal imple­

mentation is the simple. (5) The optimized characteristics have only a weak dependence 

on the beam current deviations. 
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Concerning the beam dynamics, the energy variation expression contains the single 

undetermined function (L(t) in Eq.(38)). However, (1) and (5) results allow to presup­

pose the minimal particle losses at moderate influence of the function, so the dynamic's 

simulation at the optimized channel with zero value of the function seems to be considered 

first. The (1-5) extremums are global (in the same meaning as indicated for (3) result), so 

that the use of the averaged energy variation law, which is maximally correlated with the 

optimized one (COA(t), sec.5), will provide the better results if it can not be implemented 

exactly; e.g., at RFQ segmentation [11]. 

Under the control algorithm design, the reflectance property (sec.2.6, 3) can be used 

and the state-variable control (Kalman filter) seems to be suitable. At the algorithm 

realization the consideration of the RF support signal processing will give the phase and 

frequency stability characteristics. 
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Appendix 1. Detailed Analysis of Resonator Electromagnetic 

Field at Arbitrary Excitations 

The resonator electromagnetic field problem had been considered by various methods; basic principles are 

stated in [12,13] outstanding works. However, certain of the physical aspects have yet to be considered; 

more comprehensive treatment is presented. 

At.t Electrodynamical set properties 

Arbitrary ideal (loss-free) resonant cavity field can be expressed by infinite number of 

rotational and potential eigenfunctions. 

The rotational each E~, ii~ (v-type mode of the resonator) is characterized byeigen­

frequency Wv and spatial distributions 

(59) 

the coordinates dependent spatial distributions Ev(R), iiv(R) and Wv value are the ho­

mogeneous Maxwell equations solutions 

(60) 


in the cavity volume V under ideal metal or ideal magnetic boundary conditions or their 

combinations on the Sr surface, which adjoins the cavity walls but does not include 

the boundary for homogeneous form of Eq.(60). Phase r{)v in free oscillation expressions 

(Eq.(59)) is indefinable as well as the amplitude of the spatial distributions. To demon­

strate the orthogonality consider the integral f (rEe(R), iiv(R)], dS) and the same for 
Sr 

transposed fields; Gauss theorem application with substitutions from Eq.(60) gives 

(61 ) 

These surface integrals are zero since ideal boundary conditions and nontrivial solu­

tion of the Eq.(61) set for volumetric integrals is possible only at the zero determi­

nant cJ.l(wl - w;) that yields orthogonality for non degenerate (we i= wv ) modes: 

(62) 

For degenerate modes it is always possible to use formal Gram-Schmidt orthogonalization 

process or to prove the orthogonality directly; in the infinite multiplicity degeneration 

case for 2D or 3D symmetric cavity the basis is formed only by the 2 or 3 perpendicular 
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oriented modes, these latter are orthogonal in the Eq.(62) sense. In a physical meaning 

this property (Eq.(62)) reveals the absence of the inter-mode's energy interactions, so 

all the fields (Eq.(59)) can be in existence independently of one another; Wv value is in 

proportion to the v-mode stored energy of electric or magnetic field; orthonormalized set 

is constructed under Wv = I Vv 14. 

In the general case the charge density p(R, t) sets up the potential part of electric field 

Epot = -grad 'P(R, t), which is determined by Poisson equation 

-+ I-+ 
div grad 'P(R, t) = -_.p(R, t) (63) 

c 
at the same surface boundary conditions. This field can be also presented by the means of 

dynamical potential eigenfunctions that are determined by scalar wave equation. However, 

there are no physical meaning of these individual functions in the majority of cases, 

since these fields have no resonance properties and cannot be in existence separately 

e.g., Laplace equation has only trivial solution (summary field of all these functions) for 

simply connected space in ideal metal cavity. Therefore it is preferable to obtain the 

Eq.(63) direct closed solution, which must be added to the rotational field. 

Completeness of the set is obtained under formal including of similar magnetic potential 

eigenfunctions also; these functions have no physical meaning since always div fi = 0 (mag­

netic charges are absent). Orthogonality of the any potential function to any mode, e.g., 

Egr to Ev is proved at V-volume integration of the equality (Egn rotfiv) - (fiv, rotEgr ) = 
-Wvc (Egr , Ev) - (fiv, rotEg0, which follows immediately from the first equation (60), 

with taking into account rotEgr = 0 and the boundary conditions. 

Al.2 Excitation 

Electric current with J(R, t) density and the magnetic iii(R, t) one set up the resonator 

field 
-+ afi -+ -+ aE -+-+

rotE = -1/.- - iii(R t) rotH = c at + j(R, t); (64)
r at ' , 

that can be represented in the form 

(65) 
v v 

where Ev, fiv are the homogeneous problem (Eq.(60)) solutions, -'Pis the Poisson Eq.(63) 

solution. The dimensionless ev(t), hv(t) functions of time are defined under similar to 

sec.A1.1 consideration of the zero integral f ([E, fiv], dS) at the substitutions from Eq.(64,65) 
Sr 

with the use of the orthogonality property: 

dhv(t) I J(-+ -+)wvev(t) - dt = Wv Hv, m dV, (66) 
v 

14The inconsistency between the formal and real units of the fields from behind dimensionless W" value is not a problem 

at simulation, however W" = W form is preferable at analytical analysis. 
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the same integration for [H, Ell] vector product yields 

dell(t) 1 "7)J(....wlIhll(t) + ---;It == - W Ell,) dV. (67)
II v 

electric and magnetic currents may be also expanded 

It is notable that from the Eq.(65) representation in Maxwell Eq.(64) it follows that 

m=L (J (H.,m) dVy;·. (68)
II v II 

Gradient summand in Eq.(68) can be expanded in terms of the potential eigenfunctions; 

the charge density can be expanded in terms of these potentials and the similar formal 

representation is possible for magnetic current. The orthonormalized set completeness 

ensures convergence not only in V-volume residual meaning but in partial domains also. 

Al.3 Wall losses 

Tangential component of the real resonator electric field on the metal­

lic surface can not be expressed directly by Eq. (65) since all the 

eigenfunctions electric field is normal to the surface. The problem 

is solved by introducing the additional magnetic current mw , which is 

distributed on Sw surface inside the volume at A distance from the Sr 

surface. For the tangential component ET at x < 0 side of the surface 

with the zero component at x 2::: 0 the continuity of the fields will be fulfilled at the 

superficial magnetic current Mw == [ex, ET], or mw == 8(x).Mw. The volumetric integral in 

Eq.(66) is transformed to the Sw surface one and realized condition of the zero component 

at x 2::: 0 allows the passage to the limit: 

J(HII,mw) dV == J ([ET' HII],Js) ~o JOEnHII],dS). (69) 
v ~ ~ 

The result is formally well known, however the model of ideal metal walls, which are 

covered by the magnetic current gives the means for correct consideration. 

Inside the metal with a conductivity the Maxwell equations are 

.... aiiM 
rotEM == -jlo--. (70)at 

In order for the mathematical treatment not to obscure physical aspects, the further 

analysis will be performed at Fourier transform F { iw}; final conversion to real time should 

not present any problems. For any singled out small locality the metal surface can be 

considered as the plain and in local Cartesian system (ex is directed into the metal, yOz 

plain coincides with the surface) the HM == ex' HMx + ey · HMy + ez ' HMz components 

solutions of Eq.(70) set are determined by the equations 

82 HMu 82 HMu a2 HMU ) . 
( 8x2 + 8y2 + 8z2 == 'lwjlo(J·HMu , u == x, y, z. (71) 

- 23­



lAERI-Research 98-041 

82
Only when 8?x¥u ~ //¥u, 82!fz¥u - for good conductor the characteristic distance 

at inward variation is defin~d by the skin-depth while the transverse variation distance is 

assumed to be commensurable at least with the wavelength the equation takes the form 

82
HMu . 

8x2 - zwp,ou·HMu = 0, u = x, y, z. (72) 

Outside the metal the cavity space magnetic field (Eq.(65)) has only fire tangent compo­

nent on the surface; consider the case when fire = ey • Hre (two-component consideration 

yields the same result). At the continuity fire = fiMlx=o condition on the bound with the 

lack of unrestricted increase condition the Eq.(72) solution is 

- H .e-xyliwP,ou (73)H My - re , 

where the v'l = +(1 + i)/v'2 value is accepted; according to Eq.(70) EM = ~.(ez 8~:y ­
ex 8~~y). The similar to Eq.(71) approximation (for the first derivatives) and the tan­

gential electric field continuity condition give 

(74) 


or in the general case Er• = Ji~l!:.o. [Hr., ex]. It is well known absolutely correct result 

for a plain wave field since the neglected derivatives are merely zero in this case. 

At the attempt to apply the last result for the cavity field (the commonly used method) 

the integral in Eq.(69) takes the form 

JiWJ10J(-+ -+) . JiWJ10 '" A7J' = J (fi7J' fi,) dS (75)v HII,mw dV= --;;-.hIlAIIII + --;;- theAell' 
Sr(e;ell) 

(the modes are not orthogonal in the surface integral meaning, so Aell =f:. 0 in the general 

case); Eq.( 66,67) set for hll , ell is 

(76) 

. D 1"=.( 2 2) wy'wjtOAlI1I .wy'wjtOAIIII . .The set determlnant = V u wll - W - ~ + z ~ imagInary part IS 
2WlI 2WlI 

non-vanishing for any u so the set solution is unique 

(77) 
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At a ---? 00 (ideal metal) all the mode's fields can be in existence independently of one 

another. Examination of the Eq.(77) solution for hv 0, ev = 0 case reveals that this is 

possible only at trivial Y = 0, Av 0 (all the modes are zero), because the homogeneous 

form of Eq.(77) for Y, Av has the same non-vanishing D determinant (the result is also 

verified by the direct passage a ---+ 00 for w = Wv =f:. w" Av = 0, A, =f:. 0 at definition 

of (-mode contribution to v-mode field - the vanishingly small excitation yields finite 

contribution). Physically exact result for this case: Av = 0 \:Ihele#v' \:IAe le#v can be ob­

tained only under the Aev 0 \:Ie =f:. v correction. It is caused by inapplicability of the 

approximate boundary condition (Eq.(74)), generally observed in [14], as far as the sum­

mary field of arbitrary time-dependent modes with inhomogeneous spatial distributions 

can yield the arbitrary variation on the cavity surface (this can be clearly seen from the 

similar passage as a increases at variable Ae excitation on W :::::: we =f:. Wv with Av excitation 

on w :::::: Wv the field differs radically from the monochromatic plane wave). The correc­

tion insures right result for the single-mode case wherein the approximation is admissible. 

Generally, expression of the inegral in Eq.(69) can not contain any linear combinations 

of he le#v 15 that is determined by the single-mode excitation and unexcitation conditions 

examination 16. 

The physically correct result for the integral in Eq.(69) at the reverse transform to real 

time can be represented in the form 

~ J(it, m) dV 
Vv 

(78) 

where 

Qv = V2wv/-loa J/-I (iiv,it) dV· [j /-10 (it, iiv) dSr· (79) 
v Sr 

Second summand in Eq.(78) is obviously negligible; furthermore, the resonant properties 

provide even far less impact of the summand: analysis of the Eq.(66,67) set solution for 

hv(iw) reveals that for any excitation this term contribution (in relative energy sence) 

does not exceed (1/Qv)2 value (normalized squared modulus integration over w E (0,00)) 
and the (1/Qv)3 value in the v-mode bandwidth range. 

Thus, Qv (Eq.(79)) is the quality factor of the resonator v-mode, and the final form of 

15Failure to take into account this property can lead to results [15], which can not be treated. 
16It does not follow rigorously from Eq.{66,68) since the series are convergent in domains, but not in the surface integral 

meaning. 
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(80) 


Appendix 2. 

The prescribed under RF optimization (sec.2.5) value is in proportion to the even function 

integral 
YO
J IF(w)12 dw. Accordent to Eq.(32), the even ID(w)12 function expanding in 

-YO 

powers of w yields 

Yo 2m sin2 (~N) 
where Am = j (~) . (") dw value for Yo < ~ allows evident estimations 

Wo sIn2 ~ o wo 

1 jYO (W )2m-2 . 2 (1rW) Wo 1 (Yo)2m-lA < - - SIn -N dw < - ­
m 4 Wo Wo 4 2m -1 Wo ' 

o 

(X) I(ID(0)12 
)(2ffl) I

and the series converges to smaller than, e.g., ~ m~l (2m)! .(wo)2m value, since 

{Am} is decreasing and ID(w)12 series is absolutely convergent, so the second term in the 

initial expression is limited with N increasing. However, the first term integral 

cos gO'SIn• 2 X) N _ Yo7r . ,x go, go- ,
sIn go Wo 

converges to ~N under the N increasing. Thus, with the use of D(O) = Eout value from 

Eq.(33), the result with any finite precision is 

since N ~ 1. 

Appendix 3. 

The optimization condition Eq.(23) for amplitude modulated signal with ex: cos(wot +CPo) 

carrier yields CPo = cP, since in accordance to Eq.(20) definition the phase characteristic 

a(w) = CPo+o(w), where o(w) is some odd function. This CPo fixation (that is caused by the 

minimum minimorum searching) severely restricts further analysis and raises a question 
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as to whether there exists an optimum for 'Po i= 'P case. As far as the applied Cauchy­

Schwarz inequality usually ensures the global extremum, the amplitude modulated signal 

optimum may be presupposed in this case also, and all other results in sec.2.5 do not 

stipulate 'Po = 'P condition. However, for rigorous solution it is enough to consider 

Co(w) = Coe(w) +Coo(w) in the general form of the even COe(w) and the odd Coo(w) parts 

sum and a(w) = 1jJ +o(w) + e(w) for any even e(w) (for definiteness e(O) 0), therewith 

Eq.(22) takes the form 

YO 2 

YO 2 f IF(w )I dw 

j(x)-(x+x cos(2'P-21jJ-2e(w)))dw = -yo A2 = A, where x = Coe(w)+i·Coo(w) , 

-yo 

(*) complex conjugate, and the inequality application leads to 

AJE01r ~ --;==============
YO 

2A - f Ixl2 sin2 (2'P - 21jJ - 2e(w))dw 
-YO 

last form solution for Eo1r, where the influence of e(w) is limited for any phase 

characteristic, shows that the energy minimum corresponds to the equality case; this 

condition (COe(O) i= 0, which follows from Eq.(19)) immediately gives Coo(w) e(w) = 0 

(the amplitude modulated signal only), therewith the equality case of the estimation is 

f
YO 

IF(w)1
2 

dw 
-YO 

Appendix 4. 

Consider some function g(w) that satisfies Eq.(36): 

Eo1r 

(3 E ~ const(w). The conditions use only (0) and (+2wo) bands, and the Eq.(37) form 

function that coincides with go(w) in (0) band can be constructed: 

cos( 'P - 0)
Fo {M(t) cos(wot + 'P) cos(wot +O)} (w) = M(w) 2 = go(w). 

Therewith the (+2wo) band spectrums also coincide, as far as their ratio 

g+2(W + 2wo) (1 '(3) ( 0) i( 'P - 0)------------------ = + 't cos 'P - e 
F+2 {M(t) cos(wot + 'P) cos(wot +O)} (w + 2wo) 

comes out to 1 at the 0 value that satisfies tan('P - 0) = -(3, so that Eq.(37) form presents 

all possible g(w). 
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Appendix 5. 

The spectrum width estimation by 0 2 
00

J IME(W)12 w2dw value, similarly to moment 
-00 

method [16,17], is of direct interest to the problem, because the spectrum contains the 

prescribed sharply defined ME(O) component, and ME(w) energy in [-Yo, +Yo] band is 

prescribed also. The even 2'Tv duration time-function G(t), which is formed by symmet­

rically disposed time-varying parts of f(t), 

G(w) F{[1(t+7v )-1(t-7v )1(I(7v t)+I(7v +t)) -Is} ,7v = (K-l)T+(,has 

the same 0 for any f(t) that satisfies Eq.( 43,42). To minimize the width, consider Cauchy­

Schwarz inequality 

where additional condition (f2)'(0) = 0 is used, so that 

n ~ Ii (21 I(t)2dt) 2 

1 

;0' 
Tv ) )t ( Tv twhere TG = 

( 
-tv t2G(t)2dt -tv G(t)2dt - equivalent duration of G(t). The integral 

in the last estimation is limited, since it presents the energy of the beam excitation in 

t E [0, 'Tv] interval 17, TG ::; 'Tv as well, and 0 minimum is achieved in the equality case. 

As far as the equality condition d~}t) ex tG(t) is satisfied at 'Tv -+ 00 for Gauss time­

dependence Goo(t) only, the real function (Eq.(42)) can not contain GCX!(t) form exactly; 

however, under the use of the closely corresponding form (Eq.( 46)) the loss 

....:.------~-=-----, erf - error function, 

is not very substantial for uja > 2, Fig. 7. 

OjOmin 
3 

1 
+------------~0.5 1.0 1.5 2.0 u a 


Fig. 7. Loss in the spectrum width value. 


17To be more precise, the energy of this signal in [-Yo. +yo] band is prescribed, but it can not be determined under 

N::> K condition, see Eq.(47). 
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Appendix 6. 

Under conventional power parameters application the definition of the resonator unloaded 

quality factor yields (Wl is the doubled stored energy at resonance) 

R _ A2W1W r 

1- 2Qr ' 

where PI power losses in the cavity; Pb = Wo£out/27r is the beam power and the ratio 

b = Pb/ P, will present the main characteristics. Since the beam excitation signal is defined 

by Eq.(39) with M{O) value from Eq.(40), the Wo spectrum is 

V{wo) = wrN£out ei {(} ± 7r) , 
AWl cos{ cp (}) , 

Eq.(16) indicates the sign ~r cos(Vo - cp) ::; 0, and assuming for definiteness A > 0 the 

Eq.(29) give 
Vo Wr )-cos{vo - cp) = -b·-; cos{cp - () 2: o. 

AWr Qr 

Now the use of Eq,(16) and (5) yields the loaded quality factor of the matched resonator 

Qr 
2+ b' 

the equivalent unloaded quality factor (Eq.{ 17)) is 

Wr 1 
Qeq = Qr ' Wo 'I +b ' 

and the generalized deviation (Eq.(15)) is 
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