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We derive expressions for the time period measured by a.ccelera.ted observers of light pulses 

emitted at regular proper time intervala by some other accelerated observer. Only when both the 
emitte~ and detector belong to the same family of observers having a common event horizon the 
intrinsic pulse period can be measured upto a proportionality constant. If the detector is movi~g at 
some angle with the emitter, it will never be a.ble to receive more than two pulses, in case all the 
pulses are emitted in the same direction. In this and all other cases, the measured time-interval has 
a complicated nonlinear relationship with the intrinsic time-period. 
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I. INTRODUCTION 

Ever since Einstein· put forward the theory of relativity, accelerated observers continued to draw attention of 
several authors from time to time [1,2]. The Lorentz-invariant theory of relativity is extended to accelerating systems 
of reference by the hypothesis of locality [3,4] that an accelerated observer at each instant is equivalent to some 
hypothetical inertial observer moving with the same velocity at the same event. One assumption that is naturally 
incorporated in this hypothesis is that all the measurements of interest are done instantaneously. In case of a 
'measurement that involves any extension in space and time, the calculation using this hypothesis provides only 
approximate results. 

The measurement of frequency by accelerated observers is an example of such a nonlocal observation. It has, 
therefore, been shown by various authors [5] that the prediction of the measurement of frequency of a wave in a 
uniformly accelerated frame of reference, using the hypothesis of locality, yields only approximate results. Although 
the nonlocal nature of frequency measurements seem to be beyond the access of experiments in near future, it would, 
however, be important to understand the limitations of such measurements from a conceptual point of view. 

In this paper, however, we ask the question how accelerated observers should perform such a measurement ( that 
needs some finite time) of some quantity which is considered by at least one of them to be the 'time-period' of some 
event occuring at regular intervals of proper time in his or her frame of reference. An answer to such a question 
will provide us some insight into the problem of comparison among nonlocal observations performed by different 
accelerated observers. 

We consider a uniformly accelerating observer that emits light pulses at regular intervals in its proper time and 
investigate how other accelerating observers moving in the same or some other direction detect these successive pulses 
and measure the proper time interval between them. The inverse of the proper time-interval between successive 
pulses can be defined to be the frequency in case of either emission or detection. Such an intuitive definition of 
frequency retains the nonlocal property of the frequency measurement process and can be easily extended to the case 
of uniformly accelerated observers. 

In section II, we introduce different characteristics of uniformly accelerated observers and their frames of reference. 
In sections III and IV, we investigate the problem mentioned above under various situations and discuss different 
issues encountered in such measurements. We summarize and make some concluding remarks in section V. 

II. ACCELERATED OBSERVERS 

Let us consider an observer which is accelerating with a constant rate 9 with respect to its instantaneously comoving 
inertial frame. Let r be the proper time along his worldline and I be an inertial reference frame which is comoving 
with the accelerating observer at time t =to, r =O. The observer is at rest at %=%0 at that instant and accelerating 
in the positive %-directioD. 

The hyperbolic worldline of A can then be given by [2] 
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t =~sinh(cTICT) +to,
C 

Z = CTcosh(cTICT) - CT +ZO, (2.1) 

y=y, 

z= Z, 

where CT = c2I9 and CTIe characterise the motion of the accelerating observers and are called the 'acceleration 
length' and 'acceleration time' respectively. For example, it was shown [3] that the wavelength and time period of 
the radiation emitted by an accelerating charged particle following this worldline essentially corresponds to CT and CT/c 
respectively. The limit CT -t> 00 corresponds to the inertial observers' worldline, whereas when CT -t> 0, the event should 
be identified with a singularity. If to = 0, the acceleration length CT also represents the distance of the observer A at 
t =T =0 from the point where the asymptote of its hyperbolic path cuts the z-axis. 

A set of observers having same set of values for to and (zo - CT) but different values of CT (and so zo) constitute a 
uniformly accelerating reference frame called 'linear' Rindler coordinate system [6]. If to = 0, CT = zo, this coordinate 
system covers only one quadrant of the inertial frame I (I t 1:5 z, z > 0). All of these infinite number of Rindler 
observers have the same asymptotes for their hyperbolic worldlines, i.e. z = ±t (for C =1), which pass through the 
origin at t = T =O. So, in this case, the event horizon, the boundary of the causal past of these observers is a 45° 
inclined plane which these observers approach asymptotically. For nonzero values of to and (xo - CT), the origin of the 
Rindler frame gets displaced from the origin of the inertial frame I, but still all observers constituting the Rindler 
frame are characterised by common horizon, z: - (zo - CT) = ±c(t - to). 

We also consider a spherical array of uniformly accelerated observers described by a 'spherical' Rindler coordinate 
system (7) : . 

t =~ sinh(cTICT),
c 

z = CT cosh(CTICT) cos 9, (2.2) 
Y =CTcosh(cTICT)sin9sin~, 

z = CT cosh(CTICT) cos 9 cos f/J. 

In this case the event horizon is a light cone since the acceleration is now along radial directions of a sphere, instead 
of that along one of the cartesian coordinates. 

We define two observers A and B to be 'at rest' with respect to (wrt) each other, if the time as measured by any 
of these observers ( say, A ) for a light signal to make a round trip from one (A) to the other (B) and back again 
always remains constant. One can easily verify that the observers described by Eq.(2.1) but with different values of 
Xo and/or to and either same or different values of CT do not, in general, remain 'at rest' wrt each other. 

Only observers who are characterised by the same horizon line in frame I remain to be at rest wrt each other. 
So, Rindler observers all of which have same values of (xo - CT) and to always remain at rest wrt each other as their 
worldline evolves in time [8]. However, it can be shown ( by using equations similar to those to be described in 
section III) that two observers who were at rest in inertial frame I at different coordinate times to but possess the 
same horizon also have this property. A set of such observers, however, do not constitute a coordinate frame. In this 
paper we call all such observers as 'common horizon' observers. Rindler observers are, of course, a subset of 'common 
horizon' observers, ones who can together form a coordinate frame. 

In case of spherical Rindler coordinate system, observers belonging to the same subspace 9 =constant, f/J =constant 
obviously have this property, but they will not be 'at rest' wrt any other observer outside such a subspace. In general, 
accelerated observers moving in different directions never remain at rest wrt each other. 

III. TIME-PERIOD MEASUREMENT BY OBSERVERS MOVING IN THE SAME DIRECTION 

In this paper we couider a uniformly accelerated observer that emits light pulses at regular intervals in its proper 
time T. The intrinsic frequency of pulses emitted by the observer will thus be Vo =l/aro, where aTo =T2 - TI; TI, 
1'2 being the proper time of emission of two successive pulses. In this section, we investigate how other accelerating 
observers with different sets of values of CT, Zo, to and moving in the same direction measure the time-period of 
emission of these pulses. 

The inertial observer 1 meuures this time difference in ita coordinate frame to be 

(3.1) 
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For any finite value of Teltr we obtain by series expansion, 

(3.2) 


So the hypothesis of locality that an accelerating detector is physically equivalent to a momentarily comoving iner­
~ial ~etector remains t? be valid and pro~ides acc~rate result for the measurement of frequency of these pulses by 
mertlal observers only If ATocltr < 1. Th18 constramt has been arrived at by various authors [5] while studying the 
measurement of the frequency of a plane wave by a uniformly accelerating observer travelling through that. 

Now we investigate what would be the time--period of these pulses measured by another accelerating observer moving 
in the same direction. Let us consider two observers A and B characterised by acceleration lengths tr0 and tTl; and 
initial (1' = 0) positions %0 and %1; at coordinate times to and tl; (in Eq.2.1) respectively. The observer A emits two 
success~ve pulses at coordinate times tl and t2 respectively and these are received by B at coordinate times t~ and t~ 
respectively. 

As described in section II, A and B, in general, do not remain to be at rest with respect to each other. We can also 
observe that A is always able to send light to B only if it is moving ahead of B, i.e. %0 > ZI;. However, we should 
remember that if it is moving behind B, i.e. Zo < ZI;, and if their horizons are different, as shown in Fig.!, it cannot 
send pulses to B once it passes the point P where the asymptote ('horizon') of B crosses its worldline. 

We can write the following equations for the propagation of two pulses 

(Zo - tTo ) + [tT! + C2(ti - to)2Jl/2+ c(t~ - ti) =(ZI; - tTl;) + [tTl + c2(t~ - tl;)2Jl12 j i =1,2. (3.3) 

Rearranging and substituting for ti and t~ using Eq.(2.1), 

tTl; [cosh(cT/ /tTl;) - sinh(c-r;!/tTl;)] = tTo[cosh(cTi/tTo) - sinh(cri/tTo)] +KI;, (3.4) 

where 

(3.5) 

Combining two equations in (3.4), we obtain the expression for the time difference measured by B to be 

ATB = 0'1; In [0'0 exp(cT2/tTa) + KI;] . (3.6)
C O'aexp(cTI/O'a)+K" 

If O'a exp(cT2/O'a) 2: -Kbl by doing series expansion of the right hand side [9], one can get rid of [(", however, even 
then the expression for ATB remains to be complicated. An exact linear relation can be obtained only if KI; =0 which 
is satisfied by all 'common horizon' observers. It is easy to prove, using equations similar to (3.3) for the onward and 
backward journey of a particular pulse, that two observers remain to be at rest wrt each other only when KI; =O. 
Thus, all (Rindler or non-Rindler) 'common horizon' observers can be characterised by this equation, KI; = O. 

So if both A and B are 'common horizon' observers, we obtain 

(3.7) 


The relation (3.7) is valid irrespective of whether A is behind or ahead of B. So all observers having the same event 
horizon ai that of A measure the time period upto a constant of proportion.ality. 

IV. TIME-PERIOD MEASUREMENT BY OBSERVERS MOVING AT AN ANGLE WITH THE 

EMITTER 


In this section, we discusa two situatioD8 on the basis of the direction of pulse emission. First we discuss in details 
the cue when all pulses are emitted in the same direction. The calculation presented in this context also reveals how 
complicated would be the second situation when the pulses are emitted u light flashes that propagate in all directions 
alon, a spacetime cone. 

We, therefore, consider some other observer D that is moving in the r direction at an angle IJ with the observer 
A &I shown in Fig.2. The observer D is characterised by an acceleration length trd, and its initial position in frame 
1 at t = r =0 is rd,. The observer A emits succeaiw pulses while at positions Xl,X2," .etc. at coordinate tim. 
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t1, t2," .etc. respectively at an angle f3 =f31 =f32 =... with the negative z axis. These reach D while at R1, R2,.·· 
at coordinate times t~, t2,.•. respectively. 

Fig.3 shows the coordinate times of arrival of the first three successive pulses in t-r plane of the spacetime diagram. 
In all of the vertical lines RJ PJ, j =1, 2, ... represents the coordinate time of the observer A at his or her proper time 
of emission of the j-th pulse, Tj, and PJQJ represents the propagation time of the same pulse. So, the coordinate time 
of detection of the j-th pulse by observer D is 

"i5"7'r (f/J. (CTj ) Ie [ h (CTJ ) ]Rp'ffj =-smh - +ta + - (f/Jcos - + Z/J - (fa , j = 1,2, ... (4.1) 
C (fa C (fa 

where Ie =sinB/sina. 
We show below that it would never be possible for an accelerated observer moving in r direction to detect more 

than two pulses. To detect two successive pulses, j-th and (j +1)-th, the constants, (ftl, ttl and rtl of the observer D 
should satisfy the following equation 

(4.2) 

Obviously, for different values of j, the set of the values of the three quantities, (ftl, ttl and rtl should be different 
to satisfy the above equation, thus proving that not more than two pulses will ever be detected by any accelerated 
observer moving in r direction. 

Now to find what would be the difference in the time of detection of two successive pulses by observer D, using the 
simple geometry of Fig.2, we can write equations for the propagation of pulses as 

[[(f! + C2(ti - t a)2]1/2 - (fa + Xa] cosB +c(t~ -tl)cosai =[(f~ +c2(t~ -t,.)2]1/2 - (ftl + rtl; i =1,2 (4.3) 

where a. =a =11" - (13 + 0). The two equations above, after getting rearranged, become 

( cr!) CT.! )] [ CTi ) 1:'(ftl [cosh -' - COl a sinh (-' =(fa cos Bcosh (- - COla sinh (2..)] +Ktl; i =1,2 (4.4)
(ftl (ftl (fa (f/J 

where 

(4.5) 

To solve these equations we need to use the following two identities 

VY2 - X2 cosh (6 + ! In.~!i), when Y >1 X I 
X sinh {} + Y cosh 6 = (4.6)

( v'xL y2 sinh (6+ ! In i!~). when Y <IX I 

So, to apply these identities to the right hand side of Eq.(4.4), we have to consider two cases separately: (1) when 
cosB >1 cos a I and (2) when cosO <I cos a I. We also investigate case (3) when cosB =cosa. 

For case (1) Eq.(4.4) turns out to be 

. [Cr! 1 1- cos a]..; [CT, 1 cosB - cos a]
(f tl sm a cosh -' + -2 In 1 =(f/lcos2 B - cos2 a cosh - + -In + Ktl' i = 1,2. (4.7)

(ftl + cos a (1'. 2 coaB + coso ' 

Subtracting i =2 equation from that for i =1 and after some algebraic manipulation, we obtain 

Am 2CTtI. h-l [s .h ( C4TO)]'-I..J.Dl =-sm I sm -2- , (4.8)
C CTtI 

where 

CT ...tcos29 - cosi a sinh (!1..±!.2. + lIn cOI'-COIa)S - /J u;- f eo"+COICII (4.9)
1 - CTtlsina sinh("~+"2 + lin 1-COIa) .(I, f i+coea 

Similarly, for case (2), we obtain 
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A", _ 2cr4 . h-l [8 inh (CA1b)]~.l.D2 - -8m 28 --, (4.10)
C 2cr4 

where 

(J' Jcos2a - cosi8 cosh (~+ lin co. a-COli)S2 = /I 	 .,....- f eo.ateo.' (4.11)(J'4sina 8inh (,.,t,., +Iln~) . 
~. f lteoea 

Expressions (4.8) and (4.10) are not valid when either a =0, 11" or when 9 =a. The former case corresponds to 
Eqs.(3.6) and (3.7), whereas the latter is what we call case (3). In this case we obtain 

~TD3 = 2«14 sinh-1 [S3 (exp (CT2 ) _ exp (cn ))], 	 (4.12)c 	 2«14 2«1d 

where 

S3 =2 «1~ I 1 . 	 ( 4.13) 
«14 SIn a sinh (.,.\ 

I 

t"'a + 1. In l-Co.a)(I, 2 Itcoaa 

We can easily see that the Eqs.(4.8),(4.10) and (4.12) are also valid for a set of observers belonging to a 2 + 1 
dimensional spherical Rindier coordinate system. However, in this case, the existence of an expanding conical event 
horizon may, in some situations, prevent communication between two observers moving in different directions. An 
extension of these results to 3 +1 dimensional spherical Rindler system (Eq.2.2) is not being attempted here since we 
wish to concentrate only on the effect ofacceleration on the measurement process, thus keeping away other unnecessary 
complications. 

In the second situation when pulses are emitted in the form of light flashes which propagate in all directions, the 
observer D would obviously be able to detect more than two pulses. But in this case, all ajs ( and so all (Jjs) would 
have values different from each other. From Eq.(4.3) one can guess that in this case it would be very difficult to 
calculate the measured time intervals which have a complicated nonlinear relationship with the intrinsic time-period. 
The measured interval is also different for different times of emission. 

V. CONCLUDING REMARKS 

\Ve observe that the measurement (as described in previous sections) of time-period, or frequency, h&i a strung; 
relationship with the fact whether or not the emitter and detector are 'at rest' with respect to each other. If these two 
uniformly accelerated observers remain 'at rest' with respect to each other, or equivalently, if they are members of a 
set of observers having a common event horizon, the time-period can be measured upto a constant of proportionality. 
If they do not belong to the same set of 'common horizon' observers, in some cases, it may not even be possible 
to detect more than one or two number of pulses. Even if it is possible to detect successive pulses, the measured 
time-period would have a complicated nonlinear relationship with the intrinsic time-period of emission. 
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FIG. 1. The accelerated observer A can not send a pulse to B once it passes the junction point P of its worldllne with the 
horizon of B ( shown as the dashed line that is asymptote to the worldline of B). 

FIG. 2. The point. Xi ( j =1,2, ...) represent the spatial points of emission of pulses on the x-axis, whereas Rj represent 
the corresponding .patial points where the paths of the pulse propagation cross the r-direction. 

FIG. 3. The points qj ( j =1,2, ...) represent the spacetime points of arrival of pulses in the t - r plane. 
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