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The algorithms and computer codes for linac Feedback system were developed at SLAC
during 1991–2004. The efficiency of that system have been demonstrated for the SLC,

CLIC, TESLA and NLC projects. International Linear Collider (ILC) has its own fea-

tures. Ground motion (GM) oscillations play a dominant role here. It forced to implement
a new version of the code [6] based on the previous developments [7–12]. A set of bench-

mark tests and realistic simulations for the whole ILC structure have been performed.

The effects of different GM models, BPM resolution, time intervals, initial misalignments,
a dispersion-free steering (DFS), and a quad jitter have been studied.
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1. Introduction

Feedback systems are necessary elements of modern linear colliders, providing an
effective method for relaxing tight tolerances of the design. For the ILC, extensive
feedback systems control the beam parameters, such as beam position, energy, final
focusing luminosity, etc., under ground motion and other sources of perturbation.
This system should include a number of sensors (beam position monitors) and
actuators (dipole magnets). It allows precision beam tuning and provides pulse-to-
pulse diagnostics.

2. Beam dynamics under ground motion (GM) and technical noise

Typical requirements for the ILC design parameters are:

• Electron and positron linacs of 10.5 km length each;
• Accelerating gradient = 31.5 MV/m in 1.3 GHz cavities;
• Injection energy = 15 GeV;
• Extraction energy = 250 GeV;
• Initial energy spread = 150 MeV;
• Bunch charge = 2× 1010;
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• Bunch length = 300 µm;
• Normalized vertical emittance = 20 nm;
• Normalized horizontal emittance = 800 nm;
• Main linac (ML) budget for vertical emittance = 8 nm;
• Optics: FODO lattice with β phase advance of 75◦/60◦ in x/y plane.

Each quad has a cavity-style beam position monitor (BPM) and a vertical
corrector—dipole magnet. A set of nominal initial misalignments in main linac
(ML) includes:

• Quad offset = 300 µm;
• Quad rotation = 300 µrad;
• BPM offset = 300 µm;
• BPM resolution = 1 µm;
• Cavity offset = 300 µm;
• Cavity pitch = 300 µrad;
• Cryostat offset = 200 µm;
• Cryostat pitch = 20 µrad.

The simulations show the growth of vertical emittance in such a linac is more
than 10,000 nm rad, so a dynamic beam-based alignment should be provided con-
tinuously after a static alignment.

The main sources of an emittance dilution are:

• Dispersion from Misaligned Quads or Pitched cavities;
• Transverse SR Wake fields: Misaligned cavities and cryomodules (CM);
• XY-coupling from rotated Quads;
• Transverse Jitter.

The GM was modeled with a 2-D power spectrum [14], which include a diffusive
corrected ATL term and a set of isotropic plane waves (Figure 1):
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Here the coefficients A,B, ωi, ai, di are individual sets for different sites: a quiet
model A, an intermediate model B and an aggressive model C.

3. Static & dynamic beam-based alignment

There are three main schemes for a static alignment:

• One-to-One Steering: Find BPM readings for which the beam should
pass through the exact center of every quad, and use the correctors to steer
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Fig. 1. The integrated absolute GM spectra (solid lines) and the integrated relative motion of 2

objects separated by 50 m distance (dashed lines).

the beam. The alignment generates a dispersion which contributes to the
emittance dilution, and it is sensitive to the BPM-to-Quad offsets. Typically
it reduces the emittance from ≈10,000 nm to ≈100 nm.

• Dispersion Free Steering (DFS): Measure a dispersion via mismatching
the beam energy to the lattice. Calculate the correction needed to zeroing
the dispersion, and apply the correction. Make few iterations. This type of
alignment can reduce the emittance growth to 5–7 nm.

• Emittance (Dispersion & Wake) Bumps: The goal is to minimize a
beam size at the end of linac by varying the strength of the correctors. It
can reduce the emittance growth to 2–3 nm.

The Adaptive Alignment (AA) scheme for a dynamic tuning [13] is a “local”
method. It uses the BPM readings Ai of three (or more) neighboring quads to
determine the correction for the central of them (Figure 2)

∆yi = C

{
Ai+1 +Ai−1 −Ai

[
2 + kiLi

(
1− ∆E

2E

)]}
, (3)

where C is a convergence factor, ki is the inverse of i-th quad focusing length, Li

is the distance between successive quads, ∆E is the energy gain between successive
quads, E is the beam energy at central quad.

The new position for the quad and BPM is ynew
i = yold

i −∆yi, and the procedure
is repeated until the convergence is reached.
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Fig. 2. Adaptive alignment scheme.

Fig. 3. Vertical emittance growth for the models A, B and C.

Figure 3 shows the emittance growth averaged over 20 GM random seeds after
100 AA iterations for initially perfectly aligned linac. The AA corrections have been
applied each two-hour period after the GM. The total period of GM simulation is
one month.

4. The Kalman filter model and the optimal control

The optimal control system is illustrated in Figure 4. Here the actuator vector ~u
includes as a corrector signal as a measurement noise due to a limited BPM resolu-
tion. It affects on the control system via the state vector ~X. Then the measurement
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Fig. 4. Generalized scheme for the accelerator feedback system.

system produces the BPM-read vector ~Z, which is used to update the new state
vector.

In that way, the control procedure consists of two steps [16]. Step 1 Prediction
evaluates the state ahead

Xk = ÂXk−1 + B̂uk + wk, (4)

and projects the error covariance ahead

Pk = ÂPk−1Â
T +Qk−1. (5)

Here wk is the process noise which is assumed to be drawn from a zero mean
multivariate normal distribution with covariance Qk.

Step 2 Correction computes the optimal Kalman gain

Kk = PkĤ
T (ĤPkĤ

T +R)−1, (6)

updates the estimation with a measurement Zk

Xk = XK +Kk(Zk − ĤXk), (7)

and updates the error covariance

Pk = (Î −KkĤ)Pk. (8)

5. General feedback (FB) model in the “Linac Feedback System
Code” (LFSC)

The computer program LFSC (Linac Feedback Simulation Code) is a numerical tool
for simulation of beam based feedback in high performance linacs. The code LFSC
is based on the earlier version developed by a group of authors at SLAC [7–12]
during 1990–2005. Later work [17] studied the beam jitter in ILC also. That code
was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can
simulate pulse-to-pulse feedback on timescale corresponding to 5–100 Hz, as well
as slower feedbacks operating in the 0.1–1 Hz range in the Main Linac and Beam
Delivery System.
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The FB model is described by the following system of equations

Xk+1 = ΦXk + Γuk + L(y −HXk),

ũk = −KXk+1 +Nrk, (9)

uk+1 = +g(ũk − uk).

Here Φ is a system matrix for the dynamics of accelerator model; Γ is a control
input matrix; L is a Kalman filter; H is an output matrix; K is a gain matrix; N
is a controller-reference-input matrix; r is a vector of system set points; g is a gain
factor.

6. Simple benchmarks (static and dynamic response)

The test problem we studied with LFSC was a perfectly aligned main linac of 114
FODO cells with 5 Hz repetition rate. The vertical offset for a Quad #50 varies as
dy50 = y0 cos(2πFt), where amplitude y0 = 80µm, and the frequency F varies in
the range 0–0.5 Hz. The lattice with the only control loop is shown in Figure 5.

The efficiency of the control for static perturbation F = 0 is shown in Figure 6.
The picture demonstrates the rate of decreasing of initial misalignment with time.

Dynamic response of the Kalman filter model is presented in Figure 7. One can
see that initial misalignment can be effectively compensated for the perturbation
frequencies ≤ 0.05 Hz.

7. FB system for ILC—main linac of 114 FODO cells

The lattice layout for entire main linac is presented in Figure 8. It includes 5 control
loops. Two correctors of each loop have phase shift of 90◦ to make the efficiency of
correction independent from their positions in the lattice. Eight BPMs in each loop
are used for averaging of BPM-read to reduce the effect of limited BPM resolution.

Figure 9 demonstrates the efficiency of FB control for total period of simulation
T=10 hours. Control signals applied to the correctors with an interval of 100 s.

8. Effects of BPM resolution, time interval and initial
misalignment

There are many factors which determine the efficiency of a FB control system. The
results presented in Figure 10 show that the BPM-read errors are negligible when
the resolution is less the 1 µm.

Figure 11 shows the effect of time interval can preserve the vertical emittance
for less than 10 hours of GM between corrections.

Beam position in the perfect aligned linac is shown in Figure 12 (left) for initial
time moment and after 5 hours of FB control. Right picture shows the dynamics of
vertical emittance for that case.

Figure 13 shows the beam position for random initial misalignments at different
time moments.
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Fig. 5. Lattice layout: one FB loop of 2 correctors, 4 BPMs in each direction.
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Fig. 6. Static response vs. gain g=1 (top), g=0.5 (middle) and g=0.1 (bottom). Different lines
correspond to different BPMs.
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Fig. 7. Dynamic response for a varying frequency of perturbation; F=0.01 Hz (top), F=0.05 Hz
(middle) and F=0.1 Hz (bottom).
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Fig. 8. Lattice layout: 5 FB loops of 2 correctors, 8 BPMs in each direction.
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Fig. 9. The effect of FB control for entire linac; GM model B. BPM resolution = 1 µm.
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Fig. 10. Dynamics of vertical emittance for BPM resolution 1 µm (left) and 5 µm (right).
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Fig. 11. Dynamics of vertical emittance for time interval of 1 hour (left) and and 10 hours (right)
of GM between corrections.
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Fig. 12. Dynamics of a beam position (left) and vertical emittance (right) for perfect aligned

linac.
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Fig. 13. Dynamics of a beam position for a random initial misalignment of 300 µm. Pulse 1—solid

line, pulse 5—dashed line, pulse 10—dash-dotted line.


