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Abstract 

A theory for a system clustering under gravitational interaction is developed for 

b(n, T), ratio of gravitational correlation energy to twice the kinetic energy of 

peculiar velocities, in terms of a partial differential equation using thermodynamic 

technique. Various solutions of the differential equation relates b(n, T) with density 

n and temperature T of the gravitating system. The physical validity of various 

solutions of b(n, T) on the basis of certain boundary conditions and probability 

density distribution function is discussed. Results indicate that for single component 

systems the density distribution function of galaxy clustering depends 011 the specific 

combination nT-3. The theory also provides a new insight into gravitational 

clustering. 

Subject headings: Cosmology - galaxies: Clustering - hydrodynamics - method: 

Analytical. 
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Introduction 

The gravitational clustering of galaxies has played an important role in the 

evolution of the observed Universe. The presently observed clustering of galaxies 

suggests that their motions have been dominated by mutual gravitational dynamics. 

The non-linear clustering phenomenon is determined by physical process involving 

a lengthy and complex sequence of events. One approach for understanding such 

galaxy clustering in the Universe deals with the evaluation of n-particle correlation 

functions between galaxies. This can be done by solving system of Liouville's 

equations or BBGKY - hierarchy equations and have been discussed by many 

workers, e.g. Saslaw (1972), Inagaki (1976), Fall and Saslaw (1976) and Peebles 

(1980), etc. But BBGKY - hierarchy equations are too complicated to handle for 

higher order correlation functions. Hoovever, the lowest order, two-point correlation 

function, is useful for discussing the phenomenon of galaxy clustering which contains 

information on all the higher n-particle correlations in the full BBGKY - hierarchy 

(Peebles 1980, Zhan 1989, Zhan & Dyer 1989 and Hamilton 1993). An alternative 

simple and more effective statistical approach to two-point correlation functions 

for non-linear galaxy clustering has been developed first by Saslaw and Hamilton 

(1984) with the help of gravitational thermodynamic results. The physical validity 

of applying thermodynamic theory to the gravitational clustering of galaxies has 

been discussed on the basis of computer N-body simulations by Zhan (1989), 

Saslaw et al (1990), Itoh et al (1993), Saslaw & Sheth (1993). On the basis of 

the pairwise gravitational interaction of point masses, statistical homogeneity and 

quasi-equilibrium evolution, an analytical expression for the probability distribution 

function feN) of finding N galaxies in a randomly positioned volume V in terms of 

b, is given by (Saslaw & Hamilton 1984): 

(1) 

where N = 'it'V, 'IT is the average number density of the particles and b is the ratio 

of gravitational correlation energy, nrc, to the kinetic energy, ]{, of the peculiar 
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motions: 
We (2)

b = - 21{' 

The theory can be extended to obtain a non-linear velocity distribution function for 

quasi-equilibrium gravitational clustering in an expanding Universe (Saslaw et al 

1990). The value of b measures the influence of the two-particle correlation function 

for clustering in the non-linear regime. On the basis of certain physical arguments, 

Saslaw and Hamilton (1984) assumed a simple mathematical expression for bwith 

physical limits b = 0 (for the perfect gas) and b = 1 (for the hierarchical system). 

The extra-ordinary agreement of feN) with the computer N-body simultations and 

observed galaxy distribution leads to the expectation that it might be based on 

more fundamental considerations (Saslaw et al 1990). The importance of two­

particle correlation function (or b) on time is revealed by its simple relation with 

the expansion scale R of Universe (Sasiaw 1992). 

(3) 

where R. is constant given by initial state. In a recent paper Saslaw and Sheth 

(1993) studied details of the non-linear and time evolution of gravitational galaxy 

clustering. 

The value of b depends on the two-point correlation function which in turn is a 

function of density n and temperature T of the system in a grand canonical resemble. 

Thus it is valuable to understand the functional form of ben, T) and to derive its 

expression in terms of n and T from first principles to help in understanding the 

non-linear nature of the problem. It is the aim of the present paper to develop 

a theory for ben, T) in terms of nand T of the system by using gravitational 

thermodynamic relations. Firstly a partial differential equation is developed from 

the energy equation of thermodynamics in combination \vith the equation of state, 

taking gravitational interactions bet-ween particles int.o consideration. The solutions 

of the differential equation give the required analytical dependence of bon nand T. 

';Ve are interested in a solution vlhich satisfies boundary conditions of the system 

for clustering under gravitational interactions. The theory here is based on the 
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quasi-equilibrium hypothesis of thermodynamics. The N-body computer simulation 

results (Itoh et al1993) explicitly verify the basic assumption that thermodynamic 

theory applies to gravitational clustering of galaxies. 

This paper is organised as follows: In Section 2, the applicability of quasi­

Equilibrium hpothesis to galaxy clusters is discussed and then a partial differential 

equation is developed by using the energy equation and the equation of 

state of thermodynamics taking gravitational interaction between galaxies into 

consideration. The differential equation when solved gives a number of explicit 

solutions in terms of n and T. In Section 3, the physical validity of various solutions 

is established on the basis of certain boundary conditions and the probability density 

distribution function. Finally, in Section 4 the results are discussed. 

2. 	 Gravitational Thermodynamics 

2.1 The Quasi~Equilibrium approximation: 

The applicability of quasi-equilibrium thermodynamics to galaxy clustering was 

hypothesized Previously (Saslaw and Hamilton 1984, Saslaw 1985), and computer 

N-bogy experiments strongly confirm the applicability of this approximation (Itoh 

et al 1988, 1993). It is further supported by theoretical arguments (Saslaw 1992;, 

Zhan 1989; Zhan and Dyer 1989, Saslaw and Fang 1996). Since local clustering 

in the expanding Universe is generally faster than the expansion time scale, quasi­

equilibrium evolution seems to be a good approximation. The evolution can proceed 

approximately adiabatically through a sequence of equilibrium states. This has 

been tested by N-body simulation results (Itoh et al 1988), which show that 

relaxed evolution occurs through equilibrium states and applies to a wide range 

of conditions. The fact that the gravitational force does not saturate in gravitating 

systems means there is no inherent equilibrium. At first sight, quasi-equilibrium 

evolution may seem to be unpromising. However application of quasi-equilibrium 

approximation to the galaxy clustering has the following bases : 

1. 	 On relaxed scales, generally where the two point correlation function e(r) 2:: 1, 

the system has lost its memory of initial conditions. If these initial conditions 

were Poisson (or nearly so with no long range coherance) they would contain 

4 



minimal initial information. So evolution would take place from a relaxed state 

with no initial memory. 

2. 	The long range part of the gravitational field (mean field) is removed by 

the expansion. of the universe (Peebles 1980, Saslaw & Fang 1996), so the 

thermodynamics only involves the fluctuating short range component of the 

gravitational force. This expansion effectively subtracts off the mean field, 

leaving only the fluctuations in the force which create density fluctuations. 

3. 	Extremely condensed states (two point masses with rij --+ 0 which give 

an energy state -00 ) may occur, but they are very improbable for galaxy 

clustering since almost all clusters virialize, at least approximately. Therefore, 

these states do not contribute significantly to the thermodynamics. 

4. 	The time scale to develop local bound finite sub-systems is k which is"-J 

yGp 

less than the global dynamical relaxation time "-J --b=. 
yGpo 

5. 	It is possible to use the usual macroscopic thermodynamic variables U,S,V,N 

to describe the macroscopic state of these infinite statistically homogeneous 

gravitating systems. This is because their fluctuations over a grand canonical 

ensemble are sufficiently small that average values of these variables are well 

defined. 

6. 	 There is a time-dependence to the thermodynamics, represented by 

macroscopic variables, including b(t), which changes over the Hubble time scale 

or longer (Saslaw 1992). This time dependence is slow enough that when the 

locally relaxed regions respond to it, they retain their description in terms 

of thermodynamic variables (eg. fluctuations remain relatively small). This 

is the usual condition for ordinary non-equilibrium thermodynamics to apply 

(!{reuzer 1986). 

7. 	 Some standard thermodynamic approaches (eg. Callen 1985) take the 

some\\That circular but consistent view that if the properties of a system agree 

with thermodynamic theory (as the N-body simulations and observations of 

the galaxy distribution functions sho\\T) then it is effectively in equilibrium or 
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for gravity in quasi-equilibrium. 

2.2 Energy equation and two-particle correlation function 

The fundamental energy equation expresses the internal energy of the system as a 

function of the various thermodynamic variables defining the system. Consider an 

infinite system of N single component particles (galaxies) distributed homogenously 

in a volume V having internal energy U arid pressure P. 

In general P, V and T are related by P = P(V, T) and U(V, T) for fixed N and by 

the relation: 

dU = (:~)dV + (:)dT (4) 

Combining the first and second laws of thermodynamics with the above equation 

and apply the condition that entropy is a perfect differential leads to the energy 

equation (Landau and Lifshitz 1981) : 

(au) _T(ap) _P (5)av T,N - aT V,N 

The energy equation in combination with the equations for state for a 

gravitating system determines the properties of the system and can be used to 

derive a partial differential equation for b(n, T) in tenns of density and temperature 

of the system. We assume galaxies to be point masses \vhich are interacting pairwise 

gravitationally. The internal energy U and pressure P are related to the two-particle 

correlation function (Saslaw 1985, Sheth & Saslaw 1996) by: 

3
U = -NT(l - 2b) (6)

2 

and 
NT 

P=-V(l-b), (7) 

where b measures the influence of gravitational correlation energy We and is related 

to the two-particle correlation function e(n, T, r) by 

(8) 
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here ii = (N/V) is the average number density. The kinetic energy K of peculiar 

motion· is related to" temperature T (in energy units with Boltzmann's constant 

k = 1) by: 
3 1 N 

K = -NT = - LmVi2 (9) 
2 2 i=l 

The value of b(n, T) depends on the form of two-particle correlation function 

2e(n, T, r) and it was shown that e ""-I r- over a finite range maximises the 

gravitational entropy of clustering (Saslaw 1980). Thus specifying the correct form 

of b as a function of n and T is essential in understanding the thermodynamics. 

Saslaw and Hamilton (1984) assumed a mathematical form of ben, T) on the basis 

of three arguments: (i) scale invariance of b(n, T) , (ii) the entropy as a total 

differential, and (iii) mathematical simplicity 

Without using such approximations here, our maJn concern IS to develop a 

differential equation for b in terms of n and T from basic principles. This can 

be done by using thermodynamic energy equation in the equation of state. The 

combination of equations (6) and (7) in (5) leads to a first order partial differential 

equation: 

(10) 

The solutions of this partial differential equation can relate b(n, T) to the density 

and temperature for the gravitational galaxy clustering. The partial differential 

equation can be solved using standard method (Sneddon 1985), and admits 

b(n, T) = f(nT- 3 ) (11) 

as its general solution. The choice of f gives different particular solutions for b(n, T) 

in terms of nT-3. We are interested in a solution which satisfies the boundary 

conditions of the system for clustering under gravitational interactions. One solution 

of the differential equation (10) is 

({3nT-3y~ 
b(n, T) = -1"";'+-(-{3-n-T"';"--3)-a (12) 

where {3 is a positive constant. 
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Here Q is an integer, Q = 1,2,3...... , and for 0' = 1, the equation (12) leads exactly 

to the assumed expression of ben, T) by Saslaw and Hamilton (1984). Fig. 1 shows 

how b varies with nT-3 for different values of 0'. 

Next we derive various thermodynamic quantities such as the entropy, chemical 

potential, specific heat and fluctuations for some solutions of b{n, T). We confine 

our results for the solutions of ben, T) given by equation (12). The entropy, specific 

heat at constant volume Ct) and chemical potential J.L can be obtained from the 

thermodynamic relations (Landau and Lifshtiz 1981) 

(13) 

Ct) = ~(aU) (14)
N aT TN, 

and 
u s W 

(p.IT) = NT - N + lv' (15) 

where the grand canonical potential "p is 

"p = -PV = -N(I- b) (16)
T 

The use of equations (6), (7) and (12) in (13) and (14) gives S and Ct) for the system 

governed by the two-particle correlation function related to b by : 

(17) 

Ctl = "23 
[1 + 2(30' - l)b - 6ab2 

]. (18) 

The critical value of b at which the specific heat becomes nega.tive is given by 

(30' - 1) + J90: 2 + 1 
be = . (19)

60' 

For 0: = 1. be = 0.8604(Saslavl &, Sheth 1993). and for 0: = 2.be = 0.9236 etc. 
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The chemical potential (p,/T) can be calculated by the use of equations (6), (16) 

and (17) in (15) 
12(p,/T) = In(nT-3

/ ) - b+ -In(1 - b) (20) 
Q 

Next, we calculate mean square number and energy fluctuations in a given volume 

governed by grand canonical ensemble from the relations (Callen 1985) 

2 
2 _ N 2 N 2_ 8 "p I (21)< ~N >-< > - < > - 82(p,/T) T,V' 

2 
U2AU2 U 2 8 "p I (22)< u. >=< > - < > = - 82(1IT) ,

T,V 

which give number, ~uctu~tions ~d energy fluctuations for the values of b(n, T) 

given by equation (12) 
2 N (23)<I::::.N >=(I-b)(l-ob) 

and 
AU2 3NT2[5 - 2(9 + o)b + 2(8 +90)b2 - 20(5 + 30)b3 

]
<u. >=----~--~--~----~--~------~--~~ (24)

4(1 - b)(l - ob) 

Saslaw et al 1990 modified the earlier (Saslaw and Hamilton 1984) assumed 

expression for ben, T) using the more general form : 

q>(b) 
(25)n(l - b) = (3T-3' 

where q>(b) can be choosen as an arbitrary function of b which satisfies two 

conditions. First, q>( b) = 0 for b = 0, and secondly the Poisson limit bq>(b) - q>' (b) = 
O. The condition of the 'Poisson limit' is determined on the basis of the standard 

two-point correlation function (Landau and Lifshitz 1981) 

1 J J 1 [(I::::.1\T)2 ] (26)V2 ~12d"'idV2 = N N - 1 

The term on the right-hand side is due to the mean square number fluctuation and 

is given by equation (23). 

3. Physical Validity of Various Solutions 
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The partial differential equation (10) has number of solutions for ben, T) in terms 

of n and T. We can investigate the physical validity of these solutions on the basis 

of: 

(a) 	Boundary conditions to be fulfilled by the two-point correlation function for 

gravitational galaxy clustering. 

(b) 	Probability density distribution functions. 

3.1 	 Boundary Conditions 

Two-point correlation function of gravitational galaxy clustering can be assigned 

certain boundary conditions. A physically valid solution of ben, T) should satisfy 

the following five boundary conditions which are summarised in Table 1 for different 

solutions. 

(1) 	The gravitational clustering of galaxies in a homogeneous Universe requires 

ben, T) to b,e scale invariant. One can express this boundary condition on the 

hierarchical scale as n ----+ A-3n and T ----+ A-I T, so b( A-3 n , A-IT) = b(n, T), 

where A is a scalar multiplier. All the solutions comply with this scale invariance 

condition (Table 1). The scaling of temperature indicates that clusters at a 

higher level of the hierarchy ~ave lower random velocities relative to each other 

than smaller clusters have relative to each other (Saslav'." and Hamilton 1984). 

(2) 	When the two-particle correlation function increases or b ----+ 1, the galaxies 

become more and more clustered. This is because of virial equilibrium, which 

suggests that at low temperatures and high densities more strongly bound 

clusters are formed. This boundary condition requires that b ----+ 1, when 

nT-3 --+ 00, and is satisfied by all solutions except I in Table 1. 

(3) 	As b ----+ 0, the entropy of the ensemble must tend to a 'Maxwellian gas' 

distribution i.e. S - In ( Nt:/2 ) + So. This boundary condition is satisfied 

only for b(n~ T) given by III for all values of 0:. 

Two more boundary conditions which ben, T) must satisfy are based on the general 

description of b (Sasla.V\" and et alI990). These conditions are based on equa.tions 

(25) 	and (26). 
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(4) 	If b = 0, then ib(b) = 0, which implies that the ensemble represents a perfect 

gas. This condition is a modified form of boundary condition 3. One can see 

that this boundary condition is satisfied only by III for any value of Q. 

(5) 	The last boundary condition demands that for the Poisson limit bib' - ib = O. 

It is interesting to note that no solution of ben, T) except 0 = 1 satisfies this 

condition. It corresponds to the assumed expression for ben, T) of Saslaw and 

Hamilton (1984). 

3.2 	Galaxy distribution function 

It is found that the first four boundary conditions are satisfied by the solution of 

the partial differential equation given by equation (11) for any value of Q. The 

last boundary condition 5 is satisfied only for Q = 1, which corresponds to the 

Poisson limit. For values Q > 1, the mean square number fluctuation expression 

< ~N2 > is negative which is an unphysical result. This would give a Poisson 

limit equation (26) for Qt > 1 which would require that the integral of the two point 

correlation function be negative instead of the Poisson value of zero. Now we would 

like to investigate, what the Poisson limit means for Qt < 1 for gravitational galaxy 

clustering on the basis of density distribution function. SaslaV\T and Hamilton (1984) 

derived an elegant and simple form for the probability distribution, which is given 

in equation (1). The probability distribution function for finding N-galaxies in a 

volume V of arbitrary shape is given by 

_ _.,p ell/TN (e.,p)~N) 
feN) - e N! ' (27) 

(N) 
where tP and (fliT) are given by equations (16) and (20) respectively. ( e

V' ) 0 is 

given by 

( eti,)(N) = {( c; T)NeXP[1/'J(ell/T)]} 	 (28) 
o de / 	 ePo/T=O 

We can calculate (eV,)~N) for a feV\r values of N from the relations: 

(29) 
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and 

( )11/1 (3) _ { '" -3p./t [( dtj; )3 _ ( dtP )2 ( dtP ) ( 
e 0 - e e d(p,fT) 3 d(J1./T) + 3 d(J1./T) 

dtP 3 
) (tPtP) d tP ]}+ 2 ( d(J1./T) - 3 d(J1./T)2 + 3 d(J1./T)3 e",/T=O' 

By use of equations (12), (16) and (20), we have following relations: 

Vb l / o 

tP = /3' (1 _ b)-I+I/O' 

b e- p./T = _/3'_T~3/_2e_ 
bl / o ' 

dtP Vb l / o 

= ,
d(J1./T) /3' (1 _ b)I/O 

tPtP 'Vb l / O 

d(J1./T)2 = /3' (1 - ab)(l - b)I+I/O' 

and 
d3tP Vb l / O(l + a 2b - 2a2b2) 

d(J1./T)3 = /3' (1 - ab)3(1 - b)2+1/0 ' 

where 

with the use of equations (32) to (36) in (29) to (31), we ha.ve 

for all values of 0' 
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(30) 

U-tP..1'2 ) 

d(J1./T)2 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 



For b = 0, we have 

for 0'=1 (40) 

=00 for 0'<1 (41) 

Similarly, we have 

/ 0 

( tP) (3) _ [ Vb1 13T9/2 3b{ V3 

e 0 - efi '(l-b)-1+1/0 {3 e {313(1 _ b)3/o 


1/o 1/0V2 3(0' + l)b1
- - 3ab2- V [(0'2 _ 1)bl - 2/o 

+ {3'2 (1 - ab)(1 - b)1+2/0 + {3' .. (42) 
2/o 2/o+ (0'2 + 60' + 2)b2- - a(2O'2 + 9a + 6)b3­

2+ 20'2(20'2 + 3W-2 /<> - 5O'3bs- / 
Q] /(1- O'W(1 - b)2+1/Q }] b=O 

giving limiting values at b = 0, we have 

for a < 1 
(43) 

=00 fora < 1. 

For a = 1, one can calculate the general term of (etP)~N) and arrive at the same 

results for the feN) distribution function given by equation (1). But it is interesting 

to observe that for a < 1, (e'") :2) onward diverges. Thus the distribution function 

does not converge for values other than a = 1. The function should be differentiable 

at all points and possess derivatives for all orders. For a < 1, the derivatives at b = 0 

become infinite at higher orders and if a = 1, the situation is saved. Thus it can be 

concluded that the partial differential equation has only one solution which satisfies 

all the boundary conditions and gives a distribution function which converges for 

b= O. 

4. Discussion 

On the basis of quasi-equilibrium approach it is possible to use thermodynamics 

to derive a simple partial differential equation \'vhich must be satisfied by 

the distribution function of galaxy clust.ering. The solution of this partial 
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:Literential equation determine ben, T) with density and temperature having Specific 

;'Jmbination of nT-3. Several solutions do not satisfy' all the physical boundary 

'~)nditions for b(n, T) but all the solutions satisfy the scale invariane of b(n, T). 

,i\lost of these boundary conditions are satisfied by the partial differential equation. 

The important unsatisfied condition is that in the Poisson limit the System should 

behave like an ordinary 'Maxwellian gas'. Also the mean square number fluctuation 

< ~N2 > becomes negative (unphysical) for other solutions except for b(n, T) given 

by 
fjnT-3 

b(n,T) = fj T 3 (44)1+ n ­

This is further confirmed by the density contribution feN) which diverges for values 

other than b(n, T) given above. The divergence is shown from the derivation of 

f(N) distribution function. The higher order coefficients in the distribution function 

become infinity for any solution other thatn b(n, T) given above. Thus we can assign 

the Poisson limit (b --+ 0) as an essential boundary condition for the distribution 

function to be satisfied for gravitational clustering. A wide range of class for 

solution of b = f(nT-3) in terms of functions like trignometrical, hyperbolic and 

polynomials etc. do not satisfy all the physical boundary conditions and analyticity 

of distribution function. 

The main results found here are summarised as follows : 

(1) 	The galaxy distribution function for gravitational galaxy clustering depends on 

the density n and temperature T. It depends on the specific combination of 

nT-3. This combination gives a scale invariants form of b(n, TJ, thus satisfying 

the condition of statistical homogeneity in the expanding Universe. 

(2) 	Among various solutions of the partial differential equation for ben, T) in the 

distribution, the only solution of the differential equation which satisfied all 

the boundary conditions of ben, T) is that given by eq. (44). 

(3) 	The mean square fluctuations become negative for other solutions except for 

b(n, T) given by eq. (44). 

(4) 	The distribution function converges only for ben, T) given 'by eq.(44) under the 
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limiting condit ins b --+ 0 which corresponds "to Poisson limit. Thus the Poisson 

limit is an essential boundary condition which the distribution function must 

satisfy. 

(5) 	The expression assumed earlier by Saslaw & Hamilton (1984) for b(n, T) is now 

derived from more basic theory, thus removing it as an independent an$atz. 

This further strengthens the foundation of their theory. 
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Table 1 


Boundary Conditions for two-point correlation function. 


b= 

Boundary 

Conditions 

(1) n ~ A-3n , 

I 
1 + {jnT-3 

satisfied 

II 
{JnT- 8 -1 
(JnT-3+1 

satisfied 

III 
{J( nT-S)CII 

I+p(nT-3)CII 

satisfied for all values of a 

T ~ A-IT then 

b(A-3n , A-I T) = b(n, T) 

(2) As nT-3 ~ 00, not satisfied 

then b ~ 1 

satisfied satisfied for all values of a 

(3) As b ~ O,then not satisfied 

S "J In ( Nr;/2 ) + So 

not satisfied satisfied for all values of a 

(4) q,(b) = 0 

for b = 0 

not satisfied not satisfied satisfied for all values of 0' 

(5) bq,' (b) - q,(b) not satisfied not satisfied satisfied only for 0' = 1 

0 
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............ a = 

____ a= 3 


10 


o 
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Figure Caption: 

Fig. 1. Variation of b with nT-3 for different values of Q • 
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