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Abstract

The numerical extensions of the Green’s function thechnique have been
used to represent a space charge of intensive beams in three-dimensional
(3D) case. The introduced tri-linear approximation helps to avoid the
numerical noise of space charge density on the beam boundary, peculiar
to the commonly used piecewise-constant approximation. Both artificial
and real singularities for the potential and field gradients have been an-
alyzed. The efficiency of the suggested numerical algorithms has been
demonstrated by benchmark tests. The design of the electron gun for
an X-band sheet-beam klystron has been done using these algorithms.
Keywords: Green’s function; beam optics; klystron gun. PACS numbers:

29.27.Bd

1 Introduction

One of the most powerful tools to solve mathematical physics problems is the
Green’s function method. The importance of this method is that it occupies
an intermediate place between purely numerical and analytical methods. Thus,
an arbitrary-order derivative can be evaluated analytically, when the solution
of the initial-boundary problem is represented as an integral convolution of the
field source density with the Green’s function. In this case, evaluation of deriva-
tives is performing with no accuracy loss in contrast to using the correspondent
numerical scheme. The algorithms and numerical results presented in this paper
stem from the earlier works of the author [1]-[3]. Some other computationally
fast approaches based on the Green’s function formalism (so-called ”templates”)
have been developed [4]-[5], such as the analytical representation of the field of
an ellipsoidal bunch [6]. They drastically decrease the calculation time in the
case of ultra relativistic bunches in accelerating structures.
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2 Analytical technique for evaluation of a space
charge potential in 3D

The potential of the electrostatic field of electrodes and space charge of the
beam can be represented by a sum of a single-layer potential of surface sources
σ and volume potential of sources ρ

φ(x0, y0, z0) =
∫
S

σ(x, y, z)G(x0, y0, z0; x, y, z)dS +

∫
V

ρ(x′, y′, z′)G(x0, y0, z0; x, y, z)dV , (x, y, z) ∈ S, (x′, y′, z′) ∈ V . (1)

Applying the boundary conditions to the integral representation (1), one can
get an integral equation for the field source σ. The continuity equation

div�j = 0, �j = ρ�v (2)

with the initial values for the emission current

�j|S0 = �j0 (3)

on the emitter surface S0, gives an equation for the space charge ρ, but the
motion equation

�̇p = Z( �E + [�v × �B], �E = −∇φ, �p =
m�v√

1 − (v/c)2
(4)

yields the velocity v of a particle with a charge Z and rest mass m. Here c is
the speed of light in vacuum.

The magnetic field B includes as an external magnetic field B0 of solenoids
or permanent magnets as the self-consistent field of a relativistic beam

�B(�r) =
4π

μ0

∫
V

[�j(�r′) × �v(r′)]
|�r − �r′|3 dV , �r′ ∈ V , (5)

where μ0 is a permeability of vacuum.
The equations (1)-(5) is a complete set of non linear equations for the func-

tions σ, ρ, v and B.
In the 3D case the analytical integration over a brick-type element can be

done analytically also. Let us introduce a rectangular mesh {xi}× {yj}× {zk},
and a space charge distribution approximated by a tri-linear form

ρ(x, y, z) =
1

hxhyhz
{[(ρi+1,j,k(x − xi) + ρi,j,k(xi+1 − x)) (yj+1 − y)+

(ρi+1,j+1,k(x − xi) + ρi,j+1,k(xi+1 − x)) (yj+1 − y)] (zk+1 − z) +
[(ρi+1,j,k+1(x − xi) + ρi,j,k+1(xi+1 − x)) (yj+1 − y)+ (6)
(ρi+1,j+1,k+1(x − xi) + ρi,j+1,k+1(xi+1 − x)) (yj+1 − y)] (z − zk)} .



Then the potential of this charge distribution can be represented by an
integral

φ(x0, y0, z0) =
∑
i,j,k

xi+1∫
xi

yj+1∫
yj

zk+1∫
zk

ρ(x, y, z)G(x0, y0, z0; x, y, z)dxdydz, (7)

where the Green’s function of a point source is described by a formula

G(x0, y0, z0; x, y, z) =
1

4πε0

√
(x − x0)2 + (y − y0)2 + (z − z0)2

≡ 1
4πε0R

. (8)

Here R is a distance between an observation point (x0, y0, z0) and a source
point (x, y, z) , and ε0 is the vacuum permittivity.

Accordingly the potential evaluation can be reduced to evaluation of 4 inte-
grals

I1 =
∫ ∫ ∫

xdxdydz

R
, I2 =

∫ ∫ ∫
xydxdydz

R
,

I3 =
∫ ∫ ∫

xyzdxdydz

R
, I4 =

∫ ∫ ∫
dxdydz

R
, (9)

and the other integrals can be expressed through these by cyclic replacement
of variables x, y and z. Using linear replacement of variables x̂ = x − x0, ŷ =
y − y0, ẑ = z − z0 and a contraction r =

√
x2 + y2 + z2 these integrals can be

evaluated analytically

J1 =
∫ ∫ ∫

xdxdydz

r
=

y

4
[
rz + (x2 + y2) ln |z + r|] +

z3

6
ln |y + r| +

x2

2

[
z ln |y + r| + y ln |z + r| − z + xtg−1

( z

x

)
− xtg−1

(zy

xr

)]
+ (10)

1
36

[
6x2z − 2z3 + 3zyr + 6x3

(
tg−1

(zy

xr

)
− tg−1

( z

x

))
− 3y(y2 + 3x2) ln |z + r|

]
,

J2 =
∫ ∫ ∫

xydxdydz

r
=

zr3

12
+

3
24

(x2 + y2)[zr + (x2 + y2) ln |z + r|, (11)

J3 =
∫ ∫ ∫

xyzdxdydz

r
=

r5

15
, (12)

J4 =
∫ ∫ ∫

dxdydz

r
= xy ln |z + r| + yz ln |x + r| + xz ln |y + r| +

−1
2

[
x2tg−1 yz

xr
+ y2tg−1 xz

yr
+ z2tg−1 xy

zr

]
. (13)

The last integral was evaluated analytically at [7], but the result was done
in complex form, not appropriate for direct utilization. That result also has
errors.



Electric field components �E = −∇φ can be evaluated as the derivatives of
the potential, for example,

Ez(x, y, z) ≡ − ∂

∂z
φ(x, y, z) =

∑
i,j,k

xi+1∫
xi

yj+1∫
yj

zk+1∫
zk

ρ(x, y, z)
∂

∂z
G(x0, y0, z0; x, y, z)dxdydz. (14)

The following set of integrals needed for this case

J1z =
∫ ∫

dxdy

r
= −ztg−1

(xy

zr

)
+ y ln |x + r| + x ln |y + r|, (15)

J2z =
∫ ∫

xdxdy

r
=

1
2

[
yr + (x2 + z2) ln |y + r|] , (16)

J3z =
∫ ∫

zdxdy

r
= zJ1z, (17)

J4z =
∫ ∫

xydxdy

r
=

1
3
r3/2, (18)

J5z =
∫ ∫

xzdxdy

r
=

z

2
[
yr + (x2 + z2) ln |y + r|] , (19)

J6z =
∫ ∫

xyzdxdy

r
=

z

3
r3/2. (20)

3 Singularity problems

Actually, the potential of an electric field is a regular limited function in all
space, so the logarithmic terms in formulas 10-13, 15-19 produce artificial sin-
gularities, which must be excluded in program implementation. Furthermore
the field gradients have real singularities on the vertices and edges of cubic cells
at the beam boundary (point ”a”) [8]. Those singularities result in numeri-
cal noise, leading to artificial halo formation around the beam etc. All these
singularity problems have been successfully overcome by using a high-order ap-
proximation for the space charge density [1]. The space charge distribution and
its approximations are presented in Fig.1.

Figure 1: On the field singularity of charged cubic cells.

Both integrals over elements L1 and L2 have singularities at the point ”‘b”.
These integrals should be weighted with coefficients Q1 and Q2 associated with



the elements in the electric field evaluation. As a result singular terms are com-
pensated at internal points of the beam for any smooth approximation, where
Q1 = Q2, but they keep the singularity for a piecewise constant approximation
where Q1 �= Q2. The electric field at the boundary point x = b has no sin-
gularity for smooth approximations because the singular integrals over element
L2 are multiplied by Qb = 0. The singularity occurs for a piecewise constant
approximation because the space charge coefficient Q2 �= 0 this case.

4 Benchmark results

One of simplest test is the potential of a sphere of radius R with uniformly
distributed total charge Q. In that case the charge density ρ = 3Q

4πR3 , and the
exact solution for potential is given by the formula

φ(r) =

{
q
[

(R2−r2)
2 + 1

r

]
r < R,

Q
R r > R.

(21)

Actually a discrete set of charged cubes can represent this sphere. We put
R = 1 and Q = 1 in our tests, and we use a uniform mesh for space charge in each
direction. We will compare this exact solution with the analytical integration
for piecewise-constant and linear approximations of space charge. In addition
the numerical integration over the brick element is used

φ� =
n∑
i

n∑
j

n∑
k

aiajak
ρ(xi, yj , zk)√

(xx − x0)2 + (yj − y0)2 + (zk − z0)2
, (22)

where ai, aj, ak - weights, and xi, yj , zk - nodes of Gaussian quadrature in 3D
of order n. We will use n = 2 in our simulations, so this is an 8-node formula,
which is quite enough for our goal.

Figure 2 shows the potential distribution for exact solution and for different
integration schemes.

Figure 2: Left: Exact solution for a potential distribution (magenta), analytic
integration (blue) and numerical integration (green). Right: relative error for
different integration schemes.



One can see the oscillations in the numerical integration for the ‘near’ zone.
That is because our quadrature formula does not take into account the sin-
gularity of the integrand function. It has a good accuracy in the “far” zone.
The right graph in Figure 2 demonstrates a substantial difference in accuracy
of computations between piecewise-constant and linear approximations.

Figure 3: Exact solution for the potential of sphere (magenta), and analytic
integration for the piecewise-constant model in a mesh refinement.

Figures 3 and 4 demonstrate the convergence rate for both approximations
in varying of number of mesh cells in each direction from 2 to 64.

Figures 5 and 6 shows the convergence rate for both models and the run
time dependence in a mesh refinement.

5 The adaptive algorithm of integration

One can see that numerical integration is the fastest computational algorithm,
compared with both analytical schemes, but it has low accuracy near to the
field-source region. The idea of an adaptive integration scheme is to combine
the numerical and analytical approaches, and switch from the analytical scheme
in near region to the numerical one in the far zone. The criterion for this switch
is a relative distance from the field source compared to the dimension of the
source.

Figure 7 demonstrates how it works for the example of a very coarse mesh
of 2 x 2 x 2 cells representing a sphere. The left part of this picture corresponds
to the criterion r = 2.2. It is close to a sphere of radius R = 1, and it produces



Figure 4: Convergence of analytical integration for a linear approximation of
the space charge distribution.

Figure 5: Maximal and mean square errors for piecewise-constant and linear
models vs. the number of nodes in each direction



Figure 6: CPU-time for piecewise-constant and linear models vs. the number
of mesh nodes in each direction

a reasonably large jump in the inter face region. The right picture shows very
smooth passage from one algorithm to the other.

Figure 7: Worse mesh 2x2x2 cells shows clear the influence of the adaptation
criterion

Figure 8 demonstrates that such a smooth inter face can be reached for a
small value of the switch criterion, when the mesh is fine enough.

6 Sheet-beam gun design

Our simulations of beam optics for a sheet beam gun for an X-band klystron is
an example of a realistic design. This type of gun is able to overcome the power
limitations peculiar to the classical axially-symmetric klystron guns. Here the
electron beam emitted from a cylindrically-shape cathode is compressed in one



Figure 8: The adaptive integration algorithm can reduce the run time dramat-
ically (factor of 5-10) with accuracy lost of about 0.5-1%

transverse direction, and is almost parallel in the other. As a result we get a
sheet beam in the anode slot. The effect of space charge repulsion is much less
in this gun compared with a cylindrical beam.

Figure 9 shows the geometry shape of anode and cathode assemblies, and
the geometry model with triangular surface elements.

Figure 9: Parts, assembly and geometry model of a sheet-beam gun

Figure 10 demonstrates the results of a computer simulation for beam optics.
It takes 10 iterations on space charge to reach a convergence of about 1 % for
a total beam current on a mesh of 10,000 brick elements. The total simulation
time was 65 minutes with a desktop PC 1.4 GHz.



Figure 10: Beam optics for a sheet-beam gun of X-band klystron.
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