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The large scale interferometric gravitational wave detectors consist of 

Fabry-Perot cavities operating at very high powers ranging from tens of kW 

to MW. The high powers may result in several nonlinear effects which would 

•affect the performance of the detector. In this paper, we investigate the effects 

of radiation pressure, which tend to displace the mirrors from their resonant 

position resulting in the detuning of the cavity. We observe a remarkable 

effect, namely, that the freely hanging mirrors gain energy continuously and 

swing with increasing amplitude. It is found that the 'time delay', that is, the 

time taken for the field to adjust to its instantaneous equilibrium value, when 

the mirrors are in motion, is responsible for this effect. This effect is likely to 

be important in the optimal functioning of the full-scale interferometers suc~ 

as the VIRGO and LIGO. 
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I. INTRODUCTION 


The general theory of relativity predicts the existence of gravitational waves. Since 

gravity couples very weakly to matter, highly sensitive detectors are required to detect grav­

itational waves. Over the next decade several large-scale interferometric gravitational wave 

detectors will come on-line. These include the LIGO, composed of two interferometric de­

tectors situated in the United States each with baselines of 4 km, VIRGO, an Italian/French 

project located near Pisa with a baseline of 3 km, G E0600, a British/ German interferometer 

under construction near Hannover with a baseline of 600 m, TAMA in Japan, a medium-

scale laser interferometer with a baseline of 300 m and with funding approval AIG0500, 

the proposed 500 m project sponsored by ACIGA [1-4J. There are also separate propos­

als for space-based detectors which could be operational twenty-five years from now (e.g., 

LISA: the Laser Interferometer Space Antenna, a cornerstone project of the European Space 

Agency) [5]. The large scale interferometers will use Fabry-Perot cavities and the ground 

based detectors will have arm lengths of few kilometers . 

•
There are several noise sources which plague the detector. Amongst them, the photon 

shot noise is dominant at high frequencies. It is reduced by increasing the amount of power 

of the laser source, as the noise is inversely proportional to the square root of the power. 

Therefore the cavities envisaged will operate with very high powers in their arms, tens of 

kiloWatts for initial detectors and megaWatts in advanced detectors. The high power stored 

in the cavities can generate a number of nonlinear effects which would adversely affect the 

operation of the optical cavity. Here we look into one such effect, namely the dynamics of 

mirrors under the" radiation pressure force. In earlier literature, we and others had inves­

tigated the thermo-elastic deformation of the mirrors due to the absorption of the power 

in the coatings and performed a longitudinal analysis of the cavity [6-10]. Following these 

investigations, we studied the effects of radiation pressure in the cavity, in the r~gime when 

the displacement of the mirror is small compared with the line-width of the cavity [11] and 

the variation in the radiation pressure force is linearly dependent on the displacement. The 
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radiation pressure effects have also been investigated in earlier literature [12...,..15]. Here, how­

ever, since we now have a reasonably good idea about the instrumental parameters to be 

used in the large scale detectors, we expect that our analysis here will be important to the 

experimentalists. We assume that the mirrors are hanging 'freely' (there is no servo control) 

and the radiation pressure exerts force on them which displaces them from resonance. It is 

very important for the experimentalists to have a quantitative idea of the magnitude of these 

effects. Then accordingly the experimentalists can take the adequate measures to prevent 

the cavity going out of resonance. The main result of this paper is to establish that the 

freely hanging mirrors continuously gain energy and swing with ever increasing amplitude 

when subjected to radiation pressure force arising from the light field. The reason for this 

behaviour is the 'time delay' effect which is also examined in detail in this paper. Closed 

form expressions have been given which facilitate in understanding the physics of the phe­

nomenon. 

The paper is organized as follows: 

• 


In section II, we set up the equation of motion of the free mirrors. We examine the motion 

of the mirrors with the two forces (i) the radiation pressure force, (ii) the force of gravity. 

In section III, we numerically integrate the equations of motion using the so called 'Phase 

Space Method'. We present the results for the particular case, when the mirrors are in the 

resonance positions and the laser is switched on. We observe that the amplitude of the 

motion of the mirrors increases with time and energy is pumped into the system. For very 

large times, when the amplitude of the system is also very large, so that the mirrors cross 

several of the Fabry-Perot resonances in one cycle of the pendulum, the motion approximates 

to that of an anti-damped harmonic oscillator. In section IV, we obtain analytically, under 

the quasi-static approximation, the phase space trajectories of the motion of the individual 

mirrors as well as the motion in the differential mode and the common mode (the centre of 

mass mode). The analytical results match with the numerical ones remarkably. In section V, 

we give a quantitative description of the phenomenon under the assumption that the velocity 
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of the mirror does not change very much on the time scale of the storage time of the cavity. 

We find that the gain in energy is due to a differential radiation pressure force arising from 

the asymmetry, according as the mirrors are approaching each other or moving away from 

each other. We obtain approximate analytical expressions for the differential force, the time 

'delay' and then proceed to compute the gain in energy per cycle when the mirrors encounter 

a single resonance or cross several resonances. For large amplitudes, when the mirrors cross 

several resonances, the system behaves like an anti-damped harmonic oscillator. We can 

then associate an effective negative Q-factor for the system. We show that the Q-factor 

depends on the input power, the finesse of the cavity and the round trip time of the cavity. 

Finally in section VI, we study the behaviour of the system when it is initially in equilibrium 

and goes out of lock. This may happen when the servo loop is suddenly opened. 

II. ELECTRIC FIELDS INSIDE THE CAVITY 

We consider only 'free' mirrors meaning that no servo control loop is used. The only 

forces acting on the mirrors are the radiation pressure force and gravity which manifests itself 

as the restoring force of the pendulum. We consider a single cavity with mirrors Ml and 

M2 which are suspended as shown in fig. I. The input beam A enters the cavity from mirror 

Ml and bounces back and forth between the two mirrors. After several round trips, whose 

number is of the order of the finesse of the cavity, the field builds up inside the cavity. The 

magnitude of the field depends on the finesse of the cavity, the input power and the detuning 

of the cavity. The field or the power produces the radiation pressure force which pushes on 

the mirrors, driving them apart, thus changing the distance between the two. This in turn 

changes the power inside the cavity. For instance, if the mirrors were hanging in a position 

of resonance, the radiation pressure force drives the cavity out of resonance, reducing the 

radiation pressure force. The mirrors start swinging with radiation pressure force adjusting 

to the continuously varying length of the cavity. It is found that the radiation pressure force 

does not adjust instantaneously to the new length but lags behind the expected static force 
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given by the Fabry-Perot curve by a time-lag comparable to the storage time of the cavity. 

The time-lag has been called 'time delay' in earlier literature [13]. 

Ml M2 

B Bl 

... ... 
A ... 

B3 B2 .. .. 

FIG. 1. Schematic diagram of the cavity and the intra-cavity fields. 

The slowly varying amplitude of the field inside the cavity at time t, denoted by B(t) 

satisfies the following equation, 

B(t) = t1Aexp[ikxI(t)] + RB(t - r) exp[ikL(t)] , (1) 

where, Xi(t), Ti and ti, i = 1,2 are the positions, reflectivities and transmitivitties of the 

mirrors Ml and M2 respectively; R = TIT2, k = 2;, where .A is the wavelength of the laser 

light, r is the round trip time and 

L(t) = 2X2(t - r /2) - Xl (t) - Xl (t - r). (2) 

In case of the VIRGO cavity, the arm length Lo is 3 km, the round trip time r =~rv 
C 

2 X 10-5 seconds, where c is the speed of light. This equation provides an iterative relation 
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between the field amplitude at time t to the field amplitude at time t - r and the positions 

of the mirrors. We investigate the following two situations: 

1. 	 The mirrors are hanging in the positions of resonance and the laser is switched on at 

the time t = to. 

2. 	 T,he mirrors are hanging in an equilibrium state with the radiation pressure force 

balancing the restoring force of the suspension. 

Situation 1 represents a possible experiment. When the servo-control is not operating, the 

mirrors will be freely in motion. Then, when the laser is switched on, the radiation pressure 

will affect the motion of the mirrors. However, here we mainly deal with the case (as given 

in 1), when the mirrors are initially at rest and in the resonance position. However, many of 

our analytical formulae, for example, that of 'time-delay' apply to more general situations. 

Situation 2 describes the case when the interferometer is already in operation. Now if the 

servo-control loop is suddenly opened, the system will tend to become unstable. This case 

is also investigated. 

A. The equations of motion for the mirrors 

The equations of motion for the mirrors correspond to forced harmonic oscillator with 

'the forcing term arising from the radiation pressure force. We first compute the radiation 

pressure forces on each mirror. 

For mirror Ml, the radiation pressure force comprises of two terms, electric field due the 

input laser beam, A and the intra-cavity field B as shown in fig.I. The radiation pressure 

force is given by twice the power divided by the speed of light. The radiation pressure force 

on Ml is, 

Fl (t) = _~[R2P{t - r) - riPo], 	 (3)
c 

where, P{t) - IB{t)12, Po = IAI2 and c rv 3 X 108 m./sec., the speed of light. rr is the 

6 



fraction of average number of photons reflected by i th mirror for i = 1,2 respectively. 

For M2, the'radiation pressure force is 

I 2r2 
F2(t - 2) = --;P(t - I)' (4) 

The equations of motion for the mirrors with the masses, natural frequencies and damping 

constants, mi, Wi, Ii; i = 1, 2, respectively, are 

mi [Xi + ~. , Xi +w1{Xi - XiO)1=Fi(t), (5) 

where XiO is the initial position of the mirr<;>r such that the separation between the mirrors 

before switching on the laser is Lo = X20 - XIO. The full system of equations to be evolved in 

time are the equations from (1) to (5). In section III, we first carry out the task numerically 

and in later sections, after we have gained sufficient physical insight into the problem, we 

shall present the semi-analytical results. 

III. THE NUMERICAL SOLUTION 

For the numerical calculation, we consider the VIRGO parameters for the suspension 

and the optical cavity. We assume mi = m2 = m = 28 kg., WI = W2 = W "'" 3.75 rad./sec. 

which corresponds to a frequency of about 0.6 Hz. The Q factor for the system is "'" 106 . The 

optical parameters are I "'" 2 X 10-5 second, the wavelength of the carrier wave A "'" 1.064J,Lm, 

rl = 0.94, r2 "'" 1. The wave number is k = 21r/ A and R = 0.94. We examine the behaviour 
\ 

of the system with the input power varying between 1 kW to 30 kW. Initial detectors will 

be operated at input powers"'" 1 kW and advanced detectors at powers of few hundred kW 

or even upto a MW. Notethat these are the input powers for the main cavities after power 

recycling has been implemented. 

With the above values for the'parameters, we find that the instabilities set in, on the time-

scales of few seconds to few hundred seconds. Since the Q-factor of the pendulum-suspension 

is so large, the damping in the oscillations can be neglected for the numerical integrations 
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carried over the time intervals ~ 9. 106 seconds. Most of our numerical integrations range f"V w 

from few seconds to at most few thousands of seconds. Neglecting damping, the equations 

of motion for the mirrors become, 

i = 1,2. (6) 

The equations of motion of the mirrors are non-linear differential equations and cannot be 

solved by simple methods. 

We integrate the equations by the so called 'Phase Space method' described below: 

Let .cl be the time-step of integration. The natural time step we assume is .cl = r. We 

assume that the forcing term is a constant during each time step. This assumption is not 

unrealistic because the round trip time interval for the VIRGO cavity is of the order of 10-5 

seconds. The equations simplify enormously under this assumption. Thus we can integrate 

the equations exactly within this time interval. 

The evolution of the equations goes as follows: 

. fn{1 - cos w.cl) 
Xn+l = Xn cos w.cl + Pn SIn w.cl + 2 ' (7)

• W 

• A fn sin w.cl 
Pn+l = -Xn SlnWu + Pn cosw.cl + 2' (8)

W 

where we have dropped the indices 1,2 for simplicity and P = x/w. Here x represents the 

displacement from the mean position Xo. The index n represents the value of the variable 

at the time n.cl, i.e. for example, Xn = x(n.cl). 

The optical component has the following iterative evolution: 

fIn = _ 2[R2 Pn - l - rrPo] (9)me ' 

- 2r~Pn-1f 2n - , (10)
me 

(II) 
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(12) 

(13) 

This scheme solves the system of equations. Since it is the length of the cavity that actually 

matters for this problem, we define the variable, 

(14) 

and present the results in phase space plots of ~/w vs '¢. ,¢(t) is called the differential mode. 

We first consider the case when the mirrors are hanging in the resonance position and 

the laser is switched on. As the power builds up, ~he radiation pressure acts on the mirrors, 

driving them apart resulting in the detuning of the cavity. This reduces the radiation 

pressure force and the mirrors swing back. The motion is oscillatory and as we note, the 

oscillations increase in amplitude. We employ two values of input power namely, 1 kW 

(initial VIRGO) and 30 kW corresponding to advanced detectors. The results are presented 

by the phase space trajectories of the mirrors. We consider four variables for the purpose, 
• 

Xl, X2, '¢ and <p. <p, defined later in the text in eq. (24), section IV - B, is called the common 

mode. For the range of powers considered 1 k W to 30 k W, the phase space curves obtained 

from numerical simulations, for few tens of seconds are qualitatively the same. 

We make the following general observations about the features: 

1. 	 We observe from figs.4 and 5 that the radius of the phase space curve increases with 

every cycle which indicates that the mirrors continuously gain energy from the input 

laser beam implying that the system is nonconservative. We also observe that the gain 

per cycle is not constant but some sort of a periodic function of the radius of the phase 

space diagram. We shaH consider this phenomenon in detail in section V. 

2. 	 The (static) radiation pressure force peaks when the cavity is in resonance and drops 

down to zero when it is out of resonance, (see fig.3). The full width at half maximum 

(F\VHM) of the radiation pressure force F( '¢) is about 0.06 rad, corresponding to the. 
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F\VHM of the cavity resonance curve for a finesse of 50. Hence for the initial stretch of 

the phase space trajectory, the mirrors experience the radiation pressure force whereas 

during the rest of the time they only experience the restoring force (and the force due 

to the input power for Ml). The phase-space trajectory is circular during the restoring 

force regime and is deformed away from the circularity when the mirrors encounter 

the appreciable amount of radiation pressure near resonance (see figA). 

3. 	 Since the laser is beamed in the positive x-direction there is an asymmetry about the 

origin. This shifts the centre of mass trajectory to the positive side of the x axis (see 

figA). The period of oscillation of the common mode is twice that of the period of the 

differential mode of the system (see fig.2). 

4. 	 If we let the laser beam pump in energy for large amounts of time, the amplitude 

also becomes large and the mirrors sweep across several resonances. The phase space 

trajectory then tends to become more and more circular and the motion approximates 

to that of a simple ha.rmonic motion. This feature can be observed in all the four 

modes. The circularity of the trajectory implies that the motion is almost 'free'. The 

radiation pressure force has little effect because the mirrors sweep too quickly across 

the resonances for it to affect their motion. However as we shall see that the steady 

gain in energy still persists. Figure 5 depicts this phenomenon. 

5. 	 The amount of energy imparted to mirror 2 by the laser beam after getting reflected, 

is more than to mirror 1. Thus M2 swings with larger amplitude as compared to Ml 

(see figA) (the radiation force is larger on M2). 
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FIG. 2. Motion of the mirrors for the modes kXl, kX2, 1j; and ifJ as a function of time for input 

power of 1 kW. 
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FIG. 3. Radiation pressure force profiles for the modes kxt, kX2, 'l/J and ¢ in dimensionless units 

for input power of 1 k W for one cycle. The conversion factor for converting the dimensjonless force 

into Newtons is mw2 /k. 

12 



0.4 	 0.4 

0.2 	 0.2 

3 3 

"- "­0 	 til 0.)<·x 

~~ 

-0.2 	 -0.2 

-0.4 -0.4 

-0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4 


kXl 	 kX2 

0.1 
0.5 

0.05 

3 	 3 

0
""-	 ""- 0 

.~ 	 ."S­

-0.05 


-0.5 

-0.1 


-0.5 0 0.5 0 0.05 0.1 0.15 0.2 

'IjJ ~ 

FIG. 4. Phase space diagrams for kXl, kX2, 'ljJ and ¢ for 1 kW of input power and integration 

time of 3 seconds. 
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FIG. 5. Phase space diagram for 'ljJ for the input power of 30 kW and integration time of 500 

seconds. 
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IV. PHASE SPACE TRAJECTORIES FOR THE FIRST CYCLE 


In this section, we obtain approximate closed form expressions for the equations of the 

phase space trajectories for about a period of one cycle. For the VIRGO case, this turns 

out to be between one or two seconds. This analysis could be useful in the context of the 

initial locking of the cavity. 

A. The differential mode 'ljJ 

The equations of motion of the individual mirrors, equations (3) to (5) allow us to write 

the equation of motion of the system of mirrors in the differential mode as, 

.. 2 k
'l/J + w 'l/J = -[F2(t) - FI (t)]. (15) 

m 

In the quasi-static approximation, 

Pmax (16)P (t . - T) ::.: P (t) = (1 + (2:)2 sin 2 'l/J) , 

where :F = 7rv'1i/(1 - R) is the finesse of the cavity and 

tiPo (17)
Pmax = (1- R)2· 

Thus the equation for 'l/J is, 

(18) 

where 

2k(r~ + R2) (19)Fo = 2 Pmax , 
mw c 

and 

,,/. _ 2kPor~ (20)
0/0 - 2·mw c 

For the VIRGO cavity, we have the following numerical values for the quantities: 

'l/Jo = 0.88I~W, :F = 50 and Fo = 62.61~QW· 
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For :F » 1, the term on the right hand side of equation (18) is non-zero only when '¢ « l. 

With the approximation sin'¢ rv ,¢, we can easily integrate equation (18) to get the phase 

space trajectory of the mirrors, 

,(;;2 ) 2 Fo 7r 1 ( 2:F) 2
'2 + ('¢ + '¢O = --;r:- tan- -'¢ + '¢o- (21)
W J 7r 

For low powers like 1 kW, the approximation sin '¢ rv '¢ works remarkably well and agrees 

with the numerically obtained phase space trajectory_ In order to compare the analytical 

and numerical results, we compare the maximum value of ,¢, namely '¢max, of the trajectories 

for various input powers in fig.6. 

2 

>< co 
E 
~ 1.5 

1 

o 1 2 3 

FIG. 6. Comparison of the values of ¢max obtained analytically (smooth curve) and numerically 

(open circles) for input powers of 1 kW, 5 kW, 10 kW and 30 kW. 

l. When '¢ is small that is near resonance, the equation of the trajectory reduces to 
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~2 
2" = 2Fo1/;. (22)
w 

Thus the trajectory is parabolic in shape and passes through the origin. 

2. When 1/; 1, the trajectory is a circle as expected since there is hardly any radiationt'V 

pressure force acting on the mirrors. The equation of the trajectory in this regime is 

~2 ( 2 F01r2 2 

w2 + 1/; + 1/;0) = 2:F + 1/;0' (23) 


When the input power is very large :: 50 kW, the trajectory does not maintain this 

simple shape. For example when Po t'V 50 kW, the trajectory is as shown in fig.7. 

5 10o 

FIG. 7. Phase space diagram for the 'lj; mode for the input power of 50 kW and integration time 

of 3 seconds. 
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This is because the high powers make the mirrors cross several resonances in the first 

cycle itself and consequently the trajectory has more complex behaviour. vVe do not pursue 

this case here. 

B. The common mode <p 

In this sub-section, we study the motion of the center of mass of the system of two 

mirrors. We define the center of mass coordinate of the two mirrors as, 

(24) 

The equation of motion of the system in the center of mass coordinate is, 

(25) 

where for F1(t) and F2(t) are given by equations (3) and (4). The equation of motion takes 

the form, 

(26) 

where 

Fc = 2k(r~ - R,2)tiPo 
(27)mcw2 (1 - R)2 

For VIRGO parameters, Fc = 4.0 l~W' The above equation is a second order differential 

equation and is coupled nontrivially to the 'ljJ mode. The strategy we adopt is to study the 

motion of the center of ~ass in different regimes; (1) near the resonance and (2) away from 

the resonance. The full trajectory is obtained by matching the solution in the region of the 

overlap. 

1. For 0 :s; 'ljJ :s; 0.5; sin'ljJ f"V 'ljJ, equation (26) becomes 

(28) 
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Further for 'ljJ :::; 3 X 10-3 , (2~tP)2 ~ 1; we neglect (2~tP)2 as compared to 1 and obtain, 

¢2 
2" + ¢2 = 2(Fe + 'ljJo)¢. 	 (29) 
w 

For the VIRGO cavity and input power 1 kW, Fe 0.4. Neglecting the quadratic rv 

term in ¢ as .compared to the linear term, we see that the motion of the center of mass 

describes a parabola for low values of'ljJ and ¢, 

(30) 

We compare the slopes of the phase space diagrams in the differential mode as well as 

the common mode. The phase space curve is more steeper in the common mode as 

compared to the differential mode. 

2. 	 Away from resonance, 'l/J ~ 0.5, the power stored inside the cavity is almost zero. The 

equation of motion of the center of mass is given by, 

(31) 

The solution for the initial conditions ¢ = ¢o, ¢ = ¢o is, 

¢2 	+ (¢ _ 'l/JO)2 = ¢~ + (¢o _ 'l/JO)2. (32)
w2 	 w2 

This solution must be matched to the solution in case 1. Suppose we match the solution at 

¢o = 0.5, from equation (29) we have ¢/w rv 0.7. This gives the approximate solution. In 

general the solution in this region is, 

¢2 

2" + (¢ - 'l/JO)2 = 2(Fe + 'l/Jo)¢o + (¢o - 'l/JO)2 - ¢~. (33)

W 

The equations (29) and (33) describe the full solution for this mode. 

The phase space trajectory for the individual mirrors can be obtained from the motion 

of the mirrors in the differential and the common modes. The trajectories of the Xl and X2 

modes are shown in figures 2 and 4. 
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v. ENERGY CONSIDERATIONS AND ANTI-DAMPING 


In the previous section, we examined the motion of the mirrors under the radiation 

pressure force. We noted that each time when the mirrors cross a resonance they experience 

an impulsive force. In this section, we analyze in detail as to how the system gains energy 

as each resonance is encountered. 

A. Quasi-static approximation 

We start with the quasi-static approximation in which the system is conservative, thus 

there is no net gain in energy. We then phenomenologically introduce the 'time delay', liag 

which now leads to gain in energy. We thus obtain liag in terms of the cavity parameters 

and this gives us an equation for an anti-damped harmonic oscillator. The energy,gain can 

be obtained as shown in the following sections. Finally, for large times, the gain can be 

expressed through a negative Q of a harmonic oscillator. 

In the quasi-static appr9ximation, we assume that the mirrors are moving 'slowly' that 

is the intra-cavity power has time to adjust itself to the slowly changing positions of mirrors, 

i.e. I'¢ «: 1 - R. Thus neglecting I from the equation of motion we obtain, 

(34) 

where'ljJo as given in the previous section gives the constant displacement due. to the constant 

input power Po from the laser beam and Fs('ljJ) is the radiation pressure force in the static 

case is given by, 

(35) 

where Fo is given in equation (19). The dimensionless energy of the system is an integral of 

motion and is obtained as 

1 '¢2 
E = 2w2 + Vsus('ljJ) + Vo('ljJ) + v;.ad('ljJ), (36) 
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where the potentials are given by, 

(37) 

(38) 

(39) 

The system is conservative in this approximation. These results have been obtained in the 

earlier literature [13]. 

However, we note from the results of nume~ical simulations that the system indeed gains 

energy with every cycle of oscillation. Moreover this gain occurs when the radiation pressure 

force is appreciable i.e. when the system is near resonance. Most importantly, we observe 

from the numerical simulations that radiation pressure force lags behind its quasi-static 

value by a 'time-lag' which we denote by 'Tlag • We find that in the case of VIRGO, 'Tl ag 

varies from 16'T to 30'T as one climbs up the resonance curve from half its maximum to the 

maximum. 'Tlag is of the order of the storage time of the cavity. With this in mind we write 

the force F(t) rv Fs(t - 'Tlag ) and obtain the following equation of motion, 

(40) 

Taylor expanding the forcing term to the first order we obtain, 

ib dFs • 
w2 + 'Tlag d'¢ '¢ + ('¢ + '¢o) = Fs('l/J), (41) 

as the equation of motion for the system. The "j; term in equation (41) is responsible to the 

gain/loss of energy of the system. This solely depends on the sign of ~ since 'Tlag is always 

positive. If we start the system from resonance at '¢ = 0, '¢ starts increasing slQwly and in 

the region, !!£t < 0 and the system experiences more force than what it would have been in 

the quasi-static case. This excess force is manifested in an excess amount of energy fl.E. In 

general, the energy gained/lost over a certain amount of time is given by, 
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(42) 

It is clear from equation (42) that when rt < 0, the energy gain ~E > 0 and vice-versa. 

But since the radiation pressure force always gives a kick in the positive -'ljJ direction,the I'¢I 

is always larger when rt < O. In other words, the amount of energy gained by the system 

is more than the amount of energy lost. Hence there is always a net gain in energy when 

the system crosses a resonance. 

We need to compute this extra force ~F which gives rise to the gain in the energy to 

the first order in Tiag. We obtain, 

(43) 

We note that ~F depends on the phase velocity and rt. Since rt ~ 0 when the system is 

away from resonance, ~F comes into play only in the region of resonance. Another way of ' 

describing the fundamental as:ymmetry is to say that for the moving mirror, the wavelength 

of the laser light is modified.by the Doppler effect. When the mirrors are approaching each 

other, the apparent frequency of the light for the cavity is increased, or equivalently, the 
I 

line-width of the cavity seen from the laboratory frame is narrower and vice versa when the 

mirrors move away from one another, the line-width is seen to be broader. The consequence 

is that the braking force (when the mirrors move against the light) acts for a shorter time 

than the accelerating force, when the mirrors are moving away from each other. Over one 

cycle the energy difference is positive and there is a continuous increase of mechanical energy 

which comes from the laser. 

B. The computation of the time-delay 

In this section, we obtain a closed form expression for the 'time-delay', Tla!! under the 

approximation that the relative velocity of the mirrors does not change much during the 

storage time of the cavity. This is observed in the numerical simulations and hence the 
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approximation may be justified. rlag is the most important quantity for computing the rate 

of gain in energy. 

The intra-cavity radiation field at n-th time instant Bn is related to the intra-cavity field 

at n + I-th time instant via an iterative relation, 

(44) 

where, Bn = B(nr), 'l/Jn = 'l/J(nr). We compute the field Bn from initial time to, which we 

take to be zero. We take the time step for the iteration to be the round trip time r. In order 

to compute the intra-cavity field, it is necessary to know the temporal behaviour of 'l/J. For 

the static case, when the mirrors are stationary, we get the equilibrium field Bs. When the 

mirrors are moving, the approximation now comes into play, namely, we assume that 'l/J is 

constant over the storage time of the cavity. 

The Taylor expansion of'l/Jk to the first order around t = 0 is, 

(45) 

where 'l/Jo = 'l/J(t = 0). Iterating equation (44) n times starting from t = 0 when B = Bo, we 

obtain, 

n-l 

Bn = tlA :E Rme2i"L;:~_m 1Pk + Rne2i"L;:~ 1Pk Bo. 	 (46) 
m=O 

For large n, the last term on the RHS in equation (46) tends to zero and the electric field 

amplitude at the n-th iteration is given by, 

(47) 

• 	 If the relative separation between the mirrors is constant in time, 'l/Jk = 'l/Jo, we retrieve 

the equilibrium field Bs: 

= t A ~ Rm 2im¢o = tlAB 	 (48)
8 1 L....t e 1 _ Re2i¢o' 

m=O 
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• Turning now to the case in hand, when 1/Jk varies linearly \vith time, the sum in the 

exponential for large n is approximately given by 


n-l 1 
 2 .L 1/Jk m1/Jn - -m T1/JO' (49)rv 
2k=n-m 

vVe cornbine equations (47) and (49) to obtain, 

n-l 

Bn = tlA L Rme2im'I/Jne-im2nf;o. (50) 
m=O 

If "j; is small then the exponent can be linearized. Then it is possible to express the 

field as the sum of the static term B s and the remaining part tl.B which corresponds 

to the time lag. 

We write 

Bn = Bs + tl.B, (51) 

where 
n-l 

tl.B = -iTtlA~o L Rme2im'I/Jnm2. (52) 
m=O 

Summing the arithmetico-geometric series [16] yields, 

. "j;R2e-4i'I/J 
(53)tl.B = -2ztlAT (1 _ Re-2i'I/J)3' 

The corresponding power tl.P is given by 

2 2
tl.P = 2R (B tl.B*) 16tiIAI TR 1/J"j;(1 - R)rv (54)e n n [(1 _ R)2 + 4R1/J2]3 . 

Refering to equation (19), we get the expression for the dimensionless extra force, 

tl.F = 2k(r~ + R2) tl.P. (55) 
mw2c 

The above expression of power is for values of 1/J near resonance when 1/J « 1. vVhen 

'ljJ rv n1r, the same expression can be replaced by the 'ljJ - n1r under similar approxima­

tions. The effective 'time delay' Tl ag is now obtained from (43), (54) and (55). 

2TR 
(56) 
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\Ve note from the equation (56) that the effective time lag is maximum at the resonance and 

starts decreasing as one goes away from the resonance value. For VIRGO parameters, we 

compute the value of the Tiag. At FWHM, i.e. 'ljJ "-' 0.03, Tiag "-' 16T, going up to Tiag "-' 30T 

as one approaches resonance. 

C. Energy gain near the resonance at 'ljJ = 0 

In this section, we examine the motion of the mirrors for small amplitudes. Initially 

before the laser is switched on, the cavity is at resonance i.e. the two mirrors are separated 

by an integral multiple of 7r in phase (~ is an integer). The system starts from 'ljJ = 0 and 

the motion is allowed to evolve with time. We restrict the amplitude to 1'ljJ1 ~ 7r and study 

the system in this regime. Our goal is to compute the net gain in energy, f).Ecycle during 

one cycle of oscillation. We have, 

·{1/Jl . 
f).Ecycle = 2 10 f).F('ljJ)d'ljJ, (57) 

where 

f).F _ 16TR2Fo'ljJ'¢ 
('ljJ) - (1 - R)3(1 + (~)2)3' (58) 

We note that 4ft ~ 0 in this regime. We set an arbitrary cUt-Off'ljJl (when f).F « 1) as the 


system moves away from the resonance. The factor of two is because the force is encountered 


twice during the cycle. 


The '¢ is obtained from the energy balance equation, 


(59) 

Thus from (57) and (58) we get, 

JRF (60)f).Ecycle = 8WT 7 Fo3/2I(l/Jd, 

where, 
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(61) 


and ¢1 = 2F'¢1/1f. The cut-off ¢1 should be away from the resonance and we find for the 

VIRGO, ¢1 5 is an acceptable value.' f"V 

0.8 

~ 0.6 

>. 

() 

~ 
<] 

0.4 

0.2 

o I 

o 2 3 

FIG. 8. The gain in energy per cycle obtained analytically (smooth curve) and numerically (open 

circles) for input powers of 1 kW, 5 kW, 10 kW and 30 kW. 

The numerical and the analytical results are compared in fig.8 by plotting the gain in 

energy per cycle for various input powers. 

To convert the dimensionless energy gain in Joules we multiply by the factor ofmw2 / k2 
f"V 

11.2 pieo-Joules. 

26 



D. Energy gain for large amplitudes 

As the mirrors gain energy they swing with ever increasing amplitude and sweep over 

several resonance peaks of the Fabry-Perot cavity. The system gains energy at every reso­

nance peak and thus the energy gained per cycle is the sum of the energy gained at each 

resonance encountered. The peaks are encountered at 'ljJ == n7r, with nmax 2:: n 2:: nmin, 

nmin < 0 and nmax > O. The total number of resonances encountered by the mirrors is 

nmax + Inmin I + 1. Also it is observed that nmax 2:: Inmin I due to the built-in asymmetry 

arising due the laser power pumped in the positive x-direction (see fig. 3). 

Let ~En be the energy gain at the n-th resonance, then the total energy gained per cycle 

~Ecycle is given by, 

nmG% 

~Ecycle == L ~En, (62) 
nmin 

where 

(63) 

and ~En-' ~En+ is the energy lost or gained respectively and given by the following ex­

pressions, 

. (64) 

(65) 

Combining equations (57,59,62 to 65) we get the energy gain at n7r as, 

167R2Fo' . rIJI 'ljJ 
(66)~En ~ (1- ~)3 ('ljJn+ - 'ljJn-) 10 (1 + (~)2)3d'ljJ, 

where "jJn- and "jJn+ are the relative phase velocities of the mirrors for 'ljJ ~ n7r and 'ljJ 2:: n7r 
-

respectively. The energy gained at different resonance positions of the mirrors is different 

because the "jJ is different at different resonances, "jJ is maximum when In/ is small and 

becomes small when n approaches nmin or nmax . Thus the net energy gain per cycle is 
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(67) 

The next task is to compute the ("j;n+ - "j;n-), the increase in phase space velocity while 

crossing the resonance position as a function of n. For large values of n, the radiation 

pressure effect reduces remarkably as is observed in fig.3. Hence we take the static force 

equation to compute the increase in the phase space velocities. We integrate equation (41) 

neglecting the anti-damping term obtaining the change in kinetic energy as, 

(68) 

Equation (68) reduces to 

(69) 

where we have approximated "j;n+ + "j;n- ~ 2"j;(n1f). 


To compute "j;(n1f)/w analytically, we consider the dimensionless instantaneous energy as 


given by equation (36), 


(70) 

where J( 'l/J) == It (1-R)2!!Rsin2 '¢. We can approximate the integral for large motions as 

J( 'l/J) 1~~2 rv 1-'¢R2 for n crossings of the resonances. Assuming T2 == 1 and Tl == R, werv 

have, 

(71) 

where 'l/Jc == ~kJoc rv lo':tv (for VIRGO parameters). The phase space trajectory is a circle 

centred around 'l/Jc with radius 

(72) 

Equation (71) gives ,¢(:1r) as 

(73) 
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We rewrite the gain in energy per cycle as, 

(74) 

where nmax is the greatest integer not greater then ('l/Jc +p) / rr and nmin is the smallest integer 

not smaller then ('l/Jc - p)/rr. We have, 

n ma .1' 

8(nmax' nmin) = I: g(nrr), (75) 
n=nmin 

where 

g(mr) = ~ - 21j11 (ljIo + n7r).
Jp2 - (nrr - 'l/Jc)2 

(76) 

For large motion of the mirrors, since the mirrors cross many resonances we may replace 

the sum by an integral over n. Changing over to the variable M nrr - 'l/Jc, in which the 

system appears more symmetric about the origin, we have, 

(77) 

• 
where 0: = ¥'t - ~('l/Jo + 'l/Jc) and (3 = ~. Mmax and Mmin correspond to nmax and nmin 


respectively. 


We note that p satisfies the following inequalities, 


(78) 

We observe that when n is large, the difference between IMmin I and Mmax is small, of the 

order of 1 or 2 times rr. We denote the difference, by 6M where, 

(79) 

The integral in equation (77) splits into three parts 8 = 8 1 - 82 - 8 3 , where 

8 1 = 20: sin-1 Mmax/ p, (80) 

20: 
(81)82 ~ 6M ( 2 _ M2 )1/2 ' p max 
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(82) 

The dominant term is 51 \vhich gives the general behaviour and shape of the curve shown 

in fig.9. While 52 produces a small kink in the curve, the effect of 53 can essentially be 

ignored. In case of the VIRGO cavity and Po 30 kW and p 20, 51 ::: 16.7, 52 ::: 1.75rv 	 rv 

and 53 ::: 0.26. For the initial VIRGO detector, Po "" 1 kW, and p rv 4.0, 51 ::: 0.56 while 

52,53 ::: O. 

Considering only 51, the energy gain per cycle is approximately given by, 

hE 2~Emax . -1 Mmax 
U cycle = SIn --, Mmax ~ p ~ Mmax + 1, 	 (83) 

7r P 

where, 

(84) 

We observe the following features in the profile of ~Ecycle: 

• 	 At the resonance position, p = Mmax the energy gain is maximum and equal to ~Emax' 

For the VIRGO cavity specifications and input power of 30 k W, ~Emax "" 3.8. When 

Po "" 1 k W, ~Emax "" 4.2 x 10-2
. 

• 	 Equation (83) shows that the energy gain per cycle is a decreasing function of p. The 

energy gain decreases till the next resonance is crossed, where it suddenly increases to 

~Emax. As the amplitude increases, p increases from Mmax to Mmax + 1, the mirrors 

sweep across the resonances a little faster which deprives them from gaining the full 

energy .6.Emax . ~Ecycle therefore reduces from .6.Emax to .6.Emin , where 

hE 2.6.Emax . -1 M max 
U min= SIn M (85) 

7r max + 1 

• 	 The energy profile in this range of p Le.Mmax to Mmax + 1 can be approximately given 

by, 

(86) 
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FIG. 9. The dimensionless energy gain per cycle ll.Ecycle as a function of the amplitude of the 

1/J mode for the input power of 30 k W. The plot is analytical. 

We note that the minimum value is, 

(87) 

and it tends to the maximum value D..Emax as Mmax becomes very large . 

• 	 In fig.9 it is seen that there is a kink after D..Emin is reached. The kink occurs because 

Mmin reduces by 1 when the mirrors cross yet another resonance on the negative side. 

This is accounted for by the second term. 

Since the E f'V p2, the rate of increase of p per cycle, denoted by D..p is given by D..p = !:J.pE. 
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E. The negative Q-factor 

In the previous section, we have seen that for large values of p, the amount of energy 

gained by the system of two mirrors per cycle is a constant and tends to .6.Emax . The 

system is an anti-damped harmonic oscillator which gains on an average, constant amount 

of energy per cycle. We may therefore associate a negative quality factor -Q, where Q > 0, 

with the system which describes the anti-damping. In this section, we endeavor to study 

the behaviour of Q. 

The equation of motion of an anti-damped harmonic oscillator is given by, 

x X 
- - -+X=O, (88)
w2 wQ 

where Q is constant. The solution for X is of the form 

(89) 

In our case, X = 1/J - 1/Jc and the amplitude is p I'V Xoewtj2Q when p is sufficiently large so . 
that the phase space trajectory is approximately circular and can be compared to a simple 

harmonic oscillator. Since a constant amount of energy is gained per cycle, the Q will be 

a function of time. However, we can still describe the system by an average Q taken over 

a cycle, which we denote by < Q >cycle , since the change in Q during one cycle is small. 

Moreover, we assume <Q; d<Q~CYcle ~ 1 i.e. the fractional variation of < Q >cycle over 
w cycle 

a period of a cycle can be ignored. Thus we obtain a W.K.B. solution for p(t) as, 

[lit ]wdt
p(t) = p(to) exp -2 < Q > ' (90) 

to cycle 

where to is some fixed but arbitrary initial time instant and p(to) is the radius of the circular 

phase-space trajectory at to. We have also assumed that < Q >cycle» 1. The energy from 

equation (72) is given by, 

1 [ wdt ]E(t) - E(to) = -2 P2 (tO) exp(it Q ) - 1 . (91) 
to < >cycle 

32 



Since the energy gain is a constant and during a cycle equal to llEmax , we can equate :: ~~ 

to ~Emax to obtain, 

E(t) - E(to) = Wf:J.2~max (t - to). (92) 

The time evolution of p is obtained again from equation (72), which yields, 

~Emax ]1/2p(t) = p(to)[1 + 2 w(t - to) . (93)
7rpo 

Equating the logarithmic derivatives of (91) and (94) we obtain, 

< Q >cycle (t) =< Q >cycle (to) + w(t - to), (94) 

where < Q >cycle (to) = ;:;~~l· We observe that both the energy and the < Q >cycle increase 

linearly with time while the amplitude p increases as t1/ 
2

• < Q >cycle (t) depends through 

~Emax on the input power, finesse and the round trip time. 

For Po = 30 kW of input power, the trajectory more or less obtains a circular shape 

when p{to) f"V 15. For the V~RGO parameters, 

Po 2
~Emax 0.42{ 10kW) 3.79. (95)f"V f"V 

Thus < Q >cycle (to) f"V 186 and so 

< Q >cycle (t) f"V 186 + w{t - to). (96) 

Further, if we also consider the effect of the damping of the suspension then the limit 

cycle will be approached when < Q >cyclef"V Qsus 106 for VIRGO. < Q >cycle will attainf"V 

this value after wt f"V 106 which corresponds to little more than 3 days. The corresponding 

amplitude is given by, 

p = p(to)[l + w{t - to) ]1/2 f"V 1100. (97)
< Q >cycle (to) 

This simple analysis will have to be modified when the limit cycle is almost reached, 

that is when, < Q >cyclef"V Qsus. Here, however our goal was to estimate the time it takes to 
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reach this stage. The above analysis is then adequate for the purpose. However, when the 

servo operates or otherwise such a situation is unlikely to arise because other effects such as 

mirror tilting etc. will be important long before and then the dynamics will be completely 

different. 

VI. THE EQUILIBRIUM CASE 

Lastly, we examine the case when the mirrors are in equilibrium under the radiation 

pressure force and the restoring force. We have to determine whether the equilibrium is 

stable or unstable. To this end we perturb the equation (41) about a given equilibrium 

point. Writing 'l/J = 'l/Jeq + 8'l/J and linearizing, we get, 

(98) 

where, 

7r 3 (1 + (2.rtPeq )2)3 
(99).Teq= -(2F) Fo'l/Jeq;VR ' 

and 

n2 _ 2( 2F)2 'l/JeqFO (100)eq - 7r (1 + (2.r:eq)2)2 . 

If 'l/Jeq ~ 0, n;q ~ 0, the sign of Teq does not matter and the instability grows exponentially. 

If on the other hand 'l/Jeq > 0, then although n;q > 0, Teq > °and this leads to gradually 

growing oscillations until the pendulum tips over the maximum. We plot the phase space 

trajectory for the input power of 1 kW in fig.l0. We conclude from this that the cavity is 

always unstable when radiation pressure forces act. The time-delay plays a crucial role in 

making the system unstable. 

The negative Q-factor for the motion of the mirrors near the equilibrium position, is 

given by, 

(101) 
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FIG. 10. The phase space diagram for the equilibrium case for the 'ljJ mode. The input power is 

1 k W and the integration time is 4 seconds. 

For an input power of 30 kW, with VIRGO cavity parameters, the equilibrium position of 

the mirrors near the resonance at zero is 'l/Jeq "" 0.25. The corresponding values 6f the other 

quantities are Deq "" 4.75 and Teq "" 104 seconds. The negative Q-factor, Q "" -2.3 X 104
. 

Whereas for the initial VIRGO, Po "" 1 kW, 'l/Jeq "" 0.16 thus Deq "" 1.67, Teq "" 3.1 "" 104 
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seconds, the negative Q-factor, Q rv -2.6 X 104. 

VII. CONCLUSION 

We have analysed the effect of radiation pressure on the freely hanging mirrors (no servo 

loop) suspended in the laser interferometric optical cavities. After numerically evolving the 

full set of equations of motion with respect to time, we find that the amplitude of the mirror 

oscillations continuously increases as time progresses. We introduce the 'time delay', that is 

the time taken for field to adjust to the motion of the mirrors, in a phenomenological way 

to explain the observed gain. We conclude that the gain in energy is due to the differen­

tial radiation pressure force arising from the asymmetry depending upon the motion of the 

mirrors. From another viewpoint we can also explain the gain in energy qualitatively by 

the Doppler effect. vVith respect to the mirror the frequency of the incoming laser beam is 

higher as compared to that of the outgoing laser beam due to the Doppler effect. The deficit 

of the energy of the laser beam after getting reflected from the mirror can be looked upon . 
as the energy gained by the mirrors. The values of the energy gain per cycle are computed 

analytically under the reasonable assumption that the mirrors are not accelerated within 

the time scale of the storage time of the cavity. For VIRGO p3:rameters, the analytical 

values agree remarkably with the numerical values. The interesting point to note is that 

the motion of the mirrors approaches that of an anti-damped harmonic oscillator with a 

constant gain in energy, as time progresses which implies that the mirrors move too quickly 

to get affected by the radiation pressure force. The negative Q-factor of the anti-damped 

oscillator depends on the input power, the finesse and the round trip time of the cavity and 

increases linearly as a function of time. The analysis will have to be modified when the 

negative Q-factor becomes of the order of the damping Q-factor of the suspension fibre, if 

such a case can arise. 

In this paper, we have shown that the radiation pressure force makes the freely hanging 
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mirror unstable for all values of the input power and irrespective of the initial conditions. 

The above analysis is relevant in the event, when the interferometer is in operation and if 

the servo loop is suddenly opened. Then the motion of the hanging mirrors can be deduced 

from the above analysis. This analysis will be helpful in designing a servo-control which 

can prevent this instability. In the previous work [11], the servo-control was included in the 

linear regime of the Fabry-Perot curve assuming the transfer function for the servo given 

by Caron et al. [17]. Their work sets the stage for analysing the system in the non-linear 

regime as well, but then we will need to know how servo-control operates in the full regime. 
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