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Abstract 
A search for a problem free cosmology within the framework of multicomponent non­

minimally coupled scalar tensor theories is suggested. In an SO(2) invariant theory for 
example, we outline a program that can accommodate a coasting Milne universe with a 
distribution of non - topological soliton solutions [NTS's]. The interior of these solutions 
would be domains where effective gravitational effects would be indistinguishable from 
those expected in standard Einstein theory. For a large class of non - minimal coupling 
terms and the scalar effective potential, the effective cosmological constant identically 
vanishes in the region exterior to the NTS's and dynamically approaches a small value in 
the interior region. We describe features of a problem free cosmology that follows. 
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I. Introduction 

The prospect of a dynamic geometric action forms the basis of Einstein's theory of 
gravitation. A geometric action however, is not uniquely fixed by the requirement of 
general co variance alone .. Just for the sake of simplicity, and for the sake of'getting the 
canonical Newtonian theory in the weak field limit, one requires the action to be of the 
second order in the metric. This gives the standard ;Einstein - Hilbert action of general 
relativity [GTR]: 

s =Jfi4xJ-g[;3R + A] (1.1 ) 

with A the cosmological constant. This form for the gravitational action is virtually de­
fended as a faith. The success of the three classical tests as well as the basic simplicity, 
economy and elegance of this theory at the classical level has indeed given a widespread 
feeling that this theory must be correct. Admittedly Einstein's theory is elegant, however 
one can not be sure whether nature has quite the predilection for elegance and economy 
that man possesses. 

The last six decades have seen growth of empirical evidence of discrepancy between 
predictions of General Relativity and observations. Oort [1932] was perhaps the first to 
demonstrate that the acceleration caused by visible matter in our neighbourhood in the 
Milky Way is only half of what is experienced by stars in their motion perpendicular to 
the galactic disk. Zwicky [1933], and more recently Kent et al [1982]' further discovered 
acceleration discrepancies ranging from factors of two to three to about 100 in clusters of 
galaxies. In the outskirts of most galaxies, a centrifugal acceleration upto a factor of 5 
or more than that expected from visible matter is needed to account for the anomalous 
velocity curves (Albada[1985], Hernquist et al [1987]). Faith in Einsten's theory has led 
astronomers to make out a case for non luminous matter to explain the above descrepancies. 

The requirement for non - luminous [dark] matter is also made out over larger cos­
mological distances. Over the last f\>ur decades it has been fashionable to maintain "cos­
mological book - keeping" within the framework of the standard Freidman - Robertson ­
Walker [FRW] solution. This framework, however, comes with its own peculiar problems. 
The FRW model read with GTR is plagued with an initial singularity. GTR is also sick on 
account of a lack of a consistent quantum mechanical framework. The latter problem arises 
on account of the fact that the coupling constant in the theory [the gravitational constant] 
is dimensional. A consistent account of structure formation is far from understood. The 
age of the universe predicted in the model is significantly smaller than age estimates of old 
stellar objects. The observed large scale homogeneity and isotropy of the universe can not 
be dynamically generated in a FRW cosmology on account of the so called "horizon prob­
lem". The stability of the FRW solution, moreover, requires a fine tuning of the density 
parameter in the theory unless it is exactly equal to the critical density. This is referred 
to as the flatness problem. These problems can be squarely resolved if the FRW universe 
is made to undergo inflation at some early epoch. Such a behaviour can be accounted for 
in the standard cosmological model by a dynamicaly varying equation of state of matter 
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in the universe and elaborate schemes have been proposed to make this possible, (see ego 
Brandenberger [1997] for a recent review). The paradigm ho\vever, requires a scalar field 
with a very special profile for its effective potential. Standard convexity and triviality 
theorems in quantum field theory cast a doubt on whether such an effective potential can 
indeed be realised. Assuming that this formal problem would be resolved, inflationary 
scenarios ensure the favoured value for the density parameter of the FRW universe viz.: 
the closure density, in turn ensuring: the density parameter n = 1. This defines what is 
now regarded as the so called Standard - Big - Bang model [SBB]. Over the last decade, 
the SBB has suffered a lot of stress. 

What are heralded as major successes of SBB are: (1) The Big Bang Nucleosynthe­
sis [BBN] prediction of light element abundances and the Cosmic Microwave Background 
[CMBR]; and (2)consistency of distance indicators and redshifts between theory and ob­
servations. 

From the light element abundances one finds that the observed D and 3He can be 
generated in BBN only if nB ~ 2%. The game plan in SBB is to choose a suitable 
combination of hot and cold dark matter [HDM; CDM] content to account for structures 
at different scales. While the progress in this direction has been on for some time, there is 
now enough accumulated evidence that puts the whole programme in doubt. 

There has been a steady growth of empirical evidence indicating that n over scales 
of a gig a parsec is significantly less than one. Figures of .5 to .8 have been quoted in 
literature. The flatness problem [fine tuning] then stares SBB in the face. There is further 
evidence of excessive baryonic DM inconsistent with BBN from the intensity of x-ray from 
centres of clusters of galaxies. It has been proposed that a small cosmological constant 
be incorporated in the model. While this would not do away with the fine tuning prob­
lem, the resolution that it may achieve is seriously in doubt. The allowed range of the 
hubble parameter and the cosmological constant is severely constrained by gravitational 
lensing, structure functions, the BBN, xray from clusters and most of all from the age 
estimates of globular clusters [Bagla(1996),]. It was believed that the age of ~ 12 gyrs 
could be accommodated in a very small parameter space in which we could have a con­
cordant cosmological model. However this space is shrinking. Two recent observations 
that have suffered a heavy blow on Std. model are: (1) the Lyman alpha observations 
of deuterium absoption lines - differing in intensity from the expected value by a whole 
order of magnitude [Steigman 1997] and [2] the observation, at redshift of around two, of 
a galaxy with some 3.5 billion yr. old clusters [Kennicut (1996)]. In the first instance 
one finds it difficult to have any dynamical evolution model that can account for such a 
wide variation of deuteriU:ID in Std cosmology. On the other hand. if one believes the 
higher abundance of deuterium to be the correct primordial result, any realistic galactic 
chemical evolution would yield very high residual 3He + D2 • Such high values are not 
consistent with observations. The combined data (D, 3He, 4He and Li7) with the usually 
assumed uncertainties are inconsistent with sta~dard (N" = 3) BBN for a conservative 
choice of 3He survival factor unless we assume that some of the uncertainties have been 
underestimated. With the baryon entropy ratio 17 determined by the combined D - 3He 
and 7Li constraints, BBN predicts Yp = 0.246 ± 0.002(10'), where the error includes the 
uncertainties from the D - 3He and 7Li constraints and from the BBN calculations. This 
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value for Y~ required for BBN consistency is 0.014 above the observed value. We thus find 
ourselves on the verge of several possible interesting inconsistencies: 1) If the primordial 
4He fraction is established to be less than 23.9% either D +3He estimates will have to be 
revised or some more dramatic cosmological or particle physics based alteration in BBN 
predictions are required. 2)Recent estimates of the baryon fraction in rich clusters suggest 
that this fraction ·can be rather large. If the Universe is flat, then the baryon fraction 
derived, based on the rich cluster estimates is at least a factor of 2 larger than that al­
lowed by BBN estimates, even with systematic uncertainties allowed for. Whether this 
is an indication that the universe is not flat, or an indication that the cluster estimates 
thernselves suffer from possible large systematic uncertainties remains to be seen. 

The second observation implies an age of around 18 gyrs for the present universe. 
For such an age there is no concordant parameter space for a viable model. There is no 
concordance in a model with zero cosmological constant while a small non - vanishing 
cosmological constant would need a very fine tuning for a dynamic realisation. 

To conclude, over the last more than fifteen years, the state of art in cosmology 
has been reduced to designing and incorporating a suitable inflationary paradigm within 
the framework of the standard big - bang model [SBB]. Though inflation can resolve the 
horizon, flatness and the monopole problems and has a promise to give an ansatz for 
primordial density fluctuations, it is still too early and naive to defend this paradigm as a 
faith. For one, the inflaton field requires a fine tuning of its dynamical parameters leaving 
hardly any "naturalness" in the model. Further, a transition from an almost empty inflated 
patch to a matter filled universe (the reheating and the graceful exit problems) can not 
be dynamically realised in most versions of the inflationary scenario. Most versions of 
inflation find the smallness of the cosmological constant an embarrassment. The "natural" 
value of the cosmological constant in most unification schemes, the inverse square of the 
Planck length, differs from observational bounds by some 120 orders of magnitude! On 
the other hand, with better instrumentation and observations, the parameter space for 
a viable cosmology within SBB (inflation included) is shrinking [Bagla, 1996]. Perhaps 
the worst constraints being imposed by age estimates of old clusters and parameters for 
structure formation. The SBB may well be on the verge of a crisis. 

In the next section we outline a cosmological model in which the universe explodes 
as a non - empty Milne model from an initial arbitrarily high density state. This neces­
sarily requires the effective gravitational constant to vanish identically. It is proposed to 
dynamically realize such an expanding [coasting] model as a solution to a generic class of 

. 	 scalar tensor theories in which the scalar field is arrested at a value where its non - min­
imal coupling to the scalar curvature diverges. The trace of matter stress energy tensor 
is a dynamic parameter that determines the evolution of the scalar field. One can expect 
variations of some 8 to 10 orders of magnitude in this parameter as the temperature of the 
universe [kT] transits through the mass of any particle species. One can ensure that such 
a universe witnesses successive first order phase transitions. For a multicomponent scalar 
field, one can have non - trivial, non - topological soliton solutions in the theory. These 
can be expected to be pinched off from the <p meson plasma as regions of true ground state 
percolate. What is desired is to start off with a highly correlated matter distribution that 
explodes with a "Big - Bang" as a cloud bounded by a light front in a flat [Minkowski] 
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space time, make it go through a succession of phase transitions and achieve the same 
expanding cloud with a distribution of NTS's distributed near surfaces where true ground 
state regions collide. We show that each NTS is a domain that separates the exterior 
I 4> 1= 0 region from the interior where the scalar field could be arrested to an arbitrary 
value. The interior is thus a region with an effective gravitational constant and an effective 
cosmological constant determined by the interior values of the non minimal coupling term 
U(I 4> I), and the scalar effective potential V(I ¢ I) respectively. The essential point is that 
we expect each NTS domain to expand while conserving the charge and the energy of the 
NTS. This necessarily implies that the expansion would be accompanied by a drift of I¢ I 
to a value that ensures smaller and smaller values of Vel 4> I). In the limit, the effective 
gravitationcil constant would approach a universal value inside all NTS's - determined by 
a value 1 4>0 1 and the bulk paremeters describing the matter stress energy tensor. This 
would be an effective solution to the cosmological constant problem. 

The program essentially requires non - minimal coupling [NM C]. There is no com­
pelling principle to constrain the coupling of a functional of a scalar field with the scalar 
curvature. Coleman and others [1970] have used a conformal coupling for a single compo­
nent scalar field: U( ¢) = ¢2/6 to get decent renormalisable properties of the stress energy 
tensor. Zee[1979], and earlier, Deser [1970] have considere~ NMCS to generate effective 
Brans - Dicke like theories virtually indistinguishable from GTR at low energies. While 
Dolgov [1982] has demonstrated that a consistent description of Goldstone bosons requires 
the absence of NMCS, he has also explored [though not successfully] a rising NMC as a 
mechanism to dynamically reduce the effective cosmological constant [Dolgovet al 1982]. 
Madsen [1987] has extensively reviewed properties of a large class of NMCS. There seems 
to be no consensus on any particular principle that may be used to determine the NMC. 
For our purpose we propose an ansatz that leaves the form for the NMC unspecified as an 
otherwise arbitrary function U(¢). We require the model to support non - topological ­
soliton solutions [NTS's] and determine the form for the NMC by minimizing the energy 
of the NTS. This is what is outlined in the next section. 

Section II describes requirements on a two component scalar field theory in order 
that it generate an effective theory of gravitation indistinguishable from the GTR. In the 
class of ST theories considered, one can solve for the interior metric exactly. However, on 
account of the intrinsic non - linearity and complexity of the field equations, we have not 
been able to develop rigourous arguments to establish stability of the soliton solutions. 
The description may well be taken as a suggestive and heuristic argument and is the best 
we have been able to manage at this stage. 

Section III, in its corresponding titled subsections, translates aspects of standard 
model in the model described here. We report on the status of nucleosynthesis, structure 
formation and related aspects in our model. Section IV summarises the predictions of 
the model and highlights further essential work that need be done on the model presented 
here. In the appendix we describe the essential properties of a two component scalar tensor 
theory. Expressions for a conserved energy - momentum pseudo - tensor are derived. 
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II. A Milne model with a difference: 

We take the impasse described in the introduction as reason enough to revisit the 
favourite model of Milne [1935], who considered the evolution of an exploding universe 
from a highly correlated state [a vanishingly smaIl ball of particles in thermodynamic 
equillibrium] localized near the neighbourhood of the point x = y = z = 0 at t = 0, in a 
Minkowski spacetime. At any later time, the universe consists of an isotropically expanding 
swarm of particles of all speeds bounded by the speed of light. Special relativity tells us 
that the universe looks the same (isotropically expanding ball bounded by a light front) 
in all Lorentz frames that coincide at the origin x = y = z = 0 at t = o. In this sense 
the universe is homogeneous and isotropic about every such Lorentz observer - strictly 
obeying the so called cosmological principle. In co - moving coordinates the Minkowski 
metric describing the expanding ball reduces to 

(2.1) 

This is nothing but the standard open FRW metric with the scale factor aCt) = t. The 
most appealing feature of this model is that at any time, every observer can see the entire 
universe: there is no horizon in the model. 

1t dt 
- = ooVt > 0 (2.2) 

o aCt) 

There is no flatness problem either as the rate of expansion of the universe is not constrained 
by any "critical density" parameter. This however, may be regarded as a trivial solution 
to the flatness problem. Eqn[2.1] is a solution to Einstein's equations only if the product of 
the gravitational constant and the density Gp vanishes. In canonical Einstein theory, the 
Milne metric can thus only be a solution for an empty (p = 0) universe. The model is thus 
put away without any further ado. However, one can try to make out a case for a search 
for models in which the universe coasts freely over large distances and has gravitating 
domains localised in pockets. In this article we report on our study of requirements on 
classes of scalar - tensor [ST] theories in which the large scale dynamics of a non - empty 
universe is described by eqn[2.1] on account of the vanishing of the effective long - distance 
gravitational constant. 

We consider a ST theory characterised by an arbitrary non - minimal coupling of a 
scalar field with the scalar curvature in an effective action: 

(2.3) 

Here <Pi, (i = 1,2) are the two components of a scalar field, U(<pdR is a non - minimal 
coupling of the scalar field with the scalar curvature R, V( <Pi) is the scalar effective potential 
and Lm is the contribution from the rest of the [matter] fields. Throughout our analysis 
we treat <P1,2 as components of a classical field. The essential features of such a theory 
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are described in the Appendix A. As shown, the stress energy tensor for the rest of the 
matter fields has a vanishing co - variant divergence thereby confirming to the equivalence 
principle. 

We now consider a particular two component ST theory invariant under SO(2) rota­
tions in the internal <PI, <P2 space. The action being described by eqn[3] with U( <PI, <P2) 
and V(<PI,<P2) being functions of <PI,<P2 through the SO(2) invariant 1<P 1- J<pi + <p~. Let 
V( <p) be inclusive of an additive constant whose source could be the characteristic cut - off 
mass scale that appears when we renormalise any quantum [matter] field. It could even be 
an arbitrary integration constant. It is this constant that manifests itself as an arbitrary 
cosmological constant in the theory. 

If the model can consistently support a divergent U( <p) --+ 00 at 1<P 1= 0, flat space is 
a solution for <P = 0 for an ar1?itrary V( <P = 0). This gets rid of the cosmological constant 
problem. However, this is a trivial cure as the blowing up of U(<p) implies a vanishing of 
the effective gravitational constant, and we all know that, but for gravitation, the additive 
constant in the effective potential has no dynamical role in physics. What we want is a 
cure to the problem in the presence of gravitation. 

The invariance of the theory under SO(2) rotations in [<PI, <P2] space implies the con­
servation of any non - topological charge for a configuration having a compact support on 
any spacelike hypersurface~. The conserved current and the consequent conserved charge 
are given by: 

JJ.L = <P1 8J.L<P2 - <P2 8J.L<Pl (2.4) 

Q = l dr.]" (2.5) 

In flat spacetime, charge conservation plays a key role in the existence and stability 
of non - trivial, non - topological soliton solutions [NTS's]. These are the "Q - balls" of 
Coleman [1985]. For these solutions we have <P = <p( r) = <Po for radial coordinate r less 
than some radius Ro, and <P quickly going to zero outside this radius. The two regions 
are separated by a transition zone of thickness independent of the total charge Q. The 
total charge and the internal energy of the soliton are degenerate for a given volume. The 
surface energy is proportional to the surface area of the solution. Thus the total energy 
for a given charge of the solution is minimum for a sphere. There is no limit to the size of 
these solutions. The size is determined, however, by the total charge of the solution. 

We outline properties of "gravitating Q - balls" in the theory described by the action 
eqn[2.3]. Holding the action stationary under canonical variations of the metric and the 
scalar field components gives the field eqns[A.1, A.2] in the appendix. We desire a solution 
in which the non - minimal coupling term U(<p) blows up at <P = O. This is not an 
undesirable feature. Potential solutions to the cosmological constant problem using a 
dynamically diverging non - minimal coupling has been explored extensively in literature 
[Dolgov 1982, see also Weinberg 1989]. In any case the standard Brans Dicke theory comes 
with a linear coupling of the Ricci scalar with <p. The theory can be recast in terms of 
'ljJ <p-1 and would then meet the requirement of blowing up at 'ljJ = O. Such a behaviour 
of U( <p) ensures that a Ricci flat - and even a Minkowski - spacetime would be a solution 
to the resulting Einstein equations - irrespective of the magnitude of the contribution 
from other terms in the stress energy tensor. As stated before, this is what is termed 
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as a "trivial" solution to the cosmological constant problem. However, if in addition, we 
have appropriate conditions for' the existence of non -' topological soliton solutions with 
<P = <Po in the interior of a large domain, configurations with canonical attractive domains 
inside the soliton and with zero gravitational and cosmological constants outside would be 
ensured. We shall not describe solutions to the above equations by assigning any particular 
functio~al dependence of U( <p) and V( <p}. For the present, it is satisfying to demonstrate 
the possibility of existence of soliton solutions. Taking the cue from the flat space solutions 
we look for time dependent solutions in which the scalar field rotates in the internal <PI, <P2 
space with angular frequency w 

<PI = <pCr)sin(wt); <P2 = <p(r)cos(wt) (2.6) 

We look for a spherically symmetric, static metric solution described by the metric: 

(2.7) 

The configuration that is sought would have <p( r) locked to an almost constant value inside 
a spherical domain and transiting to the exterior region across a thin surface. Taking the 
trace of [A.l] enables us to eliminate the scalar curvature in [A.2]. The expressions for the 
scalar curvature" and the equation for <PC r) reduce to: 

~ [T'::n - w 2 gOO </>2 + grr(</>,r? - 6grr</>,r</>,rU" + 6g 00 w 2 </>U' + 4V (</» - 6U'V'j (2.8) 

, 
[1 - 3U 2]\72<p _ w2<pgOO[1 _ UI<p] + V' 

U 2U 

U' TO _ CA.. )2 rr U' [~ _ 3U"] _ 2U'V = 0 (2.9)2U mo \f',r 9 U 2 U 

Here \72<p = _(grry'-g<P,r),r/A. We can demonstrate the existence of NTS's by con­
sidering the following special case for which the effective potential V may have a general 
convex profile and U' quickly vanishes as one moves away from <p = 0 where it diverges. 
A simple example that could serve as a prototype for the NMC, that one could use is 
UC<p) = [a + (3/<p2]. Such an assumption is however not necessary and one could estab­
lish existence for more general NMC's. The "overshooting / undershooting" argument 
described by Coleman [1985] goes through with some alterations. Consider W defined by 

W'(l _ 3~'2) =V' _ 2g'V (2.11a) 

W has a minimum at <p O. We shall consider W to have a profile as outlined in Fig. l. 
We shall further impose 

3U,2 1 U' F(U) =(1 - U- )-1(2 - 3U") [1 < 0 (2.11b) 
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It is easy to demonstrate that for such a Wand U constrained by eq(2.11) NTS's would 
exist. Indeed, in the flat - space limit, the wave eqn(2.9) for the scalar field reduces to: 

(2.12) 

where 

W' = TV' + (1 _ 3U' 2 )-1 [-w 2 </>(1 _ U' ) - ~T: ] (2.13)- U 2U 2U m 

has the same profile as that of W for a sufficiently small wand a sufficiently small trace 
of the matter stress energy tensor Tm. To ensure overshooting consider a configuration 
which has the scalar field fixed in the interior for a large enough radius near </> </>a so 
that the second term in eqn(2.12) is small and thereafter shooting off towards </> O. The 
field would surely overshoot </> = O. This is just the overshoot argument for 'Q - balls' 
outlined by Coleman [1985] - the third term merely enhances the overshooting on account 
of the constraint (2.11b) on F(U). (This constraint is sufficient for overshooting. It is not a 
necessary condition though we have not found an argument that could ensure overshooting 
in general). The. "undershoot" point is simpler to demonstrate. For TV with the profile of 
Fig. 1, we have the trivial undershoot point which is the maximum of W. This establishes 
the existence of NTS's. 

With the scalar field I </> I trapped to a uniform value in the interior of a spherical 
domain, the exact interior solution can be written down immediately. We plug the metric 
(2.7) into the field equation (A.l) for a uniform scalar field in the interior to give the 
solution regular in the interior: 

(2.14) 

with C =V( </>0)/4U(</>0)' Expressions for the conserved charge and the internal energy of 
such a solution follow from (2.5) and (A.16): 

Q = w</>~gOOv = vV/w (2.15) 

E=2vV (2.16) 

Here v is the invariant three volume inside coordinate r. To get the total energy one would 
also add the surface term which would be proportional to the area of the sphere. In order 
that the NTS be spherical, we require the surface energy to be positive definite. The total 
energy for a given charge, without the surface term, is degenerate in volume. With the 
surface term, the energy would be minimised for the sphere. 

Once a NTS is formed with the scalar field arrested at a value </>a in the interior, the 
configuration would evolve to a state of lower energy by changing </>a. The enegry could be 
transmitted to a changing energy of rotation of the scalar field in internal space and also 
to the expansion of the wall. A drift of the scalar effective potential V( </» to a vanishingly 
small value while conserving the total charge must be accompanied by the volume v blowing 
up to infinity. This is the only way one could preserve the metric signature as V( </» ---+ o. 
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The larger the NTS becomes, the longer would be the time expected to synchronise the 
rotation of the field throughout the interior and the slower would be any further drift to 
V( ¢) ----+ O. Thus a NTS would approach V( 4» ----+ 0 in infinite time. 

Thus in the quasi - static approximation described above, the solutions would approach 
a fiat configuration in the interior. The effective gravitational constant would approach a 
value [U( 4>0)]-1 irrespective of the initial value that the NTS may be borne with. This 
would dynamically generate the universality of the induced gravitational constant. 

The above Q - ball solution is thus going to be a region with an effective gravita­
tional constant:::::::: [U( 4>0)]-1 in its interior, fiat space with zero cosmological constant in 
its exterior and an interior effective cosmological constant completely determined by the 
magnitude of 'V( 4>0) and the conserved charge of the soliton. The charge of the soliton is an 
arbitrary but conserved dynamical parameter. The cosmological constant in the exterior 
of these donlains is strictly zero and the effective cosmological constant approaches zero 
dynamically. We propose calling such domains : gravity [g) balls. The interior of these 
solutions would be regions endowed with canonical gravity. 

Section III 
The program that we have embarked upon is to look for an ansatz that would allow 

non - trivial, non - topological soliton [NTS] configurations in which we can have canonical 
gravitational constant Gef f inside compact domains varying in size from a few kpc to say 
1Mpc and having the effective gravitation vanishing outside. Material particles would freely 
stream outside and gravitationally attract each other canonically inside such domains. 
There is no limit to the size of a NTS. In order to ensure its stability against decay, all 
one may do is to forbid coupling of the scalar field with matter [I(usenko 1997]. 

The cosmology that our group is exploring follows an assumption that the universe 
has a beginning at some time that we may define as t = O. The wave function of the 
universe at creation is a highly correlated superposition of all possible states in a fiat 
spacetime. The subsequent evolution is described as an explosion of that state. Any co 
moving observer would consider itself as a centre of the explosion. This universe would 
be just an exploding Milne model - but unlike the Milne model, it is non - empty. The 
metric is just the FRW metric with k = -1 and the scale factor a(t) = t. Such a metric 
has no horizon problem. Further, as the expansion is not constrained by a critical density, 
there is no flatness problem. The cosmological constant is 'predicted' to vanish identically. 
The Hubble parameter is precisely the inverse of the age t. Thus the age of the universe 
inferred from a measurement of the Hubble parameter is 1.5 times the age inferred by the 
same measurement in SBB. The deceleration parameter is predicted to vanish. 

The standard classical cosmological tests, viz.: the number count, angular diameter 
and the luminosity distance variation with red shift are comfortably consistent in such a 
cosmology. These results are reported in [Sethi and Lohiya 1996] where particle trajectories 
inside a G - ball have been studied in detail. A typical G - ball would be a region where a 
galaxy could form. It is easy to obtain an exact solution to the particle trajectories that 
follow from the action S (eqn[2.3]) in the thin wall approximation. We have shown that 
velocity of a typical test particle increases linearly with the distance fron the centre of the 
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ball. A light ray travels undeflected outside a G - ball but deflects from the boundary of 
the G - ball. The ball thus acts as a gravitational lens. We are studying constraints on the 
effective refractive index of a G - ball from observational data on gravitational lensing. 

We have explored an account of structure formation in the universe by the formation 
and successive fragmentation of G - balls in an expanding universe. The non - minimally 
coupled scalar field is treated" as an effective classical field and the universe, at" t = 0, 
is assumed to be trapped at ¢ = O. The profile of TV is expected to change for large 
variations of Tm. Assuming the universe to be arbitrarily hot with all particles relativistic 
near t = 0, Tm ~ 0 initially. The profile of TV would be as described in Fig. 1. Cooling of 
the universe with expansion would be accompanied by a peculiar variation of Tm everytiIne 
the temperature of the universe transits across the rest mass of any particle species. Tm 
would start with a small value at ultra - relativistic temperatures, with the particle plus 
antiparticle density comparable to the photon number, peak near temperature near the 
rest mass of the species and finally drop drastically at annihilation by a factor npjn-y 
[the present particle entropy ratio]. One may conjecture that at some such transition the 
profile of TV alters to that described in Fig 2. A large condensate - a coherent state of scalar 
particles would form as the universe would roll away from ¢ = O. This is similar in nature 
to the coherent states of a scalar condensate often encountered in ['''new''] inflationary 
cosmology. As W returns back to its original profile, the condensate would become unstable 
with respect to the formation of true ground state bubbles. Domains comprising of different 
charge density would develop. As the theory admits NTS's, the lowest energy state in a 
given charge sector would be a "Q - ball" - which, with the non - minimal coupling that 
we have considered, would be the gravity balls in our theory. The variation of Tm is not 
necessary for the above scenario to work. The transition of the profile of TV from Fig. 2 
to Fig. 1 at some early epoch is all that is essential. 

The initial distribution of G - balls may be specified by simulating collisions of true 
ground state bubbles in a first order phase transition. It is easy to visualise that NTS's 
would be formed by pinching off charged configurations just before the intersection of 
colliding bubbles of true ground state [Freeman et al 1988]. This gives a distribution 
of NTS's that lie along surfaces weaving around voids. We find the basic picture quite 
encouraging and worth developing. To simulate such a distribution, we divide a given 
spatial region into an N x N x N grid. We find a value N 50 to 100 easy to play with 
on a 180 MHz computer. With M nucleation sites chosen at random in the region, we 
explore the grids that are equidistant from a pair of nucleation sites with there being no 

.. 	 other site at a smaller distance. The locus of such a grid network is just a 3 - D Voronoi 
tessellation. The network is just where all the energy of the scalar field would get swept 
into. Results of typical simulation are presented in Figs. 3. We have made a user friendly 
software in Visual C( ++) that generates the grid - boundary of a Voronoi tessellation 
using the above ansatz. The program further attributes weights to every point on the 
grid proportional to the distance from the nearest nucleation site provided its distance 
from the grid point is the same as that of another nucleation site from the grid point. The 
weights would be a measure of the surface energy density swept to the wall of an expanding 
true ground state bubble. The program can further evaluate the autocorrelation of the 
weight distributions in comparison to a random distribution. We have found the emerging 
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pictures quite encouraging and we plan to contrast them with known deep supercluster 
and void surveys. 

Assuming that at some (pre - recombination) epoch, a distribution of G - balls mate­
rializes in the 4> meson plasma, a random distribution would keep coasting as the universe 
expands and give a vanishing two point autocorrelation at large scales. To get a feel for 
the autocorrelation over smaller scales, we have considered a single ball that successively 
fragments in an expanding universe into say 1000 fragments - at each fragmentation, con­
serving energy and momentum. We have written a code that simulates such fragmentation 
and evaluates two point autocorrelation 1/.' for the final distribution. We repeatedly find 
1/-' :::::: (ro/r]n with n :::::: 1.7 to 1.9 and with ro being the distance over which the autocorre­
lation vanishes [Lohiya et al 1997]. 

We finally announce some very encouraging results in nucleosynthesis in a coastIng 
cosmology. Energy momentum conservation implies that the effective temperature T scales 

1010as a(t)T = tT = constant. Taking To = 2.71{ and to :::::: years gives the age of the 
universe of the order of years at T :::::: 10101{, i.e T9 = 10. The universe takes some 500 years 
to cool to 1081{. It can be easily inferred that \veak interactions would decouple at :::::: 1.2 x 
1081{. This means that the neutron proton ratio keeps falling as :::::: exp[-15/T9]. At T9 :::::: 
.9, deuterium burning into other light nuclei becomes more efficient than neutron decay. 
This would direct any neutrons to the nucleosynthesis channel. Unfortunately there being 
hardly any neutrons left, the standard analysis would imply virtually no nucleosynthesis. 
However, as weak interactions are still not decoupled, inverse beta decay would lead to 
more neutrons getting formed and getting into the nucleosynthesis channel once the above 
'deuterium bottleneck' is cleared. We have made elaborate modifications of the standard 
codes written by Kawano to suit the much stiffer rate equations and find that for a baryon 
- entropy ratio 1] :::::: 10-8 we get 23.9% H e4 and metallicity some 109 times that obtained in 
SBB [Batra et al1996]. This is quite close to the actual metallicity seen in low metallicity 
interstellar clouds and globular clusters. One of the predictions of the scenario follows 
from the fact that weak interactions are in equilibrium in the e+ e- annihilation epoch. 
This implies the equality of the relic effective neutrino and the microwave background 
temperatures. The bad news is that we get inadequate D. It is possible to get around this 
problem in an inhomogenous model with pockets of high neutrino degeneracy ~v = -5 
and 1] :::::: 10-10 • Such mixing may arise as a natural fall out from the electroweak phase 
transition epoch. Another simple idea that we are exploring is the possibility that the 
interior of the G - balls at this epoch would sustain a higher temperature plasma than the 
exterior. Once D burning freezes out in the exterior of the G - ball, any D diffusing out from 
the interior of the ball would survive the external environment. The background Milne 
model with zero effective gravitational constant can sustain large inhomogeneities both in 
the temperature as well as baryon density unthinkable in the SBB. Large inhomogeneities 
that can sustain regions where deuterium burning has frozen out while more neutrons 
are still forming and converting to D2, would account for larger D2 than what we have 
managed in a homogeneous model. 

We are continuing to study aspects of this model. The recombination epoch occurs 
at t :::::: 107 years. As G - balls support a higher interior temperature, the number of G ­
balls within a beam width would determine the deviation of CMBR temperature from the 
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average. Consider a random distribution of G - balls in a large volume. If one samples 
a small portion of the volume, the rms fluctuation of the number of these balls from the 
average would be proportional to the inverse square root of the number of balls in the 
sample. The number of balls being proportional to the sampled volume, we expect such 
CMBR anisotropy to increase linearly with decreasing beam width. The acoustic peak is 
expected at six minutes and the Silk angle is 1/60th of the corresponding angle in SBB 
[Gahlaut and Lohiya 1996]. The Silk mass is some ten times its corresponding value in 
the standard model. Taking the G - ball size to be less than the Silk length, one would 
have a typical G - ball emerging out of the last scattering surface at recombination as 
a gravitating region with a very smooth distribution of mass in its interior. We intend 
exploring the collapse of this cloud to form galactic structures within the' ball. 

The most bothersome issues that one has to address are constraints on U( <p) and V( <p) 
that would support such large NTS's. At present we are satisfied by our belief that the 
fine tuning of U( <p) and V( <p) in our model is far milder than constraints that are normally 
imposed on the scalar effective potential in most realizations of a suitable inflationary 
model in SBB. In any case a lot of the work that is reported here would hold for any 
coasting cosmology and is not a unique feature of the model described by eqn[2.3]. 

III. Conclusion 
There are two distinct aspects of the work presented here. First is the viability, 

advantages and consequences of a coasting cosmology. The second aspect is the possible 
realisation of such a coasting. The absence of the horizon, flatness and age problenls and 
the possibility of concordance of nUcleosynthesis with observations distinguish a coasting 
cosmology. This is enough motivation for a search of a paradigm that could hold the 
effective G to a constant value in bounded domains. Such domains can be realised in 
higher order theories. For example, in a fourth order theory with the action: 

S =Jtrxy'-g[aC2 ,BRJ 

the dynamics of a conformally flat FRW metric is completely determined by the repulsive 
/3R term. Domains of attractive effective gravitation can occur as non - conformally flat 
perturbations of the FRW metric. Thus the cosmological consequences discussed are not 
unique features of the model discussed here. 

We have demonstrated that in a whole class of two - component scalar tensor theories 
in which the non - minimal coupling diverges and for which the classical effective potential 
vanishes at some point, classical scalar field condensates can occur as NTS's. The effective 
gravitational constant inside all domains would approach a universal value and the effective 
cosmological constant would drift to zero. 

The cosmology described in this article essentially requires the scale factor to coast 
linearly with time. The particular model outlined here is deficient in several respects. 
Firstly we have treated the scalar field as purely classical. The stability of the NTS 
against decay has not been studied. We feel that the peculiar behaviour of the NMC at 
<P = 0 would prevent any stable <p particle states to be defined near <p = O. Further we 
have assumed that the expansion of an arbitrary NTS could be followed in a quasi - static 
approximation along a one parameter family of stable NTS's with a smaller and smaller 
effective potential V in their interior. This is merely a conjecture and requires to be proved. 
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vVe feel that the classical analysis outlined in this article is worth developing. The 
dynamical tuning of the effective cosmological constant to a small value and the effective 
grayitational constant to a universal value are compelling features that would keep us on 
our effort to raise the toy model described here to the status of a viable cosmology. 

The idea of exploring NMC for the purpose of getting stress energy of the saclar field 
condensate to compensate the cosmological constant was also suggested by Dolgov. It 
was shown however that the NMC itself diverged. It 'was indeed suggested that a spatial 
variation of the scalar field - and hence a gravitational constant be explored for a non ­
trivial model. What ,ve have shown is that in a model where the NMC diverges through 
most of the space and is finite over compact domains, the compact domains can be expected 
to inflate. Conservation of charge and energy ,vould then ensure that the cosmological 
constant approaches zero inside these domains and identically vanishes outside. 
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Appendix A 
We describe properties of a generalised two component scalar tensor theory and derive 

expressions for a conserved pseudo energy tensor for the theory. The theory is described 
by the action: 

(2.3) 

Here <Pi, (iI, 2) are the two components of the scalar field, U(¢>i)R is a non - minimal 
coupling of the scalar field with the scalar curvature, and V( ¢>d is the scalar effective 
potential. Requiring the action to be stationary under variations of the metric tensor and 
the fields ¢>i, gives the equations of motion: 

(A.l) 

p.1IA-,i 8V R 8[]_ (A.2)g '+';p.;11 + 8¢>i - 8¢>i - 0 

Here T/:t is the energy momentum tensor of matter constructed from Lm , and 

(A.3) 

We have considered, for the present, a¢>- independent Lm. It would be reasonable to 
demand that this theory confirms to the equivalence principle. I To demonstrate that this 
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indeed holds i.e. T!:i~" = 0, we note that the contracted Bianchi identity satisfied by the 
Einstein tensor gives: 

(A.4) 

with 
tIL" =T;" + 2U(¢»ilLilI - 2glL"U(¢»~~ (A.5) 

From the equation of motion (A.I) and the Bianchi identity it follows that 

(A.6) 

The identity: U( ¢> )iP Rpa = U( ¢> ):~.a - U( ¢> ):~ ...\ and the equation of motion (A.2) for the 
fields ¢>i, togeth,er give ' , , , 

(A.7) 

which in turn gives the desirable vanishing covariant divergence of the matter stress energy 
tensor. 

One can find the expression for a conserved pseudo energy momentum tensor that 
would be conserved. To achieve this we proceed to express the vanishing covariant di ver­
gence of the matter stress energy tensor as: 

(A.8) 
. 

To cast the lhs of the above equation into a total ordinary divergence one has to seek a 
representation of the second quantity in terms of an ordinary total divergence. This can be 
done as follows. First we make use of the equation of motion (A.6) to express the matter 
stress energy tensor in terms of the scalar field and the metric -dependent quantities: 
T:;.t = _t T f3 - 2U( ¢> )GT f3. Second, note that the right hand side of this expression is 
merely the variational derivative of 

J = 2 JFu.rx[U(<t»R + L",] (A.9) 

under variations of the metric tensor, with boundary conditions that require the vanishing 
of metric and its first derivative variations on the boundary of a (3+1) - dimensional main­
fold over which this integral has been taken. For more general variations, one would get 
contributions from the surface integrals as well. We consider the standard decomposition 
of vi gR into a pure divergence term and a simple expression involving only the metric 
and its first derivatives: 

(A.IO) 

with 
(A.II) 

15 



It follows that the functional derivative of J with respect to the metric tensor is the same 
as that of 

H - Jtf4x[B + FYL",l (A.12) 

where 
(A.13) 

In other words 

(A.14) 

We define 13 =B + J-gL4>' The expression for the ordinary derivative of 13 and the 
field equation for the scalar field <p then easily enable us to express the second term in 
eqn(A.8) as a total divergence. This gives: 

(A.15) 

For v = 0 the expression within the brackets integrated over a spacelike hypersurface is 
thus invariant under time translations for a distribution of matter and the rest of the terms 
in (A.15) having a compact support over the surface. This is the expression for the pseudo 
energy mOI.Ilentum tensor that we seek. The quantity 

(A.16) 

evaluated on a constant spacelike hypersurface ~, is thus conserved. This may be viewed 
as the generalisation of the energy momentum four vector for the scalar - tensor theory 
described by eqn[2.3]. The formalism presented here is general and can be used to deter­
mine the energy momentum four vector for any Brans - Dicke theory in particular. As 
in standard general relativity, Pit 'is not a generally covariant four vector as A and Bare 
not scalar densities. The intrinsic non - covariance of the energy momentum density of 
the gravitational field has its origin in the intimate connection between geometry and the 
gravitational field. Had the expression been covariant, one could always have gone into a 
preferred [freely - falling] frame to ensure vanishing of an arbitrary localised gravitational 
field. 

The above form for the energy momentum pseudo-tensor for the generalised Brans 
- Dicke theory can also be obtained by considering a variation of the coordinate system 
instead of the metric field. The analysis enables us to express the gravitational energy ­
momentum in a very compact form. To demonstrate this, we consider 

(A.17) 



13 is a function of the metric, the scalar field and their first derivatives. Its variation is: 

"_ aB C IlV aB 8 IlV aB c aB 
8B - -avg + a IlV g>. + aA- v¢ + aA. 8¢ >. (A.18)

gllV g>. If/ If/ ,>. ' 

Consider a change of coordinates of the form: 

(A.19) 

Retaining terms to the first order in €, we get the following variations: 

(A.20) 

(A.21) 

(A.22) 

8F9= -€F9~~ (A.23) 

8¢ 0 

8(¢,>.) = -€¢,o~r;.. (A.24) 

A restriction to linear transformations enables one to get an elegant form for 813. The 
Christoffel symbols transform as tensors under such transformations and hence 13 as a 
scalar density. Thus 

(A.25) 

Substituting the variations (A.20) to (A.24) for an arbitrary linear transformation into 
(A.18) and comparing the expression with (A.25) yields the identity: 

aB 0 v aB 0'v 1 aB /3v aB A. _ 1" 0 (A.26)agllvg + agllvg ,>. - 2 0 /3v g ,1l - a¢ 0 If/,Il - -"2 B91l 
,>. g,O' , 

The use of this identity yields a simple expression for the variation of 13 under the general 
transformation (A.19): 

CB" - B" ~ 0 2 013 ~Il r v 
V - -€ I.:. 0 + € ~ Ilvl.:. r >.g (A.27) 

, ug,>.' , 

For transformations that have ~ together with its derivatives vanishing on the boundary, 
the variation of the metric tensor and its derivatives also vanish on the boundary of the 
manifold. H has a vanishing variation under such a transformation. The null variation of 
H: 

(A.28) 
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reduces to 

(A.29) 

This may be integrated by parts twice. For the variation to vanish for arbitrary e/-L we get 
the following divergence law: 

( aD TV) 
a /-LV 9 ,T,A

g,A 
a (A.30) 

Thus 
. r-;;FT _ (aD TV)
v -g /-L == a /-LV 9 ,A

g,A 
(A.31) 

is a conserved quantity. Using the il1entity (A.26) and the field equation (A.l) gives: 

(A.32) 

This is just the expression that we had obtained for the stress energy pseudo - tensor by 
the variation of the metric tensor earlier. The expression in terms of a vanishing ordinary 
divergence (A.30) implies that 

(A.33) 

is a conserved quantity if V is the entire space at a given time. In the special case of a 
time independent metric, Gauss's theorem in 4 dimensions gives the energy momentum as 
surface integral over a 2 dimensional surface: 

P/-L == (A.34) 

This gives a curious result that in the generalised Brans-Dicke theory, the generalised 
energy momentum in a D dimensional volume can be determined by the metric tensor 
field and its derivatives on the (D-l) - dimensional surface, the details of the field inside 
the volume being irrelevant. 
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