o
1= - TUCAA -53/97
: ' f o f”“" o ~ "~ -October 97
W

A study of penetration at the bottom of a convective énvelope
“and its scaling with vertical velocity |

By

NAME tDMo.

=
D

05k 2

A AHarind’er P. Sing

lan W. Roxbur

- Kwing L. Chan—

't

e

L CCARA-53 -
-— oz

__-
| uuwiiii
0 11k0 00kl

\

T

‘ Astronomy and Asﬁl@ﬂphysics

Vel

, ; 7
. An Autonomous Institution of the "University Grants Commission

Preprint Request (Please quote the preprint number)
email : preprn@ijucaa.ernet.in
Fax : 0212-350760

"Accepted for publication in Astronomy §nd Astrophysics § ]

v e RETURN TQ FERMILAY ** - |
Inter-Univetsity Centre for

_Post : IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, india



mailto:preprn@juca~.ernet.in

Ad&zA manuscript no.
(wik be inserted by hand later)

ASTRONOMY
AND

Your thesaurus codes are:
06(02.03.3; 02.08.1; 08.09.3)

ASTROPHYSICS
8.9.1997

A study of penetration at the bottom of a convective
envelope and its scaling with vertical velocity

Harinder P. Singh!'?:®, Ian W. Roxburgh?, and Kwing L. Chan'®
! Department of Mathematics, The Hong Kong University of Science & Technology,

. I
-

Heng kﬂ'ﬁ‘é ) . S . i
owloon, Hong Kong

2 Astronomy Unit, Queen Mary Q'%ggﬁeld ‘,Qg_ll_ege, University of London, Mile End Road, Lon.don E1 4NS, UK
3 Department of Physics, Sri Venkateswara College, University of Delhi, l‘1‘\lIew Delhi 110 021, India

received date; accepted date

Abstract. A number of investigators have proposed a relation
between the penetration depth (Ag) at the bottom of a convec-
tive region and the velocity of the penetrating motions. This
may be expressed in a simple form as Ag « V{2, Vio being
the vertical velocity at the bottom of the convection zone. Al-
though the mixing-length theory was not used in these stud-
les, other simplifying assumptions were made. In this paper,
we study the general behaviour of motions penetrating into
the stable region at the bottom of a convective envelope by
numerically solving the full set of Navier-Stokes equations in
three dimensions. We compute a series of models which allow
us to study the scaling relationship between the penetration
distance and the rms vertical velocity.

Key words: convection — hydrodynamics - stars: interiors —
stars: structure

1. Introduction

A large number of theoretical investigations have been made
in the last thirty years to evaluate convective penetration or
overshoot in stellar interiors. Because of the complexity of the
involved physical processes (see Roxburgh 1997), there has nei-
ther been a completely satisfactory treatmert of the issue, nor
is there a consensus on the magnitude of the overshoot, be it
from a convective envelope inwards or a convective core out-
wards. Even for the best studied case of the Sun, for which
high quality oscillation data are available, helioseismic inver-
sion techniques give differing upper limits on the size of over-
shoot at the bottom of the solar convection zone (Roxburgh
1996). On the other hand, two and three-dimensional simula-
tions of compressible convection, with a view to study over-
shoot, have recently been attempted (Roxburgh and Simmons
1993; Hurlburt et al. 1994; Singh et al. 1994, 1995, 1996; see
also Nordlund & Stein 1996; Muthsam et al. 1995). Compared
to convection zone of the sun, the convection zones in these sim-
ulations are shallower with low density contrasts. As Flpx V,3
in a convection zone, where F is the total flux, such configu-
rations generate comparatively large flow velocities and hence
tend to over-estimate the extent of penetration or overshoot.
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Neglect of rotational effects could also be responsible. Since
we are still far away from having the desired computing power
that will allow us to simnlzte the solar convection zone, the
remedy is to find some scc.ing relationships between physical
quantities of interest which could then be applied to the Sun.

Of particular interest, in the present context, are the cal-
culations of Schmitt et al. (1984) and Zahn (1991). Schmitt
et al. adopted a semitheoretical approach, derived originally
for the Earth’s atmosphere, to study convective penetration
in stars. They considered the equations of motions for buoy-
ant plumes and applied them to the penectration problem in
the Sun. The equations were solved numerically to obtain a
simple scaling relation for penetration in terms of the initial
vertical velocity Vo (velocity at the bottom of the convection
zone) and a filling factor f (the fraction of the area occupied
by the plumes) as v 12, If initial velocities predicted by
the mixing length theory are used, their results predict an al-
most adiabatically stratified region, .a few-tenths of a pressure
scale height in extent, below the solar convection zone. Zahn
(1991) treated the problem analytically, basing it on scaling ar-
guments and explained why the depth of the nearly adiabatic

penetration region should scale as Vf,,/z.

Numerical simulations of turbulent compressible convection
have been attempted by various groups. The first attempt to
find scaling relationships within a stellar-type convection zone
was made by Chan & Sofia (1989). They found scaling relation-
slips between the rms fluctuations of pressure, density, specific
entropy, temperature, and velocity. These scaling relationships
have been successfully employed to compute equilibrium mod-
els of the Sun and o Ceniaui by replacing the mixing length
theory of convection (Lydn et al. 1992, 1993). The relations
were further examined by Singh & Chan (1993) and Chan &
Sofia (1996). :

Simulations of penetrative convection have been performed
in two dimensions with different objectives by Roxburgh &
Simmons (1993), Hurlburt et al. (1994), and Freytag et al.
(1996). Hurlburt et al. gave scaling laws relating the pene-
tration distance with the relative stability of the unstable to
the stable zone. Three- dimensional simulations have been per-
formed to study the behaviour of penetrative convection above
and below a convection zone by Singh et al. (1994, 1995). A
number of models were computed in each case and it was ob-
served that the penetration distance above a convection zone
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Fig. 1. Some geometrical and physical parameters of the co! a-
tion

was proportional to the maximum vertical veloci.ty of the con-
vective motions and this distance increased with the facfor
Fu/pcst, where Fp denotes the input flux and Pt t‘he density
at the top of the convection zone. The penetration chstax}ge be-
low a convection zone was found to decrease as the stal?nllty of
the lower stable region was increased, a behaviour which was
also observed in the two- dimensional simulations of Hurlburt
et al.

In this paper we study the behaviour of penetrative convec-
tion below a deep stellar- type convective envelope by comput-
ing a series of models with various input flux values. We also
examine the scaling relationship A4 o V3/? between the ver-
tical velocity of the flows and the penetration distance as given
by Schmitt et al. (1984) and Zahn (1991). In the next section
we provide essential features of our models and the parameters
of the simulation. In Sect. 3 we report detailed results of our
computations in terms of time and space-averaged quantities.
Important conclusions based on the results are presented in
Sect. 4.

2. Model Parameters

A detailed discussion of the input physics and the numerical
parameters of the simulation has been given in Singh et al.
(1995) (hereafter referred to as SRC95). We provide here some
necessary details of the present set of calculations.

The fluid is an ideal gas with Y = 5/3 and is contained
in a rectangular box with the two equal horizontal sides 1.5
times the height (z). A mesh of 35 points each in the two hor-
izontal directions and 51 points in the vertical occupies this
rectangular domain. While the mesh points in the horizontal
directions are equally spaced, the spacing in the vertical direc-
tion decreases smoothly with height. The top and bottom of
the box are impenetrable and stress free while the sides are
periodic. The temperature at the top is kept constant while a
fixed energy flux F is imposed at the bottom.

The three (stable-unstable~stable) layer configuration for
the simulation is generated by controlling the conductivities of
the diffusive flux. The initial distribution of the gas is poly-
tropic and the polytropic indices from the top down are 1.5,
1.5, and 2. In Fig. 1, we have shown the location of the three

Fig. 2a-b. The depth distributions of time and space (h?rizonta.l)
averaged (a) kinetic energy, and (b) enthalpy fluxes for various cases

layers along with the temperature, pressure, and density con-
trasts between the top and the bottom. The variables are made
dimensionless by scaling so that the initial temperature, pres-
sure, density, and the total depth of the domain all equal 1 at
the top. The velocities are scaled to (pe/pe)*’? and the scal-
ing for various fluxes including the input flux is (p: Vi). The
subscript ‘t’ refers to the initial values of the quantities at the
top of the domain. In all the cases that we study for the pen-
etration at the bottom of the unstable layer, the lower stable
layer extends to a height of 0.4 from the bottom and contains
around 1.2 pressare scale heights (p.s.h.). The unstable region
is embedded between the two stable layers and contains 5.4
p-s.h. A thin stable layer at the top separates the convectively
unstable region from the top boundary.

The energy budget of the system is described in terms of a
total flux made up of four fluxes : the enthalpy flux (£.), the
flux of kinetic energy (Fy), the diffusive flux (Fa), and the vis-
cous flux (F,). The three- layer configuration is evolved with
time till the the sum of these four fluxes is almost equal to
the input flux F}, at all depths. Once the fiuid is thermally
relaxed, the equations are integrated for some more time and
the combined temporal and spatial (horizontal) means of vari-
ous physical quantities are computed. We have considered four
separate configurations in this manner, corresponding to four
different values of the input flux F,. All other parameters are
the same for the four models (SRC95).




E:ig. 3. The extent of penetration for different input fluxes Fy. The
cxrclt.:s correspond to penetration depths where the kinetic energy
flux is 5% of its value at the bottom of the convection zone

Table 1. Penetration below the convective region

Input Flux V}(maz) V;, Penetration Penetration
F A A, (in psh)
0.1875 0.330 0.119 0.275 (0.233)‘ 0.88 (077)
0.125 0.291 0.103 0.233 (0.208) 0.77 (0.70)
0.0625 0.232 0.081 0.160 (0.156) 0.55 (0.54)
0.03125 0.186 0.062 0.112 (0.127) 0.40 (0.45)

* the numbers in parentheses correspond to depth where Fi
has fallen to 5% of its value at the lower interface

3. Results

Fig. 2a shows the distribution of the average flux of kimetic
energy, (1/ 2)pV?V,, with depth for the four cases correspond-
ing to four different flux values. The unstable region is marked
by a line extending from a depth of 0.02 to 0.6 from the top.
For all the flux values, the kinetic energy flux (Fx) in this re-
gion remains negative and drops to zero not at the (unstable-
lower stable layer) interface, but a considerable distance into
the lower stable layer. The peak F} value corresponds to -0.111
for the case of input flux Fp equal to 0.1875. The peak Fi for
input flux 0.03125 is -0.018. Hence, while the input flux has
changed by a factor of 6, from 0.1875 to 0.03125, peak kinetic
energy flux has fallen by an almost similar amount, by a factor
of 6.17. In all the four cases, this peak kinetic energy flux Fi
is around 60% of the input flux Fo. The enthalpy flux F. is
positive in the unstable region (Fig. 2b).

As has been done in some previous studies (Hurlburt et al.
1994; SRCY5), we use the profile of the flux of kinetic energy to
estimate the extent of penetration into the lower stable layer
at the bottom of the convectively unstable region. We define
the penetration distance (Aa) to be the length of the region
between the interface of the unstable- lower stable layer and
the depth where the kinetic energy flux has fallen to 1073. To
achieve this, we perform polynomial interpolation to obtain
the values of Fx between the grid points. The penetration dis-
tances for our four cases are given in Table 1. The result is also
plotted in Fig. 3. 1t may be seen that the penetration distance
increases almost linearly with the input flux Fs. Agis 0.275

Fig. 4. The superadiabatic gradient pl i i

2 plotted against depth for input
flux 0.0625. The kink near the interface of the unstable- lower stable
layer may be due to low resolution there

corresponding to 0.88 p.s.h. for the case with the largest input
ﬂm.: of 0.1875. It has decreased by a factor of 2.2 to 0.40 p.s.h.
while the input flux has decreased by a factor of 6 (to 0.03125).

For the case with the highest input flux Fp = 0.1875, the
penetration distance is 0.275 while the extent of the lower sta-
ble layer is 0.4. It is possible that the lower solid boundary is
affecting the flows in this case leading to an underestimation
of the penetration distance for this flux value.

Since the computation of penetration distance in the above
manner may seem arbitrary, we employ ore more criterion,
which has been used in some earlier studies (Hurlburt et al.
1994; SRC95) and is also based on the flux of kinetic energy.
We compute the penetration depth to where Fy is 5% of its

~ value at the interface of the unstable- lower stable layer. The

values obtained with this definition of penetration distance are
given in parentheses in Table 1. For the input flux 0.1875, we
find Ag = 0.233 which is about 15% lower than the one found
with our earlier criterion. For the lowest flux of 0.03125, Ag is
0.127 instead of 0.112.

" The penetration region in our simulations is nearly adia-
batic as expected for a configuration with a low relative sta-
bility parameter S which is equal to 1 in our case (Hurlburt
et al. 1994; SRC95). Furthermore, the local Peclet number is
still greater than unity in the penetration region thereby es-
tablishing a nearly adiabatic stratification and extending the
convection zone into the subadiabatic domain (Fig. 4).

In order to study the relationship between the vertical ve-
locity and the penetration distance, we have computed the av-
erage root- mean- square (rms) vertical velocities (V;') of the
four models. The distributions of VY over the vertical domain
for the four input fluxes are shown in Fig. 5. The maximum
values of the rms vertical velocities (V¥(maz)) and their values
at the bottom of the convection zone (V) are given in Table
1. In all the cases the velocities peak at a depth of around 0.055
from the top and fall to about 35% of their peak value at the
depth 0.6, the bottom of the convective layer.

Before examining our results further, let us consider the re-
lation obtained by Schmitt et al. (1984) using the phenomeno-
logical plume equations :

Ag = V2SR &y



Fig. 5. The rms vertical velocities (V') plotted against depth for
the four cases :

Table 2. Values of the expressions on the left and t¥1e right
hand side of Eq.(3) for various flux values taken in pairs

AL (F(1 Vua/: Fu(1

Case 24(R(2) VST £y (2))
(Fo(1), Fi(2))

(0.1875,0.125)  1.18 (1.19)* 1.24
(0.1875, 0.0625)  1.72 (1.82) 1.8
(0.1875, 0.03125) 2.46 (2.49)  2.66
(0.125, 0.0625)  1.46 (1.54)  1.43
(0.125, 0.03125)  2.08 (2.10)  2.14
(0.0625,0.03125) 1.43 (1.36)  1.49

* the values in parentheses in the second column represent the
ratios of penetration distances corresponding to where Fj is
5% of its value at the unstable- lower stable interface

Zahn (1991) used some simplified modeling and obtained
the following result for the case of a smooth conductivity profile
with depth :

Ag
HP

where Hp is the pressure scale height, g is the local grav-
ity, Q is the expansion coefficient at constant pressure, xp =
(0ln Kp/d1n P)aa, K is the thermal diffusivity, and V,y =
(@InT/81n P)eq. The quantity ¢ measures the asymmetry of
the flow and is related to the triple moment of the velocity as

3 -1/2 )
= Ve [F9QKxeVad] @

_V(VZ+vd

= A
As may be noticed, Eq.(2) is in agreement with Eq.(2).

Since we have used a piecewise conductivity (cf. SRC9Y5),
we make use of Eq.(1) to study our results further. Also, since
f is an unknown, we study a modified Eq.(1) of the form

Da(F(1) _ Vie(Fy(1))
Aa(Fy(2)) VAR (R, (2))

’I?he left hand side of Eq.(3) represents ratio of penetration
distances corresponding to any two flux values and the right

©))

Fig. 6. Relationship betwe n the penetration djstan.ce a'nd the rms
vertical velocity from nume: iczl simulations. The solid c}mgox‘xa.l line
represents Eq.(3). Circles 1erresent ratios of penetration qxst.ance
computed when the kinetic energy flux has fallen to 5% of it value
at the interface of the unstable and the lower stable layer

hand side represents the ratio of the rms vertical velocit.ies
raised to the power 3/2 for these two flux values. By taking
our four flux values in pairs, we obtain six set of values for tl.le
left and the right hand sides of Eq.(3). The values are given in
Table 2.

In Fig. 6 we have plotted the factor on the right hand side
of Eq.(3) against the ratio of the penetration distances (the
Lh.s. of Eq.(3)). Eq.(3) is represented by the diagonal line.
The values from the simulations The points lic close to the
diagonal confirming that Ay o Vi%isa good approximation.

4. Conclusions

We have simulated the behaviour of turbulent compressible
convection penetrating into stable layer at the bottom of a
stellar-type convective envelope. Four models were computed
corresponding to four different values of the input flux Fj,
which is imposed at the lower boundary of the numerical box.
We have seen that a larger input flux implies more vigourous
convection with larger velocities. The depth of the nearly adi-
abatic penetration region, computed from the profile of kinetic
energy flux Fy, has been f>u.d to increase with the increase in
the input flux.

We have also examined the relationship between the pen-
etration distance (Aa) and the root-mean-square vertical ve-
locity by means of Eq.(3). We find that Ay V,"i,/2 is a valid
approximation of the relationship between the two quantities
as proposed earlier by Schmitt et al.(1984) and Zahn (1991).

We have also observed (cf. Table 2 and Fig. 6) that for
the larger flux value (0.1875), our configuration slightly under-
estimates the penetration depth. It is desirable, therefore, to
have a broader lower stable layer for large flux values so that
the boundary effects are minimal. It is also desirable to have a
conductivity profile which is continuous, rather than piecewise,
to enable examination of Eq.(2) in greater detail. Such Com-
putations will, however, be much more expensive to perform.
We hope to address some of these issues in future.
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