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Weiner filtering a signal from a noisy detector output is 
a well known technique and is envisaged to be used in the 
detection and analysis of gravitational waves emitted during 
mergers of compact binaries consisting of neutron stars or 
black holes as their components. Even though a Weiner filter 
is the most optimal linear filter there is a necessity for the 
development of computationally less intensive and/or statis­
tically independent strategies of detection. In this paper we 
have investigated the feasibility of a technique called peri­
odogram analysis vis a vis Weiner filtering. We find that 
the two techniques yield the same signal-to-noise ratio are 

" ' computationally equally expensive and are statistically inde­
pendent. These results imply that in the detection problem 
one can use either a periodogram or a Weiner filter and if a 
signal is detected by both these techniques, one can be more 
confident about its presence. 

I. INTRODUCTION 

In a few years from now several interferometric grav­
itational wave detectors, two large scale interferometers 
in the US [lJ,. one large interferometer in Italy [2J and 
possibly a few more smaller ones elsewhere, are expected 
to become operational. A primary source for these detec­
tors is the gravitational radiation burst emitted during 
the coalescence of a compact binary system [3J. Except 
for binaries located in our own Galaxy, the raw ampli­
tude of these signals may not be large enough for the 
signal to be visible in the time-series above the detector 
noise. However, since the wave form from these sources 
can be modeled very accurately it is possible to enhance 
the signal-to-noise ratio by employing special data anal­
ysis techniques like optimal Weiner filtering [3,4J. In the 
time series one is comparing the signal power with that of 
noise while Weiner filtering essentially allows us to com­
pare the energy of the signal with that of the noise. This 
is achieved by correlating the detector output with a fil­
ter which in the Fourier domain is a copy of the signal 
weighted by the noise power spectrum. The signal when 
present in the data train would correlate very well with 
such a filter while the noise on the average does not, so 
that the filter in effect efficiently picks up all the signal 
power without picking up the noise power as efficiently. 
As a result there can be a tremendous enhancement in 
the signal-to-noise ratio. For example, at a distance of 
about 100 Mpc, the first generation of VIRGO and LIGO 
detectors might observe coalescing binary events with a 
signal-to-noise ratio (SNR) ,.., 10 (see e.g. [5]) with the 

aid of matched filtering technique; and future "advanced 
detectors" could achieve very large SNRs indeed [6J. In 
practice we would not know when the signal arrives or 
what its parameters are so that it is necessary to cor­
relate each piece of data with a host of templates each 
corresponding to a different set of signal parameters and 
which together span the relevant range of parameters. 
When we use a discrete lattice of templates it is obvi­
ous that in general none of them will perfectly match 
an incoming signal and hence there will be a substantial 
drop in the signal-to-noise ratio. Moreover, it is crucial 
to know. the time evolution of the phase of the signal 
accurately as otherwise the template and the signal will 
go out of phase even when the parameters are matched 
[7-9J. Thus, the wave form needs to be computed by in­
corporating higher order general relativistic corrections. 
When these corrections are taken into account the pa­
rameter space of the signal acquires an extra dimension. 
This leads to a substantial increase in the number of tem­
plates, though by a judicious choice of signal parameters 
it may still be possible, for the purpose of detection, to 
work with the same number of parameters as in the low­
est order approximation of the wave form [10]. There 
have been efforts in the past in devising 'trigger' algo­
rithms that are computationally less intensive but such 
algorithms work at the cost of the SNR and thus with 
a substantial enhancement in the false alarm probability 
[IIJ. 

Signal analysis is thus a major component in the de­
tection of gravitational radiation and in the subsequent 
extraction of useful astrophysical information. It is there­
fore necessary to develop algorithms that are all as pow­
erful as matched filtering but complementary to one an­
other in the sense of being statistically independent so 
that the confidence level of detection improves substan­
tially. In this paper we propose an algorithm called a 
periodogram to detect gravitational radiation from coa­
lescing binaries which is complementary to the work of 
Smith [12]. Periodograms are routinely used by radio 
astronomers in enhancing the signal-to-noise ratio of ra­
dio signals from pulsars (13J. The basic idea of a peri­
odogram is' very simple: Suppose we have a sinusoidal 
signal present in a very noisy data. If we know the exact 
period of the sinusoid then we can fold the data after 
every cycle and in the folded data the sinusoid would 
keep building up in proportion to the number of foldings 
while the noise, being uncorrelated, builds up much more 
slowly - in proportion to the square root of the number 
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of foldings. Consequently if the signal lasts for n-cycles orbiting about each other in a circular orbit, induce a 

we would in effect increase the energy of the signal rel­ strain h(t) at the detector given by (see e.g. [3]) [15] 

ative to noise by Vii, Even when we do not know the 

exact frequency of the signal but are aware that its fre­ h(t) =N q(t) =N( 7r f(t»2 /3 cos [<p(t) + 4>] (1) 


quency lies in a certain range, we could successively try 
foldings at different time intervals corresponding to dif­
ferent interesting frequencies. We would eventually pick 
up the signal, whenever it is present, provided we ~ave a 
sufficiently large number of cycles. We can use the same 
technique in the case of gravitational radiation from coa­
lescing binaries but since the signal is not monochromatic 
we need to apply a modified version of the algorithm. 

The rest of the paper is organized as follows. In Sec. II 
we briefly review the nature of the gravitational radia­
tion emitted by coalescing binaries and introduce the no­
tations and conventions followed in the rest of the paper. 
In Sec. III we present the periodogram analysis for coa­
lescing binary signals and discuss various aspects o~such 
an analysis: The periodogram algorithm is presented in 
Sec. III A. In Sec. III B we define the detection strategy, 
compute the detection and false alarm probabilities and 
derive an expression for the signal-to-noise ratio obtained 
using this strategy. In order to estimate the computa­
tional costs of the periodogram in picking up arbitrary 
signals one. needs to understand how the signal-to-noise 
ratio falls as the parameters used in constructing the pe­
riodogram are mismatched with those of a signal. This 
will be presented in the latter half of Sec. III B. Nu­
merical implementation of the periodogram is presented 
in Sec. III C. 'We conclude Sec. III by estimating the 
computational-costs involved in using a periodogram. In 
Sec. IV we compare the periodogram with Weiner filter­
ing and show that the two techniques (i) yield the same 
signal-to-noise ratio, (ii) are computationally equally ex­
pensive and (iii) are statistically independent. The first 
two of these points imply that in the detection problem 
we can use either a periodogram or a Weiner filter and 
the last one implies that if a signal is detected by both 
these techniques then we can be more confident about 
its presence. In Sec. V we summarize the main results of 
our work. 

II. CHIRP WAVE FORM 

In this Section we briefly discuss the nature of the 
gravitational wave emitted by a binary system of stars, 
often called a chirp wave form, and collect formulas rele­
vant to the discussion of periodogram arid matched filter­
ing. No effort is made to cover the exhaustive literature 
that is now available on the accurate modeling of the 
in-spiral radiation from binary systems, taking into ac­
count higher order post-Newtonian corrections (see, for 
instance, Blanchet et al. [14]). 

In the quadrupole approximation, gravitational waves 
from a binary system of stars modeled as point masses 

where N is a constant for a given binary involving dis­
tance to the binary, its reduced and total mass, and the 
antenna pattern of the detector. The detailed form of N 
will not be of any concern in this paper; we choose N so 
as to normalize the energy of the signal in the frequency 
band of interest (see' eqn (6) below). The instantaneous 
gravitational wave frequency, equal to twice the orbital 
frequency of the binary, is given by 

f(t) = fa [1 -
t t] -3/8 
~c a , (2) 

where tc is a constant having dimensions of time 

t = ~M-5/3(7r.f )-8/3c 256 Ja, 
(3) 

and fa and 4> are the frequency and the phase of the 
signal, respectively, at t = ta. In the quadrupole approx­
imation the time-dependent phase of the wave form is 
given by 

\O(t) == 2.. 10' I(t)dt = 16..:.tc [1- (Ii:)) -6'3] . (4) 

We shall refer to the time elapsed starting from an epoch 
when the gravitational wave frequency is fa till the epoch 
when it becomes infinite, at which time the two stars 
would theoretically coalesce, as the chirp time of the 
signal. From equation (2) we see that tc is the chirp 
time. The phase of the signal (4) is essentially character­
ized by three parameters: (i) the time-oj-arrival ta when 
the signal first becomes visible in the detector, (ii) the 
phase 4> of the signal at the time-of-arrival and (iii) the 
chirp mass M = (p.3 M2)1/5, where p. and M are the 
reduced and the total mass of the binary, respectively. 
Note that at this level of approximation the phase (as 
also the amplitude) depends on the masses of the two 
stars only through the above combination of the individ­
ual masses. Consequently, two coalescing binary signals 
of the same chirp mass but of different sets of individual 
masses would be degenerate and thus exhibit exactly the 
same time evolution. 

We end this Section by defining the scalar product of 
wave forms. Given two wave forms g(t) and h(t) their 
scalar product is defined by 

h) = [00 u(f)'h* (f) df( (5)
g, - Sn(f)1_00 

where Sn (f) is the two-sided detector noise power spec­
tral density and u(f) = J~oo g(t) exp(27rift)dt and 
h(f) =J~oo h(t) exp(27rift)dt, are the Fourier transforms 
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of the wave forms get) and h(t), respectively. A wave 
form is said to be normalized if its norm computed using 
the above definition of the scalar product is unity. We 
refer to normalized wave forms as signals of unit strength. 
The normalisation constant for signals of unit strength is 
given by 

(h, h) =1 ::::} N =(q, q)-1/2 . (6) 

Consistent with the above definition, a signal set) of 
strength So is given by 

set) =soh(t); (s, s) 1/2 =80, (7) 

where h(t) is a normalized wave form. We will now see 
how the periodogram works. 

III. PERIODOGRAM 

In the Introduction we briefly mentioned the idea of 
a periodogram and indicated how it may be applied to 
sinusoidal signals buried in noisy data. Radio signals 
from a pulsar are periodic in the rest frame of the pulsar 
but an observer at Earth receives a Doppler modulated 
signal due to the relative motion of the pulsar and the 
Earth. Consequently, one cannot fold a pulsar signal at 
regular intervals. However, since we know the motion 
of the Earth to a good degree of accuracy it is possi­
ble to correct. for Doppler modulation by an appropri­
ate resampling of the data so that the resampled data . 
would contain pulses at regular intervals. In this case 
one complication for data analysis is that the Doppler 
modulation depends on the location of the pulsar, being 
the least for pulsars located along the Earth's spin axis 
(and not zero, since Earth's motion about Sun and Moon 
might still contribute significantly). Thus, while search­
ing for unknown pulsars one has to try several Doppler 
de-modulations. 

For gravitational waves from coalescing binaries, 
Doppler modulation of the signal due to Earth's mo­
tion could be very crucial, especially at low values (""" 
10-40 Hz) of the seismic cutoff since the integration time 
in that case could be """ few hours. However, for large val­
ues of the seismic cutoff the time scale over which a signal 
lasts, being at most a few minutes, would be too small 
compared to typical time scales in the Earth's motion. 
Even if this effect were neglected, chirp signals cannot be 
folded at regular intervals because of their intrinsic non­
periodicity. What one can do in this case is to initially 
sample the data at a very high rate and at regular inter­
vals and to then resample at a rate at which the phase 
of the signal is increasing. An appropriate resampling 
would render the signal to be periodic which can then be 
folded to enhance the signal-to-noise ratio. 

In this Section we discuss how a periodogram can be 
applied to non-monochromatic signals. In the first part 
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of this Section we present the algorithm, followed by a 
discussion of the power of the test, optimal SNR achiev­
able using this strategy and the ambiguity function which 
is a measure of the robustness of the algorithm. In the 
last two parts we discuss numerical implementation and 
computational costs concerning this. technique. 

A. Algorithm 

Let h(t; A) denote a chirp wave form of unit strength 
parametrized by A = (AI, A2,"" An). For the 
quadrupole wave form given by equation (1) the param­
eters are given by either the set A= (ta, C», M) or the set 
A = (ta, ell, te). We shall find the latter set to be more 
appropriate in our discussions below. If instead of t a 
new time variable r defined by 

_ <pet; A) (8)r = 21ffo ' 

where fo is an arbitrary constant having dimension of 
frequency, is used then the wave form (1) appears as an 
amplitude modulated, truncated cosine wave: 

h(t) ---. her) = Nf2/3(r) cos(21ffor + c»); 0 ~ r ~ re 

(9) 

where re is the chirp time in the new time coordinate 

B/ate 
re = r;r;-' (10) 

Such a transformation of the time variable which renders 
the chirp wave form as a sinusoidal signal was first con­
sidered by Smith [12] (see also the discussion in Schutz 
[4]). Our analysis differs from that of Smith from here 
onwards: Smith suggests Fourier analysis of the trans­
formed data while we construct a periodogram by folding 
data after each cycle and adding the resultant cycles. If 
for the moment we ignore that the amplitude of the chirp 
signal is increasing with time then the enhancement in 
the amplitude of the signal after repeated folding and 
adding is just the number of cycles Ncyc of the signal in 
the interval te. For chirp signals, Ncyc can easily be read 
off from equation (4): 

(11) 

The data from a detector will also contain noise so that 
the signal-to-noise ratio will only increase, as we shall 
see below, in proportion to VNcyc ' After obtaining the 
periodogram we can correlate it with a sinusoid of fre­
quency 10. The result of such an operation is the statistic 
on which we set a threshold to decide whether or not a 
signal is present in the detector output. It is to be ex­
pected that even when there is a slight mismatch in the 



parameters used in the time transformation equation (8) 
and those of the signal, the resulting periodogram will be 
close to a sinusoidal wave form. In Fig. 1 we have shown 
how the phase of a mismatched wave form develops rel­
ative to that of a perfectly matched one, as a function of 
r. We see that even when there is as much as a 20 ms dif­
ference in chirp times, the two wave forms have only gone 
out of phase by one cycle. This is reassuring since one 
does not have to use too many test values of chirp times 
in constructing a periodogram when we do not know the 
parameter values of the signal. We shall formulate this 
problem more precisely in Sec. III B. We now consider 
how the detector noise behaves when a periodogram is 
constructed and express much of the above formally. 

Let x(t) denote the detector output. Given x(t), we 
have two possibilities: x(t) is just an instance of noise or 
it contains a signal s(t;~) of strength So : 

')'. 

x(t) = { 	n(t), "in the absence of any si~nal, 
n(t) + s(t; A), when a signal is present. 

(12) 

We assume that the noise is a Gaussian random process 
of mean zero and covariance 

n(t)n(t') =(126(t - t') (13) 

where an overbar denotes the ensemble average. 
In the detection problem, x(t) is given and a decision 

has to be made about the presence or absence of a signal, 
irrespective of its parameters. If it is known that only one 
kind of signal'having parameters ~ occurs, then one could 
transform to a new time r = r.p(tj ~)/21r fa and fold the 
data over every increment 1/ fa in r(tj~) starting from 
r =0 till some r ~ re. From equations (9), (11) and (13) 
it follows that, if such a signal is present, the result will be 
a sinusoidal wave form of period 1/ fa embedded in white 
noise of variance ...jNcyc(j (cr. (16». But, in practice, the 
parameters of the signal are a priori unknown and it is 
necessary to transform the data to a new time coordinate 
r using a number of test parameters tA.b k = 1, ... n, 
which together span the range of signal parameters. For 
each tA, the operations of time transformation, folding 
and adding yield a periodogram, X(r; tA) [16]: 

Neye- 1 

X( r; tA) = L x (t( rj tA» n(r fa - j), 0::; r < 1/ fo, 
j=O 

(14) 

where n is defined by 

n(r~ _ ')= {I, ifjSr.fo<(i+l) (15)
JO J 0, otherwIse. 

In general the periodogram of the noisy detector output, 
constructed using a set of test parameters tA, will be: 
(a) white noise, if no signal is present 

X(rjtA) =N{r), N(r)N(r') =NCyc(126(r - r/)j (16) 

(b) an amplitude modulated sinusoid with an unknown 
phase <) embedded in white noise, if the test parameters 
tA happen to match the parameters ~ (up to a phase) of 
the signal actually present in x(t) 

X(rj tA) =N(r) + S(r), (17) 

where the periodogram S(r) is given by 

S(r) =NcycsoNA(r) cos(2rrfor + <)j (18) 
~ 

with A(r) the amplitude of the periodogram when its 
phase is 21r for computed by averaging the signal ampli­
tude over all the cycles: 

and 
(c) a non-sinusoidal wave form embedded in white noise, 

if there is a mismatch in the two sets of parameters. 


As we have argued earlier, for a small mismatch in the 
parameters, theperiodogram is still a sinusoid, possibly 
with a reduced amplitude and a phase different from the 
true phase of the signal. In Fig. 2 we have shown the 
development of the periodogram amplitude A(r), nor-' 
malized to.A(O), for the case of a perfect matching of 
parameters and for several values of the chirp time. In 
computing A(r) we have taken 95% of the total num­
ber of cycles. It turns out that the amplitude :if of the 
periodogram is roughly a constant though the signal am­
plitude is a function of time, rapidly increasing at times 
close to coalescence. The amplitude increase is larger, 
lower the chirp time. Even in the case of te = 1 s the 
increase is only about 1 %. 

This result follows from the fact that the signal am­
plitude does not change appreciably over one cycle and 
the periodogram amplitude is obtained by averaging the 
former over many cycles. 

B. Detection probability and ambiguity function 

The transformation from t ---+ r depends on the pa­
rameters of the signal we wish to detect. A mismatch in 
the parameters of the signal and those used in the trans­
formation causes the SNR to fall below the optimal value 
obtainable when the two sets of parameters are perfectly 
matched. As discussed earlier we would not know apriori 
what, the chirp time of the signal is nor would we know 
when it arrives. Consequently, we need to compute the 
periodogram and the corresponding SNR for several test 
values of the chirp time and for each piece of data. The 
issues we address in this Section concern the number of 
test values of chirp times we need to use for a given data 
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train and size of step in the time-of-arrival we can afford 
without an appreciable loss in the SNR. 

Let us first consider the simple case of a family of sig­
nals, all having the same parameters til and te but dif­
fering in <t - the initial phase. Then the signal detec­
tion problem, after obtaining the periodogram, reduces 
to that of detecting a sinusoid of unknown phase in white 
noise. As has been mentioned before, the most optimum 
strategy in such a case is to perform matched filtering 
[17]. But the phase of the sinusoid being unknown, a 
search in <t will have to be performed. This, however, 
does not imply that periodograms for all <t between 0 
and 211' are required, for the following reason. The peri­
odogram will yield a sinusoid of unknown phase 

SeT; <t) 	 = So cos(211'loT +<t) 
= So [cos<tcos(211'IoT) ~ sin <tsin(211'IoT)] 

(20) 

where So = NcycsoNA.. Thus, the signal to be detected 
is just a linear combination of two orthogonal vectors 
cos(211'IoT) and sin(211'IoT). Hence, only the projections 
of the periodogram onto these two are required and a 
sum of their squares will yield the desired correlation. 
Therefore, the detection statistic required is 

(21) 

which must be compared with a threshold Go, where 

[1//0
Co(X;~) =Jo X(T) coS(211'/OT(t; ~»dT, (22) 

1//0 

Cl(X;~) = X(T)sin(211'/OT(t; ~»dT. (23) 
/.o . 

The statistic G(~) is not a Gaussian random variable any­
more. Its probability distribution functions po(G) and 
Pl(G), in the absence and the presence of the signal are 
the well known Rayleigh and Rician distributions, respec­
tively, [18]; 

G )(G2 
po(G) =-exp -- G~O (24)0'2, 20'2, 

(25) 

where 0'; is the variance of the statiatics Co and C t given 
by 

(lIla 
0': = Ncyc0'210 C08

2(2w/OT(t; '\»dr. (26) 

(i/lo

10 cos2(211'/oT)dT. (27) 


The false alarm and the detection probabilities, which 
are just the integrals of Po(G) and P1(G) from G = Go 
to 00, are given by 

Qo(Go) = exp (- ~~) 	 (28) 

Z2 + p2)Qtl(Go) = [00 exp ( 2 Io(zp)z dz. (29)
JGolqfl 

Thus p is the SNR for this strategy. For p =0 , the detec­
tion and false alarm probabilities become equal. Altough 
p is equal in magnitude to the SNR of the optimal strat ­
egy for detecting a signal of known phase, the functional 
forms of Qo and Qtl are different for the latter. Only 
for high p (~ 6) are the operating characteristics nearly 
identical for the two cases (for details, see [18]). 

An a priori knowledge of the distribution of the pa­
rameters, assumed in the above, will not be available of 
course. The most optimum strategy then is to construct 
periodograms for a set of test values t'\ of the parame­
ters, compute the corresponding G(t'\) and find the val­
ues of parameters m'\ which maximize G. If the maximum 
crosses a preset threshold then a detection is announced. 
The corresponding parameters are measured values of the 
signal parameters. At this point a word of caution is in 
order: The best estimate of the actual signal parame­
ters need not be m'\ because of correlations which exist 
among the errors in ta , te and <to Thus, even though a 
mismatch in ta alone will reduce G, a mismatch in te 
along with ta may cause a lesser reduction. In fact, such 
correlations help us as far as just detection is concerned 
by reducing the number of points in the parameter space 
that need be sampled in a search. In order to determine 
whether the values measured in this way give an unbiased 
and minimal uncertainty estimate it would be necessary 
to compute the distribution of the measured values. We 
relegate this important problem to a future work. 

Sampling is unavoidable as it is impossible, in prac­
tice, to perform a search over the continuum of the ta-te 
space. Thia means that there will always, in general, be a 
mismatch between the parameters used in constructing a 
periodogram and thoee of the actual signal which may be 
present. Hence, we must consider now a detection strat ­
egy which uses not the true parameters but a slightly 
mismatched set. The signal-to-noise ratio for such a de­
tection strategy can be computed in a manner analogous 
to that of the case treated above and it turns out to be 

(12 + (J2 ) 1/2
(p{,\,,\) = 0 f (30)

0'., 

10(%) is the modified Bessel function of the fint kind of where ,\ are the true parameters, ,\ are the ones used to 
order zero and, construct the periodogram and 
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(31) 

(32) 

Here S(Tj~, t'\) is the I'eriodogram of the signal 8(t;~) 
constructed using a set of test parameters ,'\ not nec­
essarily matched on to the signal parameters ~ and 
hence it need not be a sinusoid. The spacing between 
the sample points can now be fixed if a requirement is 
placed that every signal must have a detection probabil­
ity Qd ~ some Qd,min. The lower bound on Qd places 
a lower bound on p(~,,\) say K. Thus, the sample points 
must be chosen in such a way that every point on the 
ta-te plane falls within a p neighborhood, of radius K, 

of at least one sample point. Fig. 3 shows the contours 
of equal p(~,,\) computed for values of the periodogram 
parameters ta = 0 sand te = 0.8 s, using a range of 
values of the signal parameters -0.01 s :5 ia :5 0.01 s 
and 0.79 s :5 ie :5 0.81 s. In obtaining this figure we 
have chosen an upper frequency cutoff Ie =500 Hz. At 
this cutoff more than 93% of the cycles are extracted. 
We have normalized p to unity at ia = ta and ie = te. 
The innermost contour corresponds to p(~,,\) = 0.95 and 
the value of p(~,,\) reduces by 0.05 for successive outer 
contours. The innermost contours are closely approxi­
mated by ellipses. Area of an ellipse at a level K < 1 
gives area in the parameter space which the periodogram 
under consideration spans by obtaining on the average 
an SNR greater than K times the optimal SNR. These 
ellipses are contours of what is known as the ambiguity 
function in the theory of microwave communication. 

Since the ellipses are quite eccentric a particular pe­
riodogram spans a relatively large range of one of the 
parameters (either ta or te) while a finer spacing will 
be necessary in the other direction. To be more spe­
cific, if the semi-major axis of an ellipse gives the span 
of a periodogram, say, in the direction of the chirp time, 
then the semi-minor axis gives its span in the direction 
of the time-of-arrival. For instance, by choosing It =0.95 
we can afford a spacing of 10 ms in the time-of-arrival 
while the spacing in the chirp time can be no more than 
about a ma. Finally, we would like to remark that we 
obtain roughly the same behG....ior of p(~,,\) irrespective 
of what value we use for '\. This means that the area in 
the parameter space spanned by any periodogram will be 
independent of the test values of the parameters that are 
used in constructing it. 

c. NumerIcal ImplementatIon 

In data analysis problems we do not deal with a con­
tinuous signal but only a set of ita discrete samples. Let 
6 denote the sampling interval (i.e. the constant interval 

6 

between two consecutive samples) and {Xi} the n sam­

ples of the detector output %(t) : 


Xle == %(tle)j ti == k6j k = 0, ... , n - 1. (33) 

In the presence of a signal whose samples are 81t we have 

(34) 

where nle are the samples of noise. Transforming to a 
new time variable r and sampling the detector output 
uniformly in the transformed time variable means that 
we resample the data train at non-uniform intervals in 
terms of t. In what follows we denote the samples of the 
detector output (and other quantities) taken at uniform 
intervals A in the new time coordinate T using an upper 
case Latin index. With this notation the detector output 
sampled uniformly in T and in t are denoted by {XK}, 
K =0, ... , N -1 and {%Ie}, k =0, ... , n-1, respectively. 
We first estimate the sampling rate I, =6-1 needed in 
order to construct the samples {%K} from the samples 
{%Ie}. Whenever a signal is present in the detector output, 
let us suppose we intend to have p points per cycle (p ~ 2) 
in T. If we choose the detector upper frequency cutoff to 
be Ie then we must at least have I, = PIe. This means 
that at lower frequencies I < Ie we will have more than 
P points per cycle in t. Consequently, the set {%K} will 
contain fewer points than the set {%Ie}j i.e. N <: n. For 
Ie = 1 kHz and P= 8, I, = 8 kHz. Using the time 
transformation eqn (8) it is straightforward to deduce 
that the samples {%K} are related to {ZIe} by 

"'K = "'j; j 	 (35)= I [t:] , 
where I[ ] denotes the nearest integer of the quantity 
enclosed and tK is given by 

KA)8/S]
tK =ta + te 1- 1- Te . (36)[ ( 

It is to be noted that the equality between %K and Xj 

is only an operational one and will be exact only in the 
limit when we have infinitely many samples in t. Having 
constructed the samples {%x} from the samples {%It} we 
next consider the periodogram of the set {%x} by fold­
ing it after every P samples and adding all the resultant 
Ncrc cycles. The resulting quantity is the (discrete) pe­
riodogram denoted by X A , 

Nc7c-l 

XA= 	 E %,K+Ai A=O, ... ,p-l.< (37) 
K=O 

If we express the detector output in terms of noise plus 
the signal we get the analog of eqn (34) 

(38) " 



where the N A and SA are periodograms of the noise and and using (40) we obtain 
the signal, respectively, given by 

{Co - (;0)2 ={Cf - (;f)2 =o-2Neycp/2. (48)
N cyc -l N cyc-l 

NA = 	 E npK+A; SA = E SpK+A. (39) With the aid of the above expressions in (46) the SNR p 
K=O K=O is found to be 

It is straightforward to see that for noise n. with covari­
ance matrix ninj = tT26ij the corresponding matrix of 
the periodogram of noise is given by 

(40) 

Suppose a chirp wave form with chirp time tc arrives 
at the detector at time i". When the test parameters ta. 
and tc (equivalently, TC) in eqn (36) perfectly match the 
parameters of the signal then the periodogram will be a 
single sinusoidal cycle of arbitrary phase: 

SA = NcycsoNAcos(211'A/p+~) (41) 

where A is given by the discrete analog of expression (19). 
The normalization condition (6) in the case of white noise 
now translates to 

tTf;f
N=- -	 (42)A pNcyc ' 

where we have made use of the fact that the periodogram 
amplitude is roughly a constant. The statistic used for 
detecting such a signal, as discussed in the last section, 
is constructed out of the correlations Co and Ci of the 
periodogram XA with two sinusoids differing in phase by 
;r/2 

p-l 

Co = E XA cos (211'A/p) ; (43) 
A=O 


p-l 


Cf =L XA cos (21rA/p + 11'/2). (44) 
A=O 

Using the random variables Co and C i we can define the 
signal-to-noise ratio via 

1/2 
p= ( C~+C\ ) (45) 

where 

On substituting the expreuion for the. periodogram of a 
chirp wave form of strength BO (cf. eqn (41» we get 

(Jo =BotrVNc'lcp/2COlIll; (Jf =BotrVNqcP/2sinlll; 

(47) 

p= So· 	 (49) 

Thus the signal-to-noise ratio obtained is simply equal to 
the strength So of the signal itself. We shall later see that 
in the case of matched filtering too the SNR obtained is 
the same. In the next Section we compute the number 
of floating point operations involved in carrying out the 
periodogram analysis. 

D. Computational costs of periodogram 

In the previous sections we have seen how the SNR 
drops as the parameters used in constructing a peri­
odogram are mismatched with those of a signal. The 
ambibuity function discussed in Sec. III B allows us to 
make a specific choice of test parameters for a given value 
of te - the extent to which we allow the SNR to fall due 
to the discrete nature of the set of parameters used in the 
detection. For a chosen value of te, the number of distinct 
periodograms np required in spanning a given region of 
the parameter space is roughly the total area of that re­
gion divided by the area of the ellipse All: corresponding 
to the value of te. If the region of interest is a rectangle 
of sides A.A. then 

(50) 

For instance, if we take te =0.9 then the area enclosed 
by the corresponding ellispe (cf. Fig. 3) is Ao.9 ::::; 2.6 X 

1O-5s2 • For tc E [0,4] sand ta E [0, 12] s the number of 
periodograms required - 2 x 106 . 

We now estimate the number of floating point oper­
ations per periodogram. If all the cycles are used in 
the analysis then the number of additions required are 
p x Ncyc , where p is the number of points per cycle in 
r(t; tA). The number ofmultiplications required are much 
less at 2p and can be neglected in an order of magnitude 
calculation. For the range of the chirp time used above, 
the average number of additions required are 

1 /." 8/G te dt- --p e 	 (51)
4 0 5 

For p = 8 the number of additions required is 2560 . 
Therefore, the total number of floating point operations 
NpG required in making a periodogram analysis of a data 
train 12 s lonl is 

NpG =np x 2560 =5 x 108 • (52) 
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IV. COMPARISON OF MATCHED FILTERING 
AND PERIODOGRAM 

In the foregoing Sections we have seen how to con­
struct a periodogram, how many test values are needed 
in spanning the astrophysically relevant parameter space 
of chirp wave forms and what the computational costs 
involved are. In this Section we first discuss these as­
pects in the case of matched filtering and then indicate 
how the periodogram fares when compared to matched 
filtering. 

The statistic used in the matched filtering technique 
is the correlation of the detector output with a family 
of templates corresponding to different values of the pa,­
rameters. The SNR p obtained for a signal s(t) using 
an optimal Weiner filter is simply the norm of the signal 
computed using the definition of the scalar product (5). 
Thus, the optimal SNR achieved for a signal s(t), is its 
strength So itself [19,6]: 

1/2P =( s,s) =So. (53) 

Thus, the optimal SNR both in the case of periodogram 
and matched filtering are the same. 

In the case of a Newtonian wave form it turns out that 
there is essentially only one parameter, viz the chirp time, 
for which Weiner filters are to be constructed explicitly; 
the time-of-arrival being taken care by the fast Fourier 
transform and the phase of the signal being extracted an­
alytically using a two dimensional basis (see, for instance, 
ref. [4,19].) The templates required in chirp time can be 
determined by studying the behavior of the scalar prod­
uct (cf. eqn (5)) of two chirp wave forms as a function 
of mismatch in their parameter values. Recall that the 
scalar product C(~, t.A) of two chirp wave forms g(t; t.A) 
and h(t;~) is given by 

(54) 

Here ~ can be thought of as the parameters of a signal 
while t.A those of a template. Then C(~, t.A) is the SNR 
obtained using a template whose chirp time is not nec­
essarily the same as that of the signal. For simplicity 
we assume that the wave forms are of unit norm. Thus, 
C(~, t.A) =1, if ~ =t.A and C(~, t.A) < 1, if ~ =F t.A. In the 
stationary phase approximation the Fourier transform of 
the Newtonian chirp wave form for positive frequencies 
is given by [3,19,6] 

6h(f) =Nf- 7
/ exp [it ",.(f)A. - ii] (55a) 

k=1 

where N is related to the normalisation 'constant N of 
the signal and 

.,p1(f) =27rf, (55b) 

.,p2(f) =1, (55c) 

.,ps(f) =27r f _ 167r fa + 67r fa (L) -SIS • (55d) 
5 5 fa 

For f < 0 the Fourier transform is computed using the 
identity h(- f) = 'h- (f) obeyed by real functions h(t). 
With the above expression for the Fourier transform the 
SNR (54), using (5), takes the form 

00 f-7/3 [ 3 ,] 


C(.6o.A) oc 0 Sn(f) cos ~ .,pk(f)A.Ar df (56) 

/. 

where .6o.A =~ - t.A. In the stationary phase approxima,­
tion the SNR is independent of the individual parameter 
values of the signal and the template: For all signal­
template pairs that have the same differences in times 
of arrival, phases, and chirp times one obtains the same 
SNR. Consequently, constancy of the distance, measured 
using the scalar product (54), between two nearest neigh­
bor filters translates into the constancy of the distance, 
measured using the difference in their parameter values. 

C(.6o.A) traces out a three-dimensional surface as ~e 
vary A.A. Since the time-of-arrival and the phase of tlfe 
signal are not of relevance let us consider the curves 
C(te, t~) obtained by maximizing C(.6o.A), over ta. and 

, ~ and varying the chirp time of the signal relative to t~e :; 
template. The- curves so obtained are plotted for white 
noise (Le. Sn (f) =const.) in Fig. 4, for templates of dif­
ferent chirp times by varying the chirp times of the sig­
nal. For the astrophysically relevant range of the masses: 
of the two stars (say, MI , M2 E [O.5,10j M0 ) and for 
fa. = 100 Hz, te E [12,0.08] s. In Fig. 4 the chiIp time is 
only varied over a portion of its relevant range. 

How does one go about choosing the templates for the 
purpose of filtering the detector output? Let us start 
with the curve C(th, te) corresponding to the left most 
template. (In what follows and in Fig. 4 C(t~, te) de­
notes the curve corresponding to the kth filter.) As the 
chirp time of the sigpal mismatches with that of the tem­
plate the correlation function drops monotonically and 
at a 'distance' A+th from the first template it falls to a 
value, say, It < 1. The chirp time tb of the second tem­
plate is chosen in such a manner that for a signal of chirp 
time th + .6o+tb, it too obtains an SNR equal to It. With 
such a choice it is clear that all signals with their chirp 
times in the range [th - .60_#::, tb + .6o+t~] will.Blhave 
an SNR ~ It. In general, we require 

C(t~, t~ + .6o+t~) =C(t~+1, t~+1 - A_t~+1) = It (57) 

where .6o+t~ (.6o_t~) denotes the increment (decrement) 
in the chirp time of the kth template at which the corre­
lation drops to a value It. Since the correlation function 
only depends on the difference in chirp times and not on 
their absolute values (cf. equation (56)) we must have 
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where n J is the number of templates. Let us now com­

Consequently, a constant spacing 6.tc between filters will 
do the job of uniformly covering the parameter space. 
As in the case of the periodogram if we allow for a drop 
IC = 0.9 in the SNR then the spacing between filters has 
to be 6.tc = 5 ma. In order to span the astrophysically 
interesting range of chirp times [0.08, 12] s we will need 
approximately 2 x 2400 templates where a factor of 2 
arises since two filters for the parameter ~ are needed for 
every filter corresponding to tc [19]. 

The computational cost of matched filtering has to be 
now ascertained. In the case of matched filtering we need 
only count the number of operations per filter and then 
multiply it by the total number of filters since, as opposed 
to periodogram, we do not explicitly have templates for 
the time-of-arrival. Given the samples Ok and qk of a data 
train and a filter, respectively, the discrete correlation Ck 
of the data train with the filter is given by 

N-l 1 N-l 

CI: =E 0jqi+k = N E o,q; exp (21rilk/ N). (59) 
j=O '=0 

Here k is the lag, 0, = 2:f:Ol okexp(-21rilk/N) and 
q, =2:::01qk exp(-21rilk/N) are the discrete Fourier co­
efficients of the detector output and filter, and the second 
equality in (59) follows from the discrete correlation the­
orem. From this we see that the only computational cost 
involved in Weiner filtering is the inverse Fourier trans­
form of the correlation since one stores the Fourier trans­
forms of the templates, and the forward Fourier trans­
form of the data is only computed once, the costs of mul­
tiplication being unimportant. The number of floating 
points operations involved in the fast Fourier transform 
is roughly 3N log2 N. 

Since in the discrete correlation formula (59) it is im­
plicit that input functions are periodic while in reality 
they need not be, we get spurious correlation for lags 
not equal to zero. As a result the correlation appar­
ently needs to be separately computed for every value 
of the lag. Fortunately this problem is circumvented by 
padding templates with zeroes, at the cost of a slight 
increase in the number of computations, so that correct 
correlation is obtained at least for a subset of values of 
the lag. Schutz [4} has shown that the optimum solution 
to the conflicting requirements of reduction in aliasing 
and reduction in the number of floating point operations 
involved in FFTs is to pad 75% of a template with ze­
roes. Padded templates give correct correlation for lags 
equal to the extent of padding. Consequently, if the data 
train is T s long with optimal padding we obtain correct 
correlation only for lags equal to 3T/4. The number of 
floating point operations in the case of matched filtering 
NMF is 

NMF = nJ x 3N log2 N (60) 

pare the computational costs of Weiner filtering and peri­
odogram for the example quoted in Sec. III D. In the case 
of matched filtering in order to obtain the correct corre­
lation for a 12 s long duration it is necessary to process a 
data train that is 16 s long. For a sampling rate of 2 kHz 
we get N =216 and for tc E [0,4] s we get nJ =1600, 
giving NMF = 2.5 X 109• We have seen in Sec. III B that 
in the case of periodogram the total number of floating 
point operations required to analyze a data train 12 sec­
onds long is '" 5 x 109 ; the periodogram being computar­
tionally at worst a factor 2 more expensive than Weiner 
filtering. However, for this extra cost it introduces some 
flexibility in the analysis of gravitational wave data with­
out sacrificing the detection probability. In the case of 
matched filtering, in order to save on computation time, 
all the templates have to be computed once and for all 
and stored. Thus, the memory requirement for their stor­
age is pretty large though not beyond what the present­
day computer-technology can offer. However,'due to the 
large memory which the templates occupy there is a con­
siderable amount of burden on the system bus in transfer­
ing data from and to CPU which can consequently slow 
down the computational speed. Moreover, if one decides 
to change the set of filters amidst a certain analysis all 
the requisite filters have to be re-generated. Periodogram 
has the advantage over Weiner filtering in these two as­
pects: It calls for no extra storage space apart from the 
(finely sampled) original data set. If a change in the 
set of test values of parameters and/or their numbers is 
required, say due to higher order ,post newtonian correc­
tions, then it cali be trivially achieved by redefining the 
resampling rates appropriately. The latter feature may 
prove useful for the case of Doppler de-modulation. If 
detailed simulations do show that periodogram is indeed 
as powerful as Weiner filtering in picking up weak signals 
then we should keep in mind some of its additional ad­
vantages. At worst periodogram analysis can be used as 
an independent statistic, as we will argue below, to in­
crease confidence in a detection and to cross verify values 
of the parameters estimated. 

Analogous to the random'variables Co(X(T)j~) and 
C,;:(X(T); ~), in the case of matched filtering too we will 

have two random variables, say, '7o(x(t); ~), '7'11'/2(x(t);~) 
corresponding to cortelations of the data with templates 
of phase 0 and 1r/2, respectively. Since the resampling 
for folding will be nonuniform, the intersection of the set 
of samples picked up for folding and the corresponding 
set for matched filtering will have a small number of el­
ements. It is expected, then, that in the absence of a 
signal, 

Citik < 1; i, k E {0,1r/2} (61)

JCr '7' 

for white noise. This implies that the statistic obtained 
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from a periodogram is independent of that obtained from 

matched filtering. When the detector output consists 

only of noise then statistical independence means that a 

false alarm in the Weiner filtered output does not nec­

essarily imply a false alarm in the periodogram based 

decision. Thus, the false alarm can be brought down if 

both the statistics are used in conjunction. 


v. CONCLUSIONS 

The use of matched filtering for the detection of grav­
itational wave forms emitted by in-spiraling binaries, 
though the optimum strategy, is computationally very ex­
pensive. The problem would be aggravated when higher 
order PN corrections are taken into account. Though it 
has been shown that one can get around this problem by 
a judicious choice of filter parameters, at least up to the 
L5PN level, the inclusion of higher order corrections may 
increase the number of templates quite a lot. A further 
increase in the number of templates required may come 
about when the seismic cutoff in the interferometric de­
tectors is pushed down to a few Hertz. This will enable 
a larger integration time but will also make it necessary 
to correct for Doppler shifts due to the relative motion 
of the source and the Earth. 

Therefore it is important to search for detection strate­
gies which satisfy the twin requirements of being compu­
tationally less intensive than matched filtering but having 
a signal to noise ratio comparable with it. These two cri­
teria may happen to be inconsistent with each other. We 
are not aware of such a result and hence feel the need 
to investigate every potential strategy individually. Our 
efforts in this direction led us to consider periodogram 
analysis as a serious candidate. Our analysis is restricted 
to the detection of Newtonian chirps embedded in white 
noise. We report the main results of this work below. 
(a) The enhancement in signal to noise ratio obtained 
in periodogram analysis is the' same as in the case of 
matched filtering 
(c) The detection statistic used in periodogram analysis 
is statistically independent from that used in matched fil­
tering. This implies that if both the statistics are used, 
then the confidence level of a detection can be increased. 
This result is strictly valid for the case of white noise 
and needs to be investigated further when the noise is 
colored. 
(c) As far as computational costs go, periodogram turns 
out to be as expensive as W finer filtering. The typical 
number of operations required 5 x 109 for 12sec of f"o.J 

data whereas the corresponding number is 2.5 X 109 
f"o.J 

for matched filtering. The main reason is that for the 
periodogram, the resampling and folding of the data train 
has to be done for every value of the time-of-arrival used. 
While in matched filtering, the in verse transformation of 
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the Fourier domain filter output takes care of the time­
of-arrival in one go. 

Another strategy which may fulfill the two objectives 
outlined above is the one suggested by Smith. Though 
we have not investigated the computational cost of this 
strategy in any detail, we expect that it will, at the least, 
be as expensive as periodogram analysis. This is be­
cause the problem of resampling the data train and sub­
sequently processing it for every time-of-arrival is present 
here too. The number of operations for every resampled 
set is Nlog2N where N is the number of points ob­f"o.J 

tained on resampling. This is to be compared with - N 
operations in the case of periodogram analysis. 

It may be possible to reduce the computation involved 
in matched filtering by employing an efficient search al­
gorithm, in parameter space, for the global maximum 
of the statistic instead of a serial search. In practice, 
there may exist several local maxima, the number and 
positions of which will depend on the specific realization 
of noise. Since the existence of local maxima degrades 
the performance of such search algorithms, their efficacy 
in this case needs to be investigated. Another approach 
with some promise is the use of a warped wavelet basis 
as far as the detection of chirps is concerned. Also, in 
this paper we do not address in any detail the problem 
of parameter estimation in the context of a periodogram. 
This is an important problem since the power of this 
technique would be fully tested only after we have the 
covariance matrix of errors. These issues will be taken 
up in a separate paper [20]. 

ACKNOWLEDGEMENTS 

It is a pleasure to thank the members of the gravita­
tional wave group at IUCAA, especially R. Balasubra­
manian, and Sanjeev Dhurandhar for many useful dis­
cussions. S.D.M. is supported by a CSIR fellowship. 

[1] 	A. Abramovici, W.E. Althouse, R.W.P. Drever, Y. 
Gursel S. Kawamura, F.J. Raab, D. Shoemaker, L. Siev­
ers, R.E. Spero, K.S. Thorne, R.E. Vogt, R. Weiss, S.E. 
Whitcomb and M.E. Zucker, Science, 266, 325 1992 ...sc, 

[2] 	 C. Bradaschia, R. Delfabbro, A. Dlvirg io, A. Giazotto, 
H. Kautzky, V. Montelatici, D. Passuello, A.Brillet, O. 
Cregut, and et.al. Nucl. Ind. A., 289, 518 1990. 

[3] 	 K.S. Thorne, in 900 Years of rav.tat.on, .W. Hawking 
and W.Israel (eds.), (Cambridge Univ. Press, 1987). 

[4] 	 B.F. Schutz, in The Detection of Gravitational Radiation, 
edited by D. Blair (Cambridge, 1989) pp 406-427. 

[5] 	A. Krolak, J.A. Lobo and B.J. Meers, Phys. Rev. D, 43, 
2470 (1991). 

http:rav.tat.on


[6] 	L.S. Finn and D.F. Chernoff, PUs. Rev. D 47, 2198 
. P993l, 

[7] 	C. Cutler, T. A. Apostolatos, L. Bildsten, L. S. Finn, E. 
E. Flanagan, D. Kennefick, D. M. Markovic, A. Ori, E. 
Poisson, G. l. Sussman and K. S. Thorne, Phys.~ 

.or Lett. 70. 2984 (993). 
[8] 	R. Balasubramanian and S. V. Dhurandhar, PhX!l. Rev. 

D 50. 6080~. 
[9] K. D. Kokkotas, A. Krolak, and G. Tsegas, Class. Quan­
._J.um-Gza.t4..lJ.,..1901 (199~. ­

[10] B. S. Sathyaprakash, ~!!.l~:-!.tev. DAD R71I1 19 
[11] 	R. Flaminio, L. Massonnet, B. ours, S. Tieeot, D. 


Verkndt, M. Yvert, Astro article Ph.~~ics,~,t~~§_i~~_9.~l: 

[12] S. Smith, Phys. Rev. D, 86, 2901, 1987. 
[13] 	A.G. Lyne, in Gravitational Wave Data Anal",;" edited 

by B.F. Schutz (Kluwer, Dordrecht, 1989), pp. 95-103. 
[14] 	L. Blanchet, T. Damour, B.R. Iyer, C. Will and A.G. 


Wiseman, Gravitational radiation damping of compact 

binary systems to second post-Newtonian order, suhmit­

ted to Phys. Rev. Lett., (1995) 


[15] 	Throughout this paper we use Geometrical units: G = 

c =1. 


[16] 	In what follows we denote the periodogram of a function 
of time by the same letter but in upper case. Fot instance, 
the periodogram of z(t) is X(r). In all periodograms and 
functions of r constructed out of them it is to be under­
stood that 0 :5 r < 1/10. 

[17] 	But now one has to match the periodogram of the detec­
tor output with a sinusoidal template. 

(18] 	C.W. Helstrom, Statidical Theor" of Signal Detection, 
2nd. ed, (Pergamon Press, London, 1968). 

[19] B.S. Sathyaprakash and S.V. Dhurandhar, Phys. Rev. D 
_1!&2~t~.J199l). , ­
[20] S.D. Mohanty and B.S. Sathyaprakash, in preparation. 

FIG. 1. Development of relative phase of chirp wave forms 
mismatched in their chirp times is shown plotted for several 
wave forms with their chirp times in the range [1.98, 2.02] s. 
We have shown the number of cycles by which two wave forms 
differ as a function of time. 

FIG. 2. The amplitude of the periodogram A(r) nor­
malised to A(O) is shown plotted as a function of rIo. The 
amplitude changes by a smaller amount for larger chirp times, 
which have a larger number of cycles. 

FIG. 3. Contours of equal SNR peA, ..\). 

FIG. 4. Maximum, over ta. and iI', of the SNR C(6..\) as a 
function of the signal chirp time te for several templates of 
chirp times t~. 
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