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Abstract. A number of investigators have proposed a relation 
between the penetration depth (.6.,,) at the bottom of a convec­
tive region and the velocity of the penetrating motions. This 
may be expressed in a simple form as .6." oc Vz

3f2, Vzo being 
the vertical velocity at the bottom of the cOllvection zone. Al­
though the mixing-length theory was not used in these stud­
ies, other simplifying assumptions were made. In Lhi:s papt=r, 
we study the general behaviour of motions penetrating into 
the stable region at the bottom of a convective envelope by 
numerically solving the full set of N avier-Stokes equations in 
three dimensions. \Ve compute a series of models which allow 
us to study the scaling relationship between the penetration 
distance and the rms vertical velocity. 

Key words: convection - hydrodynamics - stars: interiors ­
stars: structure 

1. Introduction 

A large number of theoretical investigations have been made 
in the last thirty years to evaluate convective penetration or 
overshoot in stellar interiors. Because of the complexity of the 
involved physical processes (see Roxburgh 1997), there has nei­
ther been a completely satisfactory treatment of the issue, nor 
is there a consensus on the magnitude of the overshoot, be it 
from a convective envelope inwards or a convective core out­
wards. Even for the best studied case of the Sun, for which 
high quality oscillation data are available, helioseismic inver­
sion techniques give differing upper limits on the size of over­
shoot at the bottom of the solar convection zone (Roxburgh 
1996). On the other hand, two and three-dimensional simula­
tions of compressible convection, with a view to study over­
shoot, have recently been attempted (Roxburgh and Simmons 
1993; Hurlburt et al. 1994; Singh et al. 1994, 1995, 1996; see 
also Nordlund & Stein 1996; Muthsam et al. 1995). Compared 
to convection zone of the sun, the convection zones ill these sim­
ulations are shallower with low density contrasts. As P/ p oc liz 3 

in a convection zone, where F is the total flux, such configu­
rations generate comparatively large flow velocities and hence 
tend to over-estimate the extent of penetration or overshoot. 
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Neglect of rotational effe~ ts could also be responsible. Since 
we are still far away from :la/ing the desired computing power 
that will allow us to simdc.te the solar convection zone, the 
remedy is to find some sc.:..Jng relationships between physical 
quantities of interest which could then be applied to the Sun. 

Of particular interest, in the present context, are the cal­
culations of Schmitt et al. (1984) and Zahn (1991). Schmitt 
et al. adopted a semitheoretical approach, derived originally 
for the Earth's atmosphere, to study convective penetration 
in stars. They considered the equations of motions for buoy­
ant plumes and applied them to the penetration problem in 
the Sun. The equations were solved numerically to obtain a 
simple scaling relation for penetration in terms of the initial 
vertical velocity V.I'O (velocity at the bottom of the convection 
zone) and a filling factor f (the fraction of the area occupied 

by the plumes) as Vz
3j2 tf2. If initial velocities predicted by 

the mixing length theory are used, their results predict an al­
most adiabatically stratified region, a few-tenths of a pressure 
scale height in extent, below the sola.r convection zone. Zahn 
(1991) treated the problem analytically, basing it on scaling ar­
guments and explained why the depth of the nearly adiabatic 
penetration region should scale as V3j2.z 

Numerical simulations of turbulent compressible convection 
have been attempted by various groups. The first attempt to 
find scaling relationships within a stellar-type convection zone 
was made by Chan & Sofia (1989). They found scaling relation­
ships between the rms flllctuations of pressure, density, specific 
entropy, temperature, aud velocity. These scaling relationships 
have been successfully employed to compute equilibrium mod­
els of the Sun and ll' Cem'l.u·,i by replacing the mixing length 
theory of convection (Lyd m et al. 1992, 1993). The relations 
were further examined b.v 8<ngh & Chan (1993) and Chan & 
Sofia (1996). 

Simulations of penetrative convection have been performed 
in two dimensions with different objectives by Roxburgh & 
Simmons (1993), Hurlburt et al. (1994), and Freytag et at. 
(1996). Hurlburt et a1. gave scaling laws relating the pene­
tration distance with the relative stability of the unstable to 
the stable zone. Three- dimensional simulations have been per­
formed to study the behaviour of penetrative convection above 
and below a convection zone by Singh et al. (1994, 1995). A 
number of models were comp!lted in each case and it was ob­
served that the penetration distance above a convection zone 
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Fig. 1. Some geometrical and physical parameters of the configura­
tion 

was proportional to the maximum vertical velocity of the con­
1'eCtive motions and this distance increased with the fac~or
Ii Ip where F-,.. denotes the input flux and Peat the densIty• eat,.. . dist bat the top of the convection zone. The penetratIOn ~~e e-
low a convection zone was found to decrease as.the 8ta~ility of
the lower stable region was increased, a behaVlour which was
also observed in the two- dimensional simulations of Hurlburt 

.d~
In this paper we study the behaviour of penetratIve convec­

tion below a deep ste1lar- type convective envelope by comput­
ing a series of models with various input flux values. We also
examine the scaling relationship Ad <X Va

3j2 between the ~er­
tical velocity of the flows and the penetration distance as gt~en
by Schmitt et al. (1984) and Zahn (1991). In the next section Fig.2a-b. The depth distributions of time and space (h?rizontal)we provide essential features of our models and the parameters averaged (a) kinetic energy, and (b) enthalpy Buses for vanous casesof the simulation. In Sect. 3 we report deta.iled results of our
computations in terms of time and space-averaged quantitie~.
Important conclusions based on the results are presented In 

layers along with the temperature, pressure, and density con­
Sect. 4. trasts between the top and the bottom. The variables are made

dimensionless by scaling so that the initial temperature, pres­
sure, density, and the total depth of the domain all equal 1 at
'the top. The velocities are scaled to (Pel pt}1/2 and the seal·2. Model Parameters ing for various Huxes including the input flux is (Pe lit). The
subscript 't' refers to the initial values of the quantities at theA detailed discussion of the input physics and the numerical top of the domain. In all the cases that we study for the pen­parameters of the simulation has been given in Singh et ale etration at the bottom of the unstable layer, the lower stable(1995) (hereafter referred to as SRC95). We provide here some layer extends to a height of 0.4 from the bottom and containsnecessary details of the present set of calculations. around 1.2 pressure scale heights (p.s.h.). The unstable regionThe fluid is an ideal gas with I = 5/3 and is contained is embedded between the two stable layers and contains 5,4in a rectangular box with the two equal horizontal sides 1.5 p.s.h. A thin stable layer at the top separates the convectivelytimes the height (z). A mesh of 35 points each in the two hor­ unstable region from the top boundary.izontal directions and 51 points in the vertical occupies this

rectangular domain. While the mesh points in the horizontal 
The energy budget of the system is described in terms of a 

directions are equally spaced, the spacing in the vertical direc­
total flux made up of four fluxes: the enthalpy flux (Fe), the 

tion decreases smoothly with height. The top and bottom of 
flux of kinetic energy (FIc), the diffusive flux (Fa), and the vis­

the box are impenetrable and stress free while the sides are 	
cous flux (Fv ). The three- layer configuration is evolved with 

periodic. The temperature at the top is kept constant while a 	
time till the the sum of these four fluxes is almost equal to
the input flux Fo at all depths. Once the fluid is thermallyfixed energy flux Fo is imposed at the bottom. relaxed, the equations are integrated for some more time andThe three ( stable-unstable-stable) layer configuration for the combined temporal and spatial (horizontal) means of vari­the simulation is generated by controlling the conductivities of ous physical quantities are computed. We have considered fourthe diffusive flux. The initial distribution of the gas is poly­ separate configurations in this manner, corresponding to fourtropic and the polytropic indices from the top down are 1.5, different values of the input flux Fb. All other parameters are1.5, and 2. In Fig. 1, we have shown the location of the three the same for the four models (SRC95). 
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Fig. 3. The extent of penetration for different input fluxes F". The 
circles correspond to penetration depths where the kinetic energy 
o.ux is 5% of its value at the bottom of the convection zone 

Table 1. Penetration below the convective region 

Input Flux V;'(maz) V:"~o Penetration Penetration 

F" Ad Ap (in p.8.h.) 

0.1875 0.330 0.119 0.275 (0.233)­ 0.88 (0.71) 
0.125 0.291 0.103 0.233 (0.208) 0.71 (0.70) 
0.0625 0.232 0.081 0.160 (0.156) 0.55 (0.54) 
0.03125 0.186 0.062 0.112 (0.127) 0.40 (0.45) 

- the numbers in parentheses correspond to depth where F" 
has fallen to 5% of its value at the lower interface 

3. Results 

Fig. 2a shows the distribution of the average flux of kinetic 
energy, (1/2)pV2V~, with depth for the four'cases correspond­
ing to four different ftux values. The unstable region is marked 
by a line extending from a depth of 0.02 to 0.6 from the top. 
For all the flux values, the kinetic energy flux (F,,) in this re­
gion remains negative and drops to zero. not at th~ (unsta~le­
lower stable layer) interface, but a consIderable distance mto 
the lower stable layer. The peak Fk value corresponds to -0.111 
for the case of input flux F" equal to 0.1875. The peak Fie for 
input flux 0.03125 is -0.018. Hence, while the input fiux has 
changed by a factor of 6, from 0.1875 to 0.03125, peak kinetic 
energy flux has fallen by an almost similar amount, by a factor 
of 6.17. In all the four cases, this peak kinetic energy flux Fk 
is around 60% of the input flux Fb. The enthalpy ftux Fe is 
positive in the unstable region (Fi~. 2b). . 

As has been done in some preVIOUS studIes (Hurlburt et a1 
1994; SRC95), we use the profile ofthe flux of kinetic energy to 
estimate the extent of penetration into the lower stable layer 
at the bottom of the convectively unstable region. We de~ne 
the penetration distance (A.d) to be the length of the reglon 
between the interface of the unstable- lower stable layer and 

3 
the depth where the kinetic energy flux has fallen to 10- . ~o 
achieve this, we perform polynomial interpolation to. obt~n 
the values of Fk between the grid points. The penetratlO.n dIS­
tances for our four cases are given in Table 1. The ~esult. IS also 
plotted in Fig. 3. It may be seen that the penetratlon ~IStance 
increases almost linearly with the input flux Fb. A.d IS 0.275 

Fig. 4. The superadiabatic gradient plotted against depth for input 
o.ux 0.0625. The kink near the interface of the unstable-lower stable 
layer may be due to low resolution there 

corresponding to O.88p.s.h. lor the case with the largest input 
lux of 0.1815. It has decreased by a. factor of 2.2 to 0.40 p.s.h. 
w~ the iaput lux haa decreased by a factor of 6 (to 0.03125). 

For the case with the highest input lux F, = 0.1815, the 
penetration distance is 0.215 while the extent of the lower sta­
ble layer is 0.4. It is possible that the lower solid boundary is 
a.f£ecting the Bows in this case leading to an underestimation 
of the penetration disbDce for this tux value. 

Since the computation of penetration distance in the above 
manner may seem arbitrary, we employ one more criterion, 
which has been used in some earlier studies (Hurlburt et al. 
1994; SRC9S) and is also based on the lux of kinetic energy. 
We compute the penetratioJl depth to where Fit is 5% of its 
value at the interface of the unstable- lower ata-ble la-yer. The 
values obtained with this definition of penetration distance are 
given in parentheses in Table 1. For the input lux 0.1875, we 
find Ad = 0.233 which is about 15% lower than the one found 
with our earlier criterion. For the lowest flux of 0.03125, A.d is 
0.127 instead of 0.112. 

, The penetration region in our simulations is nearly adia­
batic as expected for a configuration with a low relative sta­
bility parameter S which is equal to 1 in our case (Hurlburt 
et al. 1994; SRC95). Furthermore, the local Peclet number is 
still greater than unity in the penetration region ther~by es­
tablishing a nearly adiabatic stratification and extending the 
convection zone into the subadiabatic domain (Fig. 4). 

In order to study the relationship between the vertical ve­
locity and the penetration distance, we have computed the a.v­
erage root- mean- square (rms) vertical velocities (V;') of the 
four models. The distributions of V;' over the vertical domain 
for the four input fluxes are shown in Fig. 5. The maximum 
values ofthe rms vertical velocities (V;'(max» and their values 
at the bottom of the convection zone (V;~) are given in Table 
1. In all the cases the velocities peak at a depth of around 0.055 
from the top and fall to about 35% of their peak value at the 
depth 0.6, the bottom of the convective layer. 

Before examining our results further, let us consider the re­
lation obtained by Schmitt et a1. (1984) using the phenomeno­
logical plume equations : 

(1) 



---------------------
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Fig.5. The rms vertical velocities (V;') plotted against depth for Fl'g .6 Relationship betwe"n the penetration distancedi~d thale rnlS. 
the four cases . . . ul' Th olid agon lmevertical velocity from nume: JCIJ.! SJm atl~ns. e s . . tance 

ts Eq (3) Circles I erresent ratios of penetratIon dis 
represen .. ('_11 5~ f 't value
computed when the kinetic t:nergy flux has 4llen to 0 0 ITable 2. Values of the expressions on the left ~nd t~e right 

hand side of Eq.(3) for various flux values taken m pallS 

Case 

(Fb(l), Fb(2» 

Ad(F!t(lH 
Act(F/>(2» 

v:~3/2!FI!!1n 
V:~3/2(F/>(2» 

(0.1875, 0.125) . 1.18 (1.19)· 1.24 
(0.1875, 0.0625) 1.72 (1.82) 1.78 
(0.1875, 0.03125) 2.46 (2.49) 2.66 
(0.125, 0.0625) 1.46 (1.54) 1.43 
(0.125, 0.03125) 2.08 (2.10) 2.14 
(0.0625,0.03125) 1.43 (1.36) 1.49 

• the values in parentheses in the second column represent the 
ratios of penetration distances corresponding to where Fk is 
5% of its value at the unstable- lower stable interface 

Zahn (1991) used some simplified modeling and obtained 
the following result for the case of a smooth conductivity profile 
with depth; 

~d = V;/,j2 {cf)1/2 fi 9 Q K XP '\7ad] -1/2 , 
P (2) 

where Hp is the pressure scale height, 9 is the local grav­
ity, Q is the expansion coefficient at constant pressure, XP = 
(alnKn/fJlnP)ad, K is the thermal diffusivity, and Vad = 
(fJ In T / aIn P)ad. The quantity c measures the asymmetry of 
the flow and is related to the triple moment of the velocity as 

cf = Vz(Vl + Vz2). 
(Vz2)3/2 

As may be noticed, Eq.(2) is in agreement with Eq.(l). 
Since we have used a piecewise conductivity (d. SRC95), 

we make use of Eq.(l) to study our results further. Also, since 
f is an unknown, we study a modified Eq.(l) of the form 

Ad(Fb(l» = V:~3/2(Fb(1» 
Ad(Fb(2» V:~3/2(Fb(2» (3) 

The left hand side of Eq.(3) represents ratio of penetration 
distances corresponding to any two flux values and the right 

at the interface of the unstable Alld the lower stable layer 

hand side represents the ratio of the rms vertical veloci~ies 
'sed to the power 3/2 for these two flux values. By takmg 

~~r four flux values in pairs, we obtain six set of values !or tl.le 
left and the right hand sides of Eq.(3). The values are gIven m 
Table 2. . 

In Fig, 6 we have plotted the factor on t.be ri~ht hand SIde 
of Eq.(3) against the ratio of the penetratIOn dI~tances ,the 
l.h.s. of Eq.(3)). Eq.(3) is represented b~ the. dIagonal lme. 
The values from the simulations The pOUlts he close to the 

3/2 • . .diagonal confirming that Ad ex: Vzo IS a good apprmumatlon. 

4. Conclusions 

We have simulated the behaviour of turbulent compressible 
convection penetrating into stable layer at the bottom of a 
stellar-type convective envelope, Four models were computed 
corresponding to four different values of the input flux Fb, 
which is imposed at the lower boundary of the numerical box. 
We have seen that a larger input flux implies more vigourous 
convection with larger velocities. The depth of the nearly adi­
abatic penetration region, computed from the profile of kinetic 
energy flux Fk, has been f1u'ld to increase with the increase in 
the input flux. 

We have also examined the relationship between the pen­
etration distance (Ad) and the root-mean-square vertical ve­
locity by means of Eq.(3). We find that Ad ex: v3j2 is a valid 

z 
approximation of the relationship between the two quantities 

as proposed earlier by Schmitt et a1.(1984) and Zahn (1991). 


We have also observed (cf. Table 2 and Fig. 6) that for 
the larger flux value (0.1875), uur configuration slightly under­
estimates the penetration depth. It is desirable, therefore, to 
have a broader lower stable layer for large flux values so that 
the boundary effects are minimal. It is also desirable to have a 
conductivity profile which is continuous, rather than piecewise, 
to enable examination of Eq.(2) in greater detail. Such Com­
putations will, however, be much more expensive to perform. 
We hope to address some of these issues in future. 

-~-.---~----------
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