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Abstract 

\Ve study the evolution of the power spectrum of gravitational potential during the nonlinear 

clustering in an n = 1 matter dominated phase. N-body simulations suggest that the potential 

does not evolve in time even in the quasilinear phase for an n = -1 power spectrum. For 

n = -2, the potential evolves in the quasilinear phase but not in the extreme nonlinear phase. 

Becauase of these facts, the evolution of the gravitational potential in spectra like CDM is less 

than what would have been expected naively. We discuss a class of CDM like models in which 

such an interesting conspiracy between the amplitude and local index occurs. 
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1. Introduction 

The driving force behind the formation of large scale structures in the universe is the 
gravitational field produced by inhomogeneities. Overdense regions accrete matter at the 
expense of under dense regions allowing inhomogeneities in the universe to gro\v. At scales 
with L ~ H-l where H = (a/a) it is essentially this process which allows small initial 

inhomogeneities to grow into structures like galaxies, clusters etc. Further, observations 

suggest that the material content of the universe is dominated by dark matter which 

may be considered to be made of collisionless elementary particles. In that case, the 

gravitational force is dominated by these particles and, to first approximation, we can 

ignore complications arising from baryonic physics. The evolution of inhomogeneities is 

then governed purely by the gravitational force. 

It is, therefore, intersting to ask the question: How does the gravitaional potential in 
the universe evolve as structures form? In addition to the inherent academic interest, this 
question has two other facets to it. 

To begin with, we note that the gravitational potential 'P (a,x) due to inhomogeneities 

is governed by the Poisson equation 

\l2cp = 41rGpba2o = ~H~no (D (1) 

where E(a, x) is the density contrast and Pb is the background density. [This equation is 
valid in the limit of L ~ H-l where L is the scale we are interested in. Such a description 

is quite adequate for the study of nonlinear structure formation.] When the perturbations 

are small and the linear theory is applicable, C ex: a if no = 1 and the universe is matter 

dominated. [If no =1= 1, the gravitational potential undergoes slow evolution during the 

linear regime that can be computed using linear theory. In this paper we shall concentrate 
on the no -:- 1 model.] Hence the nontrivial evolution of gravitational potential takes place 
only in the nonlinear phase. Because of this reason the study of growth of gravitational 

potential offers a direct diagnostic of the nonlinear dynamics. 

The second aspect is the following: Sometime back the authors have suggested an . 
approximation scheme for the study of gravitational dynamics called "frozen potential 
approximation" [Bagla and Padmanabhan, 1994; this was also suggested independently by 

Brainerd et aI, 1993]. Comparison of this approximation scheme with N-body re~ults shows 

that it works well in the quasilinear regime and provides a reasonably accurate information 
about velocities. In fact, for certain class of spectra this scheme works unexpectedly well, 
showing that the average effect of growth of gravitational potential is not as important as 
one would have naively imagined. ThiJ requireJ an explanation. In particular, one would 
like to know whether there exists a class of spectra for which gravitational potential does 

not evolve significantly even in the nonlinear regime. We shall address these questions in 
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this paper. 

In principle, the question of evolution of gravitational potential can be settled in 
a straightfor~d manner by running suitable N-body simulations. However, such an 
approach does not provide one with an intutive understanding of the results. Because 
of this reason we shall follow a more indirect route in this paper which, it turns out, 
produces results that are equivalent to the N-body simulations (to the accuracy we want). 
This approach is based on the observation that numerical simulations suggest a simple 
relationship between the mean relative pair velocities of particles v (a, x) and the· mean 

correlation function [Ca,x) at the same epoch and scale [Hamilton et al., 1991]. The mean 
correlation function (a, x) is defined as 

x 

e(a,x) = :3 Je(a,y) y2dy (2) 
o 

Let h (a, x) = [-v (a, x) / ax] be the dimensionless relative pair velocity at the comoving 
scale x at the epoch a. Then, following Nityananda and Padmanabhan [Nityananda and 

Padmanabhan, 1994] we postulate that h Ca, x) is a universal function of {(a, x) evaluated 
at the same epoch and scale; that is 

h(a,x) = Q [e(a,x)] (3) 

where the fWlction Q can be well approximated by 

C3:!€5 (for [ :5 38) 

h (e) = (Jo.) -0.23 (for 385 e< 100 ) (4) 

exp ( ~o) (for 100 < e) 
It can be shown that [Nityananda and Padmanabhan, 1994] this result allows one to express 
the true mean correlation fWlction e(a, x) in terms of the correlation function in the linear 

theory {L (a, 1) as 

- (2 Jtca,X) dq ) (5)~L(a,l)=exp 3" h(q)(l+q) 

where 1 = x [1 + [(a, x)] 1/3. For the fWlctional form in (4) the relation between e(a, x) 

and eL (a, I) can be well approximated by [Hamilton et al., 1991] 

- x + O.358x3 + 0.0236x6 

(6)~ (a, x) = 1 + O.0134x3 + O.00202x9 / 2 
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where x = eL(a, 1). In other words, one can find the nonlinear evolution of the correlation 
function and related quantities from the linear theory using the above ansatz. It is, how
ever, possible to produce a still simpler fitting function which captures the essence of this 

formula: [Bagla and Padmanabhan, 1993] 

(for eL < 1.2, e< 1.2) 

(for 1.2 < eL < 6.5, 1.2 < e< 195) (7) 

(for 6.5 < eL, 195 < e) 


As we shall see, this simple form allows one to understand clearly the effects which are 
operating at different scales. It is apparent that evolution of density contrast is generically 
characterised by two different scales: At about eL ~ 1 the deviations from linear theory 
begin to manifest itself. The second scale occurs around eL ~ 6 [with e~ 200] when we 

expect virialised structures to form and separate out from the overall dynamics. These 
two scales are characterised by the different slopes in (7). For the sake of definiteness we 

shall call the three regimes linear, quasilinear and nonlinear. 

Before proceeding further, we would like to make some comments regarding the ac
curacy of the above ansatz. This relation was first obtained by Hamilton et aI., based 

on N-body simulation data of Efsthathiou et al [ Hamilton et al., 1991; Efstathiou et al., 
1988]. In the original paper, it was claimed that the relationship is reasonably good and 
valid at all epochs and for all spectra. Recently, this relation has been tested by more 
accurate simulations with larger dynamic range [Padmanabhan et al., 1995]. The results 

of this paper suggests that the "universality" is only approximately valid. The form and 

asymptotic limit of h has a weak spectrum dependence and the asymptotic value is lower 
for spectra with more small scale power. However, this analysis also shows that the devia
tions from the universality are small and are at about 20% level. To this level of accuracy, 

one can use the above ansatz. The accuracy can, of course, be easily improved by fitting a 

more accurate [spectrum dependent] curve to the results. We shall not do so, since the key 
idea of this paper is only to develop a simple physical picture of growth of the gravitational 
potential. 
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2. The Gravitational Potential and Force 

The results in (6) and (7) relate the mean correlation funtion for density perturbations 
in the linear and nonlinear regimes. To obtain the information about the gravitational 
potential from this result, the most direct approach for studying the evolution of gravi

tational potential is the following: The correlation function C (a, x) for the dimensionless 
gravitational potential '¢ (a, x) =(2/3) Ho -200 -1 'to (a, x) defined as 

C(a,x) = (,¢(a,y+x),¢(a,y))y (8) 

is related to the matter correlation function e(a, x) by the relation 

(9) 

where we have assumed that C (a, x) = C (a, x). The above equation follows immediately 
from the fact that the power spectra for density and potential are related by a factor 
k4 in the fourier space. Given a correlation function in linear theory one can use (6) or 

(7) to obtain the nonlinear correlation function; integrating equation (9) we can find the 

evolution of correlations in gravitational potential. While integrating this equation, one 
can use the linear theory results at very large scales to obtain a unique solution. By 
fourier transforming the correlation function one can obtain the power spectrum of the 
gravitational potential. 

It is, however, possible to simplify the above procedure by using the following fact: For 
spectra which vary sufficiently smoothly, the quantity ~2 (a, k) = [k 3 P(k) (a, k) /21l"2] at 
k ~ x-I behaves in a manner very similar to e(a, x). So, instead .of finding the correlation 
function of potential by integrating (9) and then obtaining the power spectra by fourier 

transforming, one can directly use the ansatz (6) in the fourier space to obtain the power 
spectrum of gravitational potential. [A similar relation has been suggested by Peacock 
and Dodds [Peacock and Dodds, 1994] for evolution of ~2. As this relation is almost 
identical to (6) for n = 1, we use (6) to obtain the nonlinear power spectrum. In their 
paper P~acock and Dodds make cautionary remarks about the applicability of (6) for 
spectra with n < -1. However the key results described in this paper depend only on the 
characteristic behaviour in the quasilinear and nonlinear regime as described in (7), which 
are seen in simulations of all spectra of physical interest.] 

Such a simplification, of course, needs to be justified. We have used both methods 

and ascertained that the deviations are not significant in regimes of interest. 

In addition to the gravitational potential we also investigate the evolution of the 
gradient of the potential, g (a, x) = - V'¢ which is more directly relevant in determining 
the dynamics. The correlation function for g(a,x) is a six-component object but we shall 
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concentrate on the scalar 

D (a,x) =(g (a,y + x).g (a,y)) (10) 

The power spectrum associated with D (a, x) is related to P (a, k) by a k2 factor. It is 

easy to see that D (a, x) and e(a, x) are related by the equation 

1 dD (a, x) 
x dx = 

1 e ( a, x)
-3 a 2 

(11) 

This can be integrated readily to obtain D(a,x). A comparison with the linear correlation 

DL(a,x) is useful for estimating validity of quasilinear approximations at a given scale 

and epoch. Largest scale for which the change is above tolerance limit provides a natural 
criterion for validity of approximation schemes like frozen potential. Such a criterion can 
also be used to select a smoothing scale for truncated Zeldovich approximation. The 
comments made above regarding C are also applicable to D. 

3. Conclusions 

We shall now present the results of our analysis. We first consider pure power law spectra 

knfor density with linear power spectrum P (k) ex and n = 1,0, -1, -2. For sake of 

uniformity all of these are normalised to give 0'8 = 1 .at a = 1 with a gaussian window 
function. Initial power spectra for density and potential are P6 (a, k) = Aa2 kn; P¢ (a, k) = 

4Akn - with 

47t"2(8/h)(3+n) 

A= r[(3+n)/2] 

Figures 1a and 1b give the evolution of D..¢(k) and D..g(k) for n = 1 spectrum. Curves 

are plotted for five epochs a = 0.1, 0.25, 0.5, 1, 2. With our normalisation we expect the 

scale of 1 = 8h-1 Mpc to go nonlinear around a = 1. We see that at the nonlinear end 

D..¢(k) and D..g(k) change by a substantial amount, though the change here is less than the 
corresponding change in density correlations. Figure Ic gives the evolution of .6.(k) during 
the same epochs. 

The results for power law spectra, of course, can be presented in a much more mean
ingful way. Our basic aim is to look at changes in potential in the nonlinear regime. For 
this, we should plot D..¢ and D..g as a function of D..L(k), the linearly evolved power spec
trum for density fluctuations. Since there is no intrinsic scale in this problem, we expect 

this curve to evolve in a self-similar manner. Figures 1d and Ie show these plots for n = 1 

spectrum. It can be shown below that D..¢(k) is a time independent function of D..L(k) (see 
below), this implies that curves corresponding to different epochs will coincide, as shown 
in figure Id. 
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The self similar scaling of these curves can be understood in the following manner. 
Consider ~.p(k), it is related to the power spectrum of density fiuctuations as 

(12) 


We know that for power law spectra, power spectrum of density fiuctuations must be a 
universal function of [k / knl(a)] where knl (a) is the scale that is going nonlinear at the 
epoch a ; say, the scale at whic~ ~(k) is unity. This is also true of the linearly evolved 
power spectrum. If we can express ~tP(k) in terms of a self similar function of [k/knl(a)] 
and a, we would have obtained the relevant scaling. By rewriting (12) we obtain 

(IS) 

We have used the fact that knl ex an+3 in deriving the scaling. Similar relation can also 
be derived for ~g(k), 

1 (knl)2 m~g(k) = a2k!, ~(k/knl) T ex a-2n+ f(k/knl). (14) 

Here we notice an interesting fact : for n = 1, ~.p(k) is a nonevolvingfunction of [k/kn1(a)]. 
Similarly for n = -1, ~g(k) is a time independent function of [k/kn1(a)]. 

Figures 2a and 2b give curves corresponding to figure Id and Ie for n = 0 spectrum; 
since this contains the relevant information we have not plotted graphs corresponding 
to figures la, Ib and lc in this case. The two scales, corresponding to quasilinear and 
nonlinear regime, are apparent in the graph. 

We get our first surprise in the ?ase of n = -1 spectrum, shown in figures Sa and Sb. 
We now see that the evolution follows linear result even in quasilinear regime, all the way 

up to ~(k) ~ 20! In figure Sb, ~g(k) has been plotted for all the epochs mentioned above 
but as ~g(k) is a time independen~ function of ~L(k), the curves fall on top of each other. 
The corresponding evolution of density contrast is shown in figure Sc by plotting ~(a, k) 
vs. ~L(a, k) at the same scale. It is seen that the nonlinear evolution follows the linear 
evolution closely upto ~(a, k) ~ 20. [As far as the authors know, this fact has not been 
specifically noted previously in the literature.] This fact shows that n = -1 spectrum 
[corresponding to the isothermal density profile of p ex x-2 ] is rather special; for this 
spectrum, linear theory results have a ,validity which is beyond its legitimate domain. 

It is, of course, possible to demonstrate this more explicitly using the fitting law in 
(7). ,For a powerlaw spectrum with index n, we ~an explicitly calculate the scaling relation 
with a using this and we find that 

(for 1 « e:5 200 ) 


(for 200 < e) (15) 
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This shows that if n = -1, then eex: a2 even in the quasilinear regime. It is not clear how 
significant this result is and whether it is possible to provide a simple analytic argument 
to prove the same. [This issue is currently under investigation.] 

Figures 4a and 4b give the results for n = -2. We see that there are deviations from 

linear theory in quasilinear regime but nonlinear evolution is similar to the linear one. 
This, of course, is a consequence of the scaling mentioned above. This ;-esult, taken in 
isolation, is not too interesting because: (i) the evolution in the quasilinear regime changes 
the amplitude, thereby making concrete predictions difficult and (ii) the result could be 

obtained trivially from the stable clustering argument applied to self-similar evolution. 
Figure 4c shows analogue of figure 3c for this spectrum. 

But the above two results [for n = -1 and -2] taken together lead to an interesting 
"conspiracy" for a certain class of power spectra. To see this consider a power spectrum 
which has an index -2 in the nonlinear regime and -1 in the qusiliJ;lear regime. In the next 

instance, all the scales will grow in proportion to the expansion factor all the way from 
the strongly nonlinear regime to the linear regime. If we now smooth the spectrum and 
arrange its curvature such that the above condition is also [at least approximately] satisfied 
in the next instance, then the linear evolution will last longer. For such a spectrum, the 
gravitational potential will evolve very little. 

Of course, this requires conspiracy between the slope and amplitude of the power 
spectrum at different scales. Surprisingly enough, CDM like spectra do have such a. con
spiracy built in to some extent. Figure 5c shows the local index of the COBE normalised 
CDM spectrum as a function of the density contrast, as the spectrum evolves. In order 

to maintain approximate constancy of the gravitational potential, the index should stay 
around -2 for ~2 ~ 200 and around -1 for ~ ~ ~2 ~ 200. Figures Sa, 5b and 5d give the 

corresponding curves for different values of r for a CDM like spectra parametrised as 

P(k) = Ak (16)
[(1 + bk + (ck)3/2 + (dk)2) "] 2/11 

Here b, c and d are functions of r. [We are following the parametrisation of Efstathiou et 
aI., 1992]. It is usually claimed that r = 0.2 is a good fit to observations. We see that the 
conspiracy is stronger for smaller values of r as the nonlinearities reached for these spectra 
are much lower than for spectra with high r. The evolution of C and D for these spectra is 
shown in figures 6a, 6b, 6c and 6d. In each figure we give the curves for a = .1, .25, .5, 1,2. 
All the spectra are normalised to COBE. We see that the potential can be treated to be 
approximately constant [say, to 10 percent accuracy] up to scales of 2h -1 M pc at a = 1.0 
in the standard CDM. For the "best-fit" case of r = 0.2 there is no appreciable change in 
~1/J(k) upto a = 1. However, if we compare models at the same level of nonlinearity at a 
scale of Ih-1Mpc then spectra with higher value of r fare better. This can be understood 
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by plotting the power spectrum on the n - 8 plane [ See fig.5]. It is seen that for small r, 
the spectrum is flat and the physically relevant scales enter the nonlinear regime almost 
simulateneously, killing the conspiracy of indices and amplitude to some extent. However, 
for large r, power spectrum is steeper and the region with n = -2 is well into the nonlinear 
regime when scales with n = -1 are in the quasilinear regime. On the other hand, spectra 
with large r have stronger nonlinearities as compared to models with small r, leading to 
smaller variations in .pCk). Another feature worth noting in Fig.5 is that for these spectra, 
a large range of scales develop a similar index, indicating power law correlations in that 
range of scales. 

The results show that in hierarchical clustering models, two different factors combine 
together in deciding the evolution of the gravitational potential. Smaller scales reach the 
quasilinear and nonlinear phase at an earlier epoch and if their indices are appropriate, 
their growth rate becom~s similar to that of linear evolution. On the other hand the 
curvature of the spectrum helps to bring in the right scale at the right amplitude. In real 
life, of course, all these are of only approximate validity; but it illustrates a very interesting 
dynami~al aspect of the nonlinear gravitational clustering. By and large, the gravitational 
potential seems to be a rugged entity in the hierarchical models changing less than what 
might have been anticipated by naive arguments. 

JSB would like to thank CSIR India for the Senior Research Fellowship. 
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Figure Captions 

Fig. 1a: Power spectrum for gravitational potential is plotted as a function of scale. 

Curves have been plotted for PoCk) = Akn with n = 1 at five epochs, a = 0.1, 0.25, 

0.5, 1, 2. At the left end, lower curves correspond to later epochs. 

Fig. 1 b : Power spectrum for gravitational force. Spectrum and epochs are same as 


in Fig. 1a. 
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Fig.Ie : Growth of Power spectrum of density fluctuations. Spectrum and epochs 


are same as in Fig. la. 


Fig.Id : Power spectrum for potential is plotted against linearly extrapolated fluctu


ations in density. The dashed curve corresponds to the expected behaviour in linear 

theory. The dashed curve has been plotted for a = 2. Spectrum and epochs are same 


as in Fig. la. 


Fig. Ie : Power spectrum for gravitational force. All other details are same as Fig. 

ld. 


Fig. 2a: Same as Fig. ld but for n = O. 


Fig. 2b : Same as Fig. Ie but for n = O. 

Fig. 3a: Same as Fig. ld but for n = -1. 


Fig. 3b : Same as Fig. Ie but for n = -1. 


Fig. 3e: Nonlinear.power spectrum for density is plotted against linearly extrapo

lated power spectrum at the same scale for n = -1. Dashed line corresponds to linear 


behaviour. Notice the almost linear evolution of the nonlinear density contrast upto 

6.(k) ~ 20. 


Fig. 4a: Same as Fig. ld but for n = -2. 

Fig. 4b : Same as Fig. Ie but for n = -2. 


Fig. 4e: Same as Fig. 3c but for n = - 2. Here the nonlinear density contrast 


deviates from the linear density contrast in the quasilinear regime. However, in the 


nonlinear regime, both the curves are parallel to each other. 

Fig. 5a: The power spectrum of density perturbations is plotted on the n - 6. plane 


for CDM spectrum with r = 0.2. Curves have been plotted for five epochs, a = 0.1, 


0.25, 0.5, 1, 2. 


Fig. 5b : Same as Fig. 5a but for model with r = 0.35. 


Fig. 5e : Same as Fig. 5a but for model with r = 0.5. 


Fig. 5d : Same as Fig. 5a but for model with r = 0.7. 


Fig. 6a: Same as Fig.1a but for CDM, r = 0.2. 

Fig. 6b : Same as Fig.1b but for CDM, r = 0.2. 

Fig. 6c : Same as Fig.la but for CDM, r = 0.35. 

Fig. 6d : Same as Fig.lb but for CDM, r = 0.35. 

Fig. 6e : Same as Fig.1a but for CDM, r = 0.5. 

Fig. 6f: Same as Fig.lb but for CDM, r = 0.5. 

Fig. 6g: Same as Fig.1a but for CDM, r = 0.7. 

Fig. 6h: Same as Fig.1b but for CDM, r = 0.7. 
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