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Abstract

The paper presents a complete set of quasilocal densities which describe the

stress-energy-momentum content of the gravitational field and which are built
with the canonical Ashtekar variables. The densities are defined on a two-
surface B which bounds a generic spacelike hypersurface Z of spacetime. The
method used to derive the set of quasilocal densities is a Hamilton-Jacobi
analysis of a suitable covariant action principle for the Ashtekar variables.
This work also investigates how the quasilocal densities behave under gener-
alized boosts, i.e. switches of the T slice spanning B. It is shown that under
such boosts the densities behave in a manner which is in full accord with the
equivalence principle. The developed formalism is used to discuss the canon-
ical action principle for bounded spacetime regions with “sharp corners”.
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I. INTRODUCTION

The geometric expression for the energy of a nonrelativistic system (the functional form
of the Hamiltonian in terms of the coordinates and momenta) can be discerned from the
system’s action functional. This follows from a basic tenet of Hamilton-Jacobi theory: the
classical energy of the system is minus the rate of change of the classical action (the Hamilton-
Jacobi principal function) with respect to a unit stretch in the absolute Newtonian time. The
ability to define the classical energy in this way rests on the fact that in the conventional
variational principle for the system the lapse of absolute time is fixed as boundary data.
From a practical standpoint, this means that in order to find the geometric expression for
the system’s Hamiltonian, one need only consider the general variation of the action (often
called the Weiss action principle [1]) in which the endpoints of trajectories in the variational
set are not held fixed. Upon inspection of the boundary-term contributions to the variation,
one can determine the canonical momenta as the factors which multiply the variations in
the endpoint values of the coordinates. Furthermore, after the momenta are determined,
careful inspection of the boundary-term factor with multiplies the variation in the absolute
time then reveals the functional form of the Hamiltonian.

Recently, Brown and York have proposed a generalization of the Hamilton-Jacobi
method, which is applicable to a wide class of generally covariant field theories of a space-
time metric (in any dimension); and they have used this generalized method to discern
what geometric expressions play the role of quasilocal stress, energy, and momentum in
general relativity. Field theories of a spacetime metric enjoy a crucial feature in common
with simple nonrelativistic systems: in the action principle it is possible to fix the time as
boundary data. To see that this is indeed the case, consider a spacetime region M which is
topologically the Cartesian product of Riemannian three-manifold £ and a closed connected
segment of the real line . The three-manifold X has a boundary 9% = B which need not be
simply connected. Therefore, one element of the boundary dM of M is a three-dimensional
timelike hypersurface 7 (“unbarred” T is reserved for a more special meaning) which has
the topology of I x B and is a (2 + 1)-dimensional spacetime in its own right. The other
boundary elements are t’, the three-manifold corresponding to the initial point of I, and ¢”,
the three-manifold corresponding to the final point of I.! Now suppose that we are given
a “suitable” action functional for the metric (and possibly matter) fields on the spacetime
region M. By “suitable” we mean that the variational principle associated with the action
features fixation of the induced metric on each of the boundary elements ¢/, t”, and 7. In
particular, the lapse of proper time between the initial and final hypersurfaces is fixed as
boundary data since this information is encoded in the fixed 7 three-metric. The quasilocal
energy is then identified as minus the rate of change of the classical action with respect
to a unit stretch in the proper time separation between #' and t”. (Therclore, inspection
of the boundary-term contributions to the variation of the action can reveal the geometric

10ne may imagine that M C U, where U is some ambient spacetime known as the universe or
sometimes the heat bath. The boundary B and its history 7 are simply collections of points in &/
and need not be physical barriers.




expression for the quasilocal energy. This geometric expression is obtained by isolating the
factor which multiplies the variation in the lapse function which controls the proper time
separation between I3 slices of 7.) However, notice that the 7 three-metrie provides more
than just lapse of proper time between e initial and final slices, since it contains informa-
tion about all possible spacetime intervils o.. 7. One is free to consider the rate of change
in the classical action which correspoiei oo aibiteary vaciations in the 7 bhoundary data.
A quasilocal surface stress-energy-momentum tensor corresponds to this freedom. For the
most relevant case of general relativity, the analysis of Ref. [2] has demonstrated how this
tensor leads to quasilocal surface densities for energy, tangential momentum, and spatial
stress (all are pointwise tensors defined on /3) which describe the stress-energy-momentum
content of the & matter and gravitationa! ticlds contained within B.

This paper uses such a Tlamilton-Jocohs e method to devive gquasilocal stress-energy-
momentui surface densitics which are built with the Ashtekar gravitational variables. Since
the the Ashtekar version of general relativity is inherently a non-metric formalism, the
Hamilton-Jacobi analysis given by Brown and York has to be slightly modified. Neverthe-
less, the cornerstone of the method used here remains a “suitable” action principle, i.c.
information about the lapse of proper tiu:e must be fixed as boundary data. Now, the usual
covariant formulation of the Ashtckar variailes is based on the well-known chiral action
independently given by Samuel [3] and Jacobson and Smolin [4]. This is a Palatini action
which features the independent variation of the spacetime self-dual spin connection and the
SL(2,C) soldering form. Applied to our spacetime region M, this action principle does not
feature fixation of metric data on 7. and hence it is not well-suited for our purposes. Per-
haps, one could consider adding the necessaiy boundary terms to the chiral action in order
to obtain a suitable variational principle. tiowever, here we follow another route which is
based on a lesser-known covariant formulation of the Ashtekar theory which has been given
by Goldberg. [5] Goldberg’s action functional is first-order, but in the variational principle
the connection is not varied independently from the tetrad. We find that, subject to certain
gauge fixation of the tetrad, Goldberg’s action is a tetrad version of the action functional
used to derive quasilocal stress-energy-in.oientiun in the metrie scenario. It should be men-
tioned now that partial gauge fixation of the tetrad and triad plays a crucial role in what
follows. At first sight this may seem objectionable. But one should recall that such gauge
fixation is also unavoidable in the triad formulation of Hamiltonian gravity, when one dis-
cusses the notions of total energy and momentum in the asymptotically-flat scenario. In
that case one must deal with a “fiducial tvizd at infinity”. [5.6] The gauge fixation of the
triad in the quasilocal context is of the saie nature though less restrictive.

There is a subtle interpretational issue concerning the analysis to follow which deserves
so comment at the outset. The Brown-York quasilocal densities are not unique, since one
has the freedom to add a subtraction term (a functional of the fixed boundary data) to the
gravitational action which is used to devive the densities. Brown and York have offered the
interpretation that such freedom aliows vii 10 sct the reference points for the quasilocal
densities.? Now, the results of gravitationa! thermodynamics are, in fact, independent of

2This is quite analogous 1o the situatice it nospelarivistic mechanics, where one can aflect the
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the choice of subtraction term, and, therefore, such freedom seems to be an unnecessary one
when examining the statistical mechanics of the strong gravitational field. [7,8] However, the
subtraction term plays an important role in several other theoretical contexts. For instance,
it must be incorporated into the definition of the quasilocal energy, if in the suitable limit the
definition is to agree with the Arnowitt-Deser-Misner (ADM) notion of energy at spacelike
infinity. [2] Furthermore, recent research has shown that there is an implicit reference point
set in spinor constructions of quasilocal energy based on the Witten-Nester integral. [9] In
this paper the passage from the triad ADM variables to the Ashtekar variables is effected
by the addition of a purely imaginary boundary term to the action. We formally treat this
boundary term as a subtraction term ala Brown and York. This allows us to construct the
theory in a parallel fashion with the presentations given in Refs. [2,10]. However, though
technically this viewpoint is completely satisfactory, it should be realized that it is less
satisfactory from an interpretational standpoint. Indeed, if we wish to adopt the Brown-
York interpretation for the imaginary subtraction term, then we are confronted with the
issue of imaginary reference points for the quasilocal densities. Furthermore, even with the
imaginary subtraction term, in the suitable limit the Ashtekar-variable expression for the
quasilocal energy as given here does not agree with the ADM notion of energy at spacelike
infinity. This seems alarming, but in fact is not a real problem. It merely signifies that it
is perhaps better to view the imaginary subtraction term not as true subtraction term, but
rather as part of a bigger base action. To derive an expression for the quasilocal energy
in terms of the Ashtekar variables which is in agreement with the ADM expression, we
would need to begin with an action which differs from this bigger base action by yet another
subtraction term. In other words, our analysis is actually performed only on a base action
(even though we split this base action into two pieces and treat one piece formally as a
Brown-York subtraction term), and it should be understood that in some contexts it may
be necessary to consider the addition of appropriate subtraction terms to this base action.
We discuss these issues in more detail in the concluding section, but remark now that we
expect the results of this work to be complete for any potential application of the Ashtekar
variables to gravitational thermodynamics.

The organization of this paper is as follows. In §1, the preliminary section, we discuss in
detail the geometry of M in terms of several classes of spacetime foliations. This discussion
is the groundwork for the analysis in the main sections. We also collect some notations and
conventions in this section. In §2 we derive a complete set of quasilocal densities which are
expressed in terms of the Sen connection and triad on X, and thus may be easily rewritten
later on in terms of the canonical Ashtekar variables. The geometric forms of these densities
are discerned from a careful analysis of the boundary terms which appear in the Goldberg
action principle. This analysis is quite analogous to the method described for nonrelativistic
systems in the introductory paragraph. In §3 we turn to the issue of how the collection of
quasilocal densities behave under generalized boosts. This behavior is similar to the simple
boost law for energy-momentum four vectors in special relativity. Also in §3, we consider

definition of a system’s energy and canonical momenta by adding boundary terms to a system’s
action.




the canonical form of the action principle for spacetime regions with “sharp co%'ners”. This
analysis supplements recent results from standard metric gravity for such spa‘cetlrm.es. [10,12]
The appendices provide some kinematical results necessary for the central dlscu§51ons. The
first three appendices develop the results necessary to write down the boosf, rela'tlon: for th,e’:
quasilocal densities. A forth and final appendix presents a method for dealing with “corner
terms in gravitational actions (such terms are described below).

II. PRELIMINARIES
A. Foliations

The boundary structure of M leads to two classes of spacetime foliations. Our discussion
of these foliations is close to one given by Hayward and Wong [12]. ,

Temporal foliations of M. The first type of break-up stems from a conventional ADM
foliation of M into a family spacelike hypersurfaces. [13] A foliation of this class, referred to
as a temporal foliation, is specified by a time function ¢ : M — I. The leaves of the foliation
or slices are the level hypersurfaces of this time coordinate z° = t. Often, the possible time
functions are restricted by the requirement that both ¢ and ¢” must be level hypersurfaces
of coordinate time. The letter £ is used both to denote a foliation of M and to refer to
a generic slice of this foliation, and the X slice specified by ¢ = 1. (t. is some constant) is
denoted ¥,,. If the manifolds #' and t” are level hypersurfaces of coordinate time, then it
is convenient to set t’ = Ly and t” = .. The timelike, future-pointing, unit, hypersurface
normal of a ¥ foliation is denoted by wu.

Radial foliations of M. The existence of the timelike boundary 7 suggests an alternative
class of foliations of M. Members of this alternative class are called radial foliations and
rely on timelike hypersurfaces or sheets which have the topology of 7 (informally, sheets
are radial leaves while slices are temporal leaves). One assumes that a radial coordinate
z® = r parameterizes a nested family of such hypersurfaces which extend inward from 7.
This family of timelike sheets may converge on some degenerate sheet, and if this is the case,
then there is a coordinate singularity at the degenerate sheet.> With a notation similar to
the one introduced above, we may represent 7 by 7,», so the level hypersurface specified
by r = " is T (the inner radial sheet is 7,.). The spacelike, outward-pointing, unit, T
hypersurface normal is denoted by 7 (the unprimed letter n is reserved for a related but
different vector field introduced below).-

Foliations of ¥ and 7. It is of interest to examine how the ¥ and 7 spacetime folia-
tions mesh. If a temporal and a radial foliation of M are simultaneously given, then the
intersection B;, = ¥ N7, is a two surface with the topology of B. Defining B; = B, ,#, one
finds that the family of B, slices foliates 7. This foliation of 7 and its generic leaf are both
loosely referred to as B. The timelike, future-pointing, unit, hypersurface normal of this

31t should be emphasized that only a “local” radial foliation of an arbitrarily small spacetime
region surrounding 7 is necessary for the analysis in this work. The full radial foliation of M is
introduced only to have a closer analogy with temporal foliations.
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foliation is %. In general, the vector fields u and % do not coincide on 7. Fixation of the
time gives a family of sheets B, = B,,, which radially foliate the £ hypersurface specified
by ¢t = t.. This foliation of ¥ and its generic leaf are also represented by B. The spacelike,
outward-pointing, unit normal of this foliation is denoted by n, and in general n and 7 do
not coincide on .

Clamped foliations. Often in this paper we need to consider a particular subclass of &
foliations, determined by the property that on 7 the timelike normal u is orthogonal to
7. Such foliations are denoted by £ with corresponding normal @. (So we have @ -7 = 0
on 7, where @ is also the normal for the B foliation of 7.) We described a & foliation as
clamped. Note that it may not be possible for a temporal foliation to be clamped over all
of 7, since the u normals of ¢’ and t” may not be orthogonal to 7 (assuming that # and
t” should be members of the family of ¥ slices). We can also consider the locus of“points
which is the Eulerian history of B with respect to an (in general) unclamped X foliation.
This “boundary”, denoted by 7 is generated by the integral curves of u and may “crash
into” or “emerge from” the actual boundary 7. Note that by construction the ¥ foliation
1s clamped to 7, since the outward-pointing spacelike normal of 7 is n.

We maintain this barred and unbarred notation when it is necessary to deal simulta-
neously with clamped and unclamped ¥ foliations. However, in §3, which presents the
derivation of the quasilocal densities, we make the clamping assumption which means that
only clamped ¥ foliations of spacetime M are considered (or every ¥ foliation is a ¥ folia-
tion). When the clamping assumption is made, over-bars become redundant, and therefore
in §3 we drop all bars from the formalism. In this section we assume that the u normals of
t' and ¢” are orthogonal to the 7 normal 7 (in this section denoted simply by 7 and n).
Though this is a limiting assumption, it in no way affects the generality of this paper, as
we return to the fully general scenario in the following section. We demonstrate that the
clamping assumption is a purely kinematical condition.

B. Conventions and notation

We adopt the following index notation. Lowercase Greek letters serve as M spacetime
indices. Lowercase Latin indices from the latter half of the alphabet serve as ¥ (and %)
indices and as 7 (and 7) indices. There is -hopefully- no confusion caused by this dual
use of Latin indices. Lowercase Latin letters from the first half of the alphabet serve as B
indices. Orthonormal (or when appropriate pseudo-orthonormal) labels and indices for each
space are represented by the same letters with hats. For example, i is a spacetime tetrad
index and & is a B dyad index.

The spacetime metric is g, with associated (metric-compatible and torsion-free) covari-
ant derivative operator V,, and e;? denotes a spacetime tetrad. The (pseudo)orthonormal
symbol on spacetime is defined by ¢ji35 = 1 = —e%23 Respectively, we have ¥; and D;
(vi; and D;), h;; and D; (h;; and D;), and 0,4 and é, denoting the metric and intrinsic
covariant derivative operators on 7 (T), £ (£), and B. We use £:7 (£:7), E:7 (E;:7), and
0; %, respectively, to represent a triad on 7 (7), a triad on  (£), and a dyad on B. Respec-
tively, the permutation symbols on 7 (7), £ (X), and B are defined by ;5 = —1 = €12
(Cﬁié =-~1= eéié), €i53 = 1= Eiﬁ (giéé =1= €i§3), and €i5 = 1= Cii. (In Ref. [14] the

6



convention for the 7 orthonormal symbol differs by a sign.)

C. Spacetime decompositions

The foliations just discussed lead to two decompositions of the spacetime metric. We
choose Lo examine the metrie in a frame which has /00 and 3/0r an two o Lhe Trame
legs. To begin with, the temporal foliation ¥ allows the matrix of metric components to be

written as

_N? 4+ hi ViVi by Vi o
Ngull = ( s o ;L‘_j ) : (2.1)

where the ¥ indices run over (1,2,r). The N and V’ are the ordinary ADM lapse and
shift. Further, since each of the ¥ slices is foliated independently by nested sheets with the
topology of B, the matrix form of the ¥ three-metric is given by

Oa Oap 3°
ol = (2o o Sl 2

Here, o and 3* are the “lapse” and “shift” associated with the induced radial foliation of X.
The super matrix formed by combining these expressions gives the so-called (1+2)+1 form
of the metric. The (1 + 2) indicates that three-space has been split into a radial direction
plus a two-space, while the 1 indicates the time direction.

Similarly, beginning with the full radial foliation 7 of spacetime one has,

_ i '7‘1'81;. . : 2.3
g (’—)’ijﬂj d2+'7ijﬂ‘/3’) ’ 23)
where the 7 indices and range over (t,1,2). The & and B* are the gauge variables associated
with this foliation. The submatrix associated with ¥;; is ’ :

_ N2 40, VeV g, VP
Ilwll=( Tow VeV ow ) (2.4)

Oab Vb Tab

where N and V* are the lapse and shift associated with the induced B foliation of 7. The
super matrix of components for this splitting is the metric in 1 + (2 + 1) form.

It is a straightforward exercise to express the “barred” variables in terms of the “un-
barred” variables by simply equating the components of the (1 +2)+ 1 and 1 4+ (2 + 1)
versions of the spacetime metric. First, define

V.on aVr 5 B-a Np
N = N’ a @
and the point-dependent boost factor v = (1 —v2)~1/2 = (1—-2)~1/2, With this boost factor

the set of transformation equations may be written as

(where v = —0) (2.5)

v




2=

. a=qay
- Vh=vigvrph (2.6)
2
ab_ 2 (b Y b
B =7 (ﬂ +V,V)
't____(v')’)z
ﬂ'—' V" M

The clamping assumption is tantamount to the v — 0 (y — 1) limit, in which case there
is no longer a distinction between barred and unbarred variables. Note that in this case
VF =V .n = aV* =0, which, as described in [2], implies that in the canonical form of the
theory the ¥ Hamiltonian can not drive field configurations across the boundary B.

III. QUASILOCAL STRESS-ENERGY-MOMENTUM DENSITIES
A. Action and variational principle

Before turning to the derivation of the quasilocal densities, we must describe the action
principle which is the cornerstone of our approach. Our starting point is the first-order
Goldberg action [5]

. 1 . .
1 — . T R
S [epg]-—zn'/ IY:Ne" Aoy, (3.1)

where £ = 87 (in units with G = ¢ = 1) and 55, = e, V,€;7 represent the spacetime
connection one-forms which specify the Levi-Civita connection on M with respect to the
tetrad e" . Also, the Sparling two-forms [5,15] are defined by

05 = —-% €ooii P&i A ('3'1 . (32)

Therefore, as mentioned, the Goldberg action is not a Palatini action in which tetrad e? ,
and connection I'Y ;, are varied independently. - As it stands, the action (3.1) possesses
superfluous tetrad dependence. However, note that the Goldberg action is invariant under
spacetime diffeomorphisms which preserve the boundary, since it is written purely in the
language of differential forms. [16] .

Our goal is to identify the Goldberg action (3.1) with the familiar “T'rK” action used
in metric gravity. The extrinsic curvature tensor associated with the ¥ foliation is defined
by K,, = —h} Vu, (with the projection operator hj, = g} + u*u,), while the extrinsic
curvature tensor assocxated with the 7 foliation is deﬁned by @W = 'y;} Vi, (with the
projection operator ’yﬂ = g“ —n*,). The first step towards the desired identification is to
note that the action differs from the ordinary Hilbert action by a pure divergence [5,14]

—;;/MP‘E;/\C”}/\G,; /§Re ———/ e"/\ap , (3.3)
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where e* is volume form on M. Evidently, all of the action’s tetrad dependence resides
exclusively in boundary terms,
- 1 ) _
L e(eno)=t i) o
Now, if the time leg of the tetrad e coincides.with the future-pointing normals u on both t/
and t", then the boundary terms associated with these manifolds are the the desired TrKX
terms. Likewise, enforcing the condition that the third tetrad leg e; coincides with the T
normal 7i on 7 ensures that the one obtains the desired T'r® term for the 7 boundary term.
We assume that the variational set of tetrads obey these conditions. However, in general
such tetrads are doubled-valued on the corners B” = t"(\T and B’ = ' 7T, since u- 7 need
not vanish on these two-surfaces. Therefore, to express the action (3.1) in the desired form,
relax the second gauge condition on e; on a “small” (not simply connected) neighborhood
of the corners such that the tetrad is single-valued. Next, take the limit that this small
neighborhood “shrinks” to just the corners B’ and B”. Such a limit procedure is described
in Appendiz D, and it yields the following expression for the action:

1 1 rt” 1 _ 1 rB"
r __ = 4 — L 3 1 3 - 1 5
5= g [ dtavTaR L [ VK =L [ #ayTO- L [ g, 65)

where ¢ = tanh™! v is the point-dependent boost parameter on B” and B’ associated with
the boost velocity v defined in the last section. The corner terms were first given by Hayward
and Wong for the metric action. [12] Heuristically, they arise because, though the corners
constitute a set of measure zero in the Tr K integration over all of 9M, the trace of extrinsic
curvature is infinite on these two-surfaces (as the normal of M changes discontinuously from
u to 1). Note that the corner contributions to the action vanish if the initial and final slices
are clamped to 7. To obtain the variation of (3.5), one may straightforwardly vary the action
(3.1) and then apply the limiting procedure. This direct method is sketched in Appendiz D.
However, in the interest of brievity we borrow from results given in Refs. [10,12]. Subject to
the chosen internal gauge fixing, the action (3.1) is a tetrad version of the metric action used
in Ref. [2] to define quasilocal stress-energy-momentum in general relativity. Hence, for the
moment we may regard it as a metric action. Indeed, only the gauge-invariant quantities
ij, hij, and hj; are fixed on the boundary M in the associated variational principle. Refs.
[10,12] have shown that the boundary contributions to the variation of S! are

' i el 1 B ‘
(85") o0 = . dsa:PJtsh.'j+/rd33:7r’57.~j—;/81 4% $6./c, (3.6)

where the gravitational momenta are given by

Pl = g (K BY — K9

(3.7)

i = _ \/—_‘7 ((:) 7.‘,‘ _ éx’j) )

K

The variable p/ becomes the standard ADM momenta in the canonical form of metric
gravity, and it is conjugate to h;;. Likewise, # is the ADM-type momenta conjugate to

9



%¥:j, but now canonical conjugacy is defined with respect to 7. Note that equation (3.6)
includes corner contributions to the variation which feature fixation of intrinsic geometry,
in harmony with the fact that the induced metric is fixed on M.

There is a complex-valued action functional, closely related to (3.1), which is based on
the self-dual (+) (or anti-self-dual (-)) connection forms -

?

e _ _1.
2

| Q(W“Fe””ng. (3.8)

This action is referred to as the complez Goldberg action and has the form (here we take the
self-dual case)

L 1 . ;
S[e”“]=—ﬂ/MI“°;./\e /\0'(”5? (3.9)
where the complex Sparling two-forms are
O'(i) s = —€5ip F(i)&i A 6‘1 . (310)

The complex action (3.9) differs from the previous one (3.1) by a purely imaginary boundary
term. Indeed, setting

S=8"-38°, (3.11)
we find that
~s0= o [l A (s —at)] (3.12)

With the gauge choices made above and the limiting procedure described in Appendiz D, an
appeal to Stokes’ theorem yields
- .

-S? = —-él; ; d3z her"pwg,;j E:7 + 2% .[rdsaf \/—_"7 er? Tipj &7, (3.13)
where 7:5; = £ D; &% and wis; = Ex D; E; * are respectively the triad connection coeffi-
cients on 7 and X. Notice that —S? contributes no corner terms to the action and that it
serves as a subtraction term (a functional of the fixed boundary data) [2,10] in the broadest
sense (it depends on the boundary data of T, ¢/, and ¢”).* Because of the triad dependence of
the subtraction term, we do not have the option of viewing the action (3.9) as solely a metric
action. Furthermore, in order to fully remove the superfluous tetrad dependence associated
with the action S, one would have to completely specify the triad on each boundary element
of M (though we do not chose to completely do so).

Now consider the boundary-term contributions to the variation of the action (3.9). Since
the plan is to work with the Ashtekar variables in the canonical form of the theory, first

4To avoid confusion, it is crucial to note that in Refs. [2,10] the notation S’ represents an arbitrary
subtraction term, while in this paper 57 represents the specific term (3.13).
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express the boundary-term contributions (3.6) to the variation of the action S’ in terms
of the densitized triads on T, ', and ¢”. (This is easily done with the identity (4.7) given
below and a similar identity for the T metric and triad.) Adding this result to the variation
of (3.13), we find that

(68)ops = i/;“ &Pz A 6(VhE:) + i/r P A 6 (V=7E7) - _1’; : A’z ¢6\/7,
(3.14)
where we have introduced the connections
A*’j=i-( =ik ) s%(—%ef"‘ﬁ%ﬁj-ix”j) |
(3.15)
A= % (77, +i0%;) = i— (ée”ﬁ Fiss +ié”j) .

(With these conventions w' ;; = € ;;w? j and 77 3; = €7 55 77 j.) The connection variable A7 ;
is (up to a factor of k) the ¥ Sen connection, which becomes the Ashtekar connection in
the canonical form of the theory. Likewise, the second connection A" ; is the Sen connection
associated with 7. It is a complexified SO(2,1) connection and enjoy properties completely
analogous to the well-known ones enjoyed by the ¥ Sen connection. In particular, in terms of
the curvature of A" ; one may compactly express the constraints associated the embedding
of T in the Einstein space M. [14,17] Note that here these connections are not the canonical
Ashtekar connections. We have not written down imaginary contributions to the corner
terms which presumably arise from integration by parts on §S? terms. In fact, these vanish,
and a calculation which demonstrates this is outlined in Appendiz D.

B. Quasilocal densities

We now present all of the fundamental B tensors which serve as quasilocal densities
describing the stress-energy-momentum content of the ¥ gravitational fields contained within
B. We express these densities in terms of the ¥ Sen connection and triad. In the next section
when studying the canonical form of the action principle, we consider the canonical versions
of these expressions which are written in terms of the ¥ Ashtekar variables. To begin with, we
collect a set {e, ja, $%*} of quasilocal densities which is essentially the same as that described
extensively in the original Ref. [2]. This set is comprised of an energy surface density ¢, a
tangential momentum surface density j,, and a spatial stress surface density s*. We also
find the need to introduce a new set {ji,j.,1*®} of quasilocal densities (also considered in
[10]), which is comprised of a normal momentum surface density ji, a tangential momentum
surface density j, (which turns out to be the same as j,), and a temporal stress surface
density ¢**. Both sets may be derived from the gravitational action (3.9) via the Hamilton-
Jacobi method as described in the introduction. Therefore, we adopt the unifying point of
view that any quasilocal stress-energy-momentum quantity is given by the rate of change of
the classical action S, corresponding to some variation 6Sy in the fixed boundary data of
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OM = t'Ut"UT. However, we do not explicitly consider the classical action as in Ref. (2],
since we prefer to “read off” the geometric expressions for above densities from the boundary
contributions (3.14) to the variation of §.

In order to “read off” the various quasilocal densities from the boundary terms (3.14),
we make two assumptions in this subsection. (i) First, we assume that the ¥ foliation of M
is clamped, so that u -2 = 0. Again, this means that one may drop all overbars associated
with three-boundary quantities from the formalism. Also, this sets ¢ = 0 on the corners.
The clamping assumption is made in this section only for convenience, and we return to the
general slicing scenario in the next section. (ii) Second, we enforce partial gauge fixation
of the triads on the boundary elements of M. Following Ref. [14], we require that the T
triad is time-gauge. This condition ensures that the 7 piece S%|r of the subtraction term
is functionally linear in the lapse N and shift V°. As described in detail in Refs. [2,10]
this linearity condition is crucial, because it ensures that the quasilocal energy density ¢
and momentum density j, depend solely on the Cauchy data of ¥. Similarly, the triads
on both ' and t” are required to be “radial-gauge”. These restrictions on the T, t’ and
t” triads ensure that the purely imaginary piece of the corner contribution to the variation
(3.14) vanishes (indeed we have already seen that this is a condition which follows from how
the tetrad has been selected) and ensure that the quasilocal densities to be defined behave
appropriately under boosts. These points become clear below. The time-gauge and radial-
gauge conditions are defined and discussed in Appendiz A. Unlike the clamping assumption
(i), these boundary gauge restrictions (i) are absolutely necessary for our formalism. Once
we have obtained both the geometric form and a physical interpretation of each quasilocal
density, we turn in the next section to the issue of how these densities behave under boosts
and also consider the canonical form of the action principle when the ¥ slicing need not be
clamped. .

Let us first examine the 7 contribution to the variation of the complex Goldberg action
with the assumption of a clamped X slicing. Subject to the time-gauge requirement, the 7
triad and cotriad can be expressed (at least locally) in terms of a B dyad 6;° and codyad

06 by
€L.=1/N(8/0t—V®0/0z°) & =0:"0/0z"
' (3.16)

¢t =Ndt € = 6%, (da® + Vdt) .

(The time-gauge condition has been indicated by replacing the triad label 0 with L.) The
associated time-gauge 7 connection coefficients are the following:

Terr = 0z [log N]

Tiae = 1/N [a'bdo(ébéé)d + 0:°0:%6, Vd)]
(3.17)
Tsp = 05 0as (6.0:°)

Ti3, = 1/N [o',,doli"éi]" —1/2€* 6,V — 144 Tiéb] R
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where for this set the “dot” represents partial time differentiation. Plugging these coefficients
into S°|;, one can verify that S°|; is functionally linear in the shift V* and has no N
dependence. Next, applying the identites

06:7[ON = /707 7}
0&:7[0V* = — /o 1} of (3.18)

0€:7/06%, = N /7 (€7 0:° —n260:°0,7) .

to the T piece of the boundary variation (3.14), we write the 7 contribution to as

(85)r =~ | Pz VG £ N — jusv* - i;'-sab (56)a] - (3.19)
Here the quasilocal density s is defined with respect to
1 6§
b= 51 3.20
¢ /=7 66¢, | ( )
via 5% = 5:%0%, and the expression (80), is shorthand for 26;,60%,. Notice that

(60)(ab) = 60qp, while (80)(, is a pure gauge variation of the B dyad. Also, note that
sl*tl is completely determined by the subtraction term §5°|7 (s(#®) is determined by §S? and
859 contributions). Explicitly we have

1 6S .
E=— —==| =-iA%6:°
o 6N |, |
1 é6S . .
Ja = 'ﬁ 5Va ; = —1 A‘La (3.21)
1 .. 65 R , X
ab — éa =i F g 3 ab__ gé _dapg b
= =0 i (4767 0% — A 0™ 6, ") .

We can rewrite these densities in terms of the ¥ Sen connection. The appendix results (C12)
express the time-gauge 7 Sen connection A" ; in terms of the radial-gauge & Sen connection
A" ; and other gauge variables. Insertion of the appendix results into the above expressions
gives the following: :

£ = Caé A&b 05 b
ja=iAr, « (3.22)
3% = ¥ Asd o 0; b + (2i/rc I‘(” {31 — € Asq 0; d) o

Henceforth, we assume that ¢, j,, and s** represent these expressions. Notice that & and j,
are built exclusively from £ Cauchy data (E;7, K7 ;). Because of this fact, ¢ and j, can
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be interpreted as canonical expressions depending on the Ashtekar variables. Because of
the presence of 2iTj3, = a;n’ +i7j;,, the density s® does not depend solely on £ Cauchy
data. This term contains the spacetime acceleration a* = u”V, u* of u# as well as the
T connection coefficient 7i3,, which describes the rotation of the B dyad under parallel
transport along the integral curves of u. Both of these terms depend on how the Cauchy
data evolve in time. The real parts of the densities in the above set correspond exactly to
the quasilocal densities first introduced in Ref. [2]. Indeed, expressed in full detail,

E= ~1— k
K
M _._2._ PR { | i i
Ja = \/E NiOg; p~ — ;wIZa (3'23)
= L (o = k) ] 4 L (o)

where k,p is the extrinsic curvature of B as embedded in ¥ (with k = 0% k,3) and I,; is the
extrinsic curvature of B as embedded in 7.

We assume that each density has the same physical interpretation as given in Ref. [2] and
review these intepretations now. (For the following interpretations to be valid, one should
consider the densities €, j,, and 5% to be evaluated “on-shell”, i.e. evaluated on some
particular solution of the Einstein field equations.) From its definition /o ¢ equals minus
the time rate of change of the action S, where the time separation between the B slices of
T is controlled by the lapse N on 7 (fixed as boundary data in the variational principle).
Therefore, ¢ is interpreted as an energy surface density for the system as measured by the
Eulerian observers of ¥ at B. The total quasilocal energy associated with the ¥ gravitational

the integral of the quasilocal energy density over the two-surface B. This notion of energy
is the value of the on-shell Hamiltonian (associated with a single generic ¥ slice) which
generates unit time translations orthogonal to B (which corresponds to the choice N =1
and V = 0 on B). In a similar fashion, j, is intepreted as a tangential-momentum surface
density, and the integral

Jy = /B &2 /5 6% ja (3.25)

represents the total quasilocal tangential momentum (angular momentum) carried by the
¥ fields. On-shell, the real part is the value of the Hamiltonian which generates spatial
diffeomorphisms in the direction of ¢* (corresponding to the choice N = 0 and V* = ¢° on
the boundary). The form of j, makes it tempting to identify the imaginary part of Jy with
the “spin” of the B dyad. E and Js may be interpreted as functionals on the gravitational

phase space associated with £. The real part of s*® represents the flux of the ¢ component.

of momentum in the b direction. [2]
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The original set of quasilocal densities have been obtained from a careful analysis of the
T contribution to the variation (3.14) of the action. In a similar fashion we now analyze
the ¢’ and t" contributions to the variation. Often we drop the ' and ” notations with the
understanding that all expressions may refer to either the manifold ¢’ or ¢”. Remember that
the ¢’ and ¢ triads are radial-gauge.® (The radial gauge is indicated by replacing the triad
label 3 by F.) Therefore, with may split E:7 into a and B° (the gauge variables associated
with the 1 + 2 split of k;;) as well as the B codyad 6%,. With this assumption, we find
identities like those in (3.18). Therefore, it easy to write the ¢’ and t” contributions to the

variation (3.14) as

" t"
(6S) = — / Pz /o [j.. S+ 5 8% — 5 1 (59)4 . (3.26)
tl
The new quasilocal densities described at the beginning of this subsection are then

1 éS

I+ \/E&xt,, lAb
1 6S
ja=——=—| =iA", 3.27
g Vo 662, (3.27)
1 . 6§ R . .
ab — ‘a = F .7 ab__ 4éd caghb
= o= 55, (A7 BT 0% — A% 0 0;%)

with the same expressions for the densities associated the manifold ¢. In full detail these
are

jt— = \/[-; n;n; pij

- 2 ii i ) ;
Ja = “‘ﬁ Oainjp’ — ~ Wita (3.28)
teb = ——-\/.,.l_ o} U; Mo -i- (wiii- o+ k.° Cbc) .

Note that the definitions of j, and j, are identical, and hence j, carries the same physical
interpretation as j,. Therefore, from now on we suppress the hat on j,. This equivalence of
Ja with j, results from the chosen gauge conditions. Also a result of these conditions is the
fact that both ji and € are real. It turns out that the reality of j and ¢ (or equivalently
that the subtraction term S has no a or N dependence) is quite crucial, as it ensures that
J- and € behave well under boosts. Note that even if we had not enforced the radial-gauge
condition on the ¢’ and t” triads, then all of the densities listed immediately above would still
by construction depend only on £ Cauchy data. As shown in [10], j- is a normal momentum
density, and the total normal momentum associated with the X fields is given by

5Technically we only need this condition to hold at the boundary B.
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J = /B &’z /7 jv . (3.29)

This expression is the minus the value of the on-shell Hamiltonian which generates unit
“dilations” orthogonal to B (corresponding to the choice N =0, V* =0,and VF = aVr =1
on B). Finally, we refer to ¢** as the temporal stress density.

IV. BOOSTED DENSITIES AND THE CANONICAL ACTION
A. Boost realtions and invariants

We now demonstrate that our collection of quasilocal densities behave under generalized
boosts in a manner which is in accord with the equivalence principle. Fix a spacelike two-
surface B in spacetime and also consider an arbitrary spacelike hypersurface £ which has
boundary 8L = B. The hypersurface normal of £ is @. If we view the & slice as a member of
a temporal foliation, then we may define the Eulerian history of B as 7. By construction %
is clamped to 7 The observers at B who are instantaneously at rest in the ¥ slice (Eulerian
observers of ¥) determine the following set of quasilocal densities:

€=e¢%A;0:"
Jrr = —i1 A%, 0;°

Ja=i1A", . (4.1)
5% = €% Aau 0% 0+ (2/6TH 35, — € 4346:%) 0

t_ab =i(/‘iij-',‘-jUab - A&ca"“Ga") .

The primes appear in these formulae because in the triad formalisms we set ¢, = % and
E., = nn. Note that here 2i[j;,, = a;n/ +i7j3,,. Now consider a different hypersurface
¥ which spans B (so like before 0¥ = B). We may view ¥ as a particular leaf of a
temporal foliation which is not clamped to 7, the Eulerian history of B with respect to L.
Geometrically, the scenario now is identical to the bounded spacetime region M that we
have considered in the preliminary section. The observers at B who are at rest in the ¥
hypersurface determine the set of quasilocal densities which are listed in (3.22) and (3.27)
- (simply the “unbarred” versions of the expressions above). We seek the transformation
rules between the “barred” and “unbarred” densities, or, in other words, the behavior of the
quasilocal expressions under switches of the hypersurface spanning B. With the appendix
results (C14) and (C15), it is quite a simple matter to establish that

E=ve—vYJr
Je=qg —vye
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2
o
;2 4.2
Ja=Ja— ——bav (4.2)

1 1
‘-S-ab = ’)’Sab - v,’,tab + ;aab,yfi u[v] + -;a'“bv'ys n[v]

- 1
tab _ ,Ytab _ vysab _ laabvsn[v] _ ;a“"v'y3u[v]
K

These are precisely the boost relations found in Ref. [10]. Remarkably, the particular form of
the subtraction term (3.12), subject to the chosen gauge fixation, does not affect the boost
relations of the “bare” densities. It must be stressed that if the gauge conditions (time
gauge on T, and radial gauge on ¢’ and t”) had not been enforced when defining the set of
quasilocal densities, then the above boost relations would not have held. In particular, if
€ and j- are defined with subtraction-term contributions (which in this paper means they
would no longer be real), then the first two boost relations are modified.
Following Ref. [10], define tracefree parts of s** and ¢,

1
abE a.b_l cc ab _ kab vlca be
n s [2s%.0 K( +i e)
(4.3)
(b=t 1/2¢ 0% = 21 (lab+ikca€bc) ,
K

Notice that the shear stress n°® depends only on £ Cauchy data. Of course, § = s°, =
1/6(2a,n* — k + 2i1y;, ) depends on how u* and the B dyad are extended into the future.
Similarly, though ¢*® depends only on T Cauchy data, its trace 9 = ¢*, = 1/ (2b, u* + 1 —
2iwj3.) depends on how n and the B dyad are extended into the interior of B. We refer to
(% as the shear temporal stress. Each of the densities ¢, jr, ja, 7°® and (*® depend only on
the extrinsic and intrinsic geometry of B and the the normal n# at B. One can easily see
that

T—]ab = ,y,qab —v'yp“b
(4.4)
P =7p" —vyn®.
With the set {e, ji, ja, 7%, (**} of qﬁasiloca.l densities we can construct several invariants.
For instance, notice that under boosts the density j, transforms like a gauge potential, since

¥?8,v = 6,¢. Therefore, the “field strength” or curvature Foy = 28, jy) of is an invariant.
Borrowing the results from [10], we write down the following list of invariants

F? = F,, F

m? = ¢? — j? (4.5)
(m)? =na "ab — Cab Cab
(me)* = 29 ¢ (Nab Ced — Cab Nea) -
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(We make no claim that these need be positive.) To these we may added auny local function
G(oa) of the B metric. Hence, a “mass-squared” that we can construct with our densitios
is

M? -—"/de.r\/g[aF2+br72.2+c(rn,)2+(I(mg)4+eg] \ (1.G)

where a, b,c,d, and e are arbitrary functions on B. Again, no claim is made that /? is
positive.

B. Canonical action

Our goal in this subsection is to consider the variational principle associated with the
canonical form of the action S (3.11). In order to express S in canonical form. we [irst
cousider the (3+1) form of S. Begin by expressing S in (3+1) form. To do this. borrow the
results from Ref. [10]. In that reference the action S’, viewed as a metric action. has heen
expressed in canonical form.® Therefore, we must “translate™ this result into the language
of triads. This translation is achieved by assuming that the ¥ metric is a secondary quantity
derived from E;? and by using the identity

Ohi;jJOE:* = (E)"Y(hij E" . — hy; ET i — hiy E7 ;). (1.7)
The result is

s :/ d*z [l K E: I —NH -V HJ] +/Td3m [{ Jo— NH! — v"%_,{} (1Y)
M ’ C

A

where we have the following:

H = —)1: [h'”2 ([\"' (K, — K" K° i) E: E;' — b/ R]
Hj = —i—Dk (IX’ijE,: b ll§ 1\'7: ,‘E,: i) ( I())

H' = o [ve' —ov(i' )

,’_“{1

) 1
V5 [(11)a = £ 828
Here R is the Ricci scalar of ¥, and ¢/, (j!)-, and (j!), stand for the real parts ol the

densities in (3.23) and (3.28) (the notation is vedundant for = and jr, as these are purcly
real). Also, at this stage, the hybrid extrinsic curvature A" ; is merely a short-hand notation

5For the metric action the (3+1) form is obtained from the canonical form by simply assuming
that p"/ has the form given in (3.7) and that k;; = —1/2N (h;j +D;V;+ D, V;).
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for a complicated function of N, V7, E:?, and E;7. Finally, note that H! and H/ arc not

constraints.
The next step is to calculate the (3+1) form of the subtraction term. which can he

written as
i Fp ) o = Fip =
=80 = = [ d'eh (9w Bd) + 5= [ a0 =T n (1.10)

Tedious but straightforward manipulations yield

.

i 78p ]
-_50 = —5—’;-/\4 dize pw,f;;]' E;’
1 , . L i
+;—/ d4.’L' \/I_lD; (E' ik EU E,: k) + )—/ (13.73 \/'-:1‘ e f;l;,t . { [ 1] )
“K JM ZR JT

where £7/ = h=Y/2 E7J, For the middle integral on the right-hand side, we now use Stokes’
theorem for each ¥ slice and enforce the radial-gauge condition at the boundary /3 of cach
Y. Also, we expand the integrand in the final integral subject to the assumption that the
7T triad is time-gauge with respect to &. The result of these calculations is

.
~

" 1 .
-S% = -—_)—/ d41’€r3pw5,;j E:’
LK JM

1 . . i ‘ L
_z—h./%dsjv aadeaLg[&boé]i+Q—ﬁLd";L‘ -——‘)’6'1', Faclr . (1.12)

Next, “barring” the last formula in (3.17), one finds
oba 0 O3y = N Tz + /2 8,V + 17 7, (1.13)
Insertion of this formula into (4.12) gives the desired (341) form of the subtraction term.
o i 3 - i e
-80 = —5 Mcl”'we"‘wégE;’ - E[Td:":v Vo wis VP, (L1

where we have also used T;a = waa.

We now turn to the canonical form of the action principle. We shall avoid the issue of
the reality conditions by working first with canonical form of the real action 5'. Therelore.
upon adding the pure imaginery boundary term (4.14) to S/, we merely introduce a complex
chart on the real phase space. The canonical form of the action S* is the following:

S! =/Md43; [P'?j.é;j—NH—VjHj_1/2¢;5‘]55} +Ld3$ [—%\/—-—V'F(’ _f‘,~’b')-(‘f

(1.15)

In general P ; # 1/k K7 ;. Indeed, setting P;; = P’ ; E;;, one has that
L. :
P; =~ ;1\.5, (1.16)
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where = stands for modulo the rotation constraint,
J¥=2PF gV EJ (4.17)

Furthermore, in (4.15) H, H;, H!, and H} have the same forms as given in (4.9) but now
are built with P7; rather than 1/« K7 ;. In particular, in the canonical action $!

7'_(1 = \/E[-'lz*yk-{-v’yd.'j Pij]
(4.18)
Hl =~V [ni P ol — L 6.4]
K

(with the radial-gauge condition at the boundary B of £, one can write k = —w? Fa)-
As is well-known, the anticommuting Lagrange multiplier ¢;; associated with the rotation
constraint can be geometrically interpreted as the time component of the connection forms,

[18] |
bis = —Lese = — (T3, 0/0L) . (4.19)

Enforcement of the radial-gauge condition at the boundary B of each ¥ slice places a bound-
ary condition on ¢;;. This boundary condition is the canonical version of setting the con-
nection coefficient I'sr, 4* = 0, where we are working in the RT-gauge described in the
appendix. The coefficient I';+, a* describes the rotation of n as it is parallel transported
along the integral curves of &. To see what the required boundary condition on ¢;; is, first
recall that in the triad formalism the vector constraint is not the generator of diffeomor-
phisms, rather 'Hf'ﬁ = H; — 1/2J7 w;;; so the vector constraint generates rotation of the
triad. [18] Therefore, the boundary condition

— I/N (qﬁap- + Wakb Vb) IT =0 (4.20)

ensures consistency between the selection of the radial-gauge condition for the £ triad at B
and the evolution of the triad as obtained from the variation of the canonical action.
We now add the boundary term (4.14) to the canonical action (4.15) and get

_ a i af PP N _Viy. _ i3 3 _f =~ N7 _ TUbag
S—/Md:c[lA,Er’ NH-VIH; —1/2¢:5J ]+[rd$[ &\/‘ NH-V°H,| ,
(4.21)

where in anticipation of dealing with the Ashtekar version of the canonical constraints, we

have written IV = A~Y/2 N and H = h'V/?*H. Here H = H!, while Hy = H{ +i/x /o wiz.
Furthermore, for the rest of this section A” ; is the canonical Ashtekar connection

At =—w"; —-iP ;. (4.22)

x|

As usual, one may replace the rotation constraint with the Gauss constraint,
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i - i - - . 1 .
J; = ——; ADJ' E,:) = —-; (D] E,:] - ICE;J 63 b7 Ap],) = -'-)— fr‘sz‘J“ R (-|.23)
where AD; is the derivative operator associated with the Ashtekar connection. Moreover,
using the Ashtekar curvature,
Fi k= 2D[JAT K] + K 61:‘“ A‘_,tj Aik (-l,'_»}l)
= - (2Duw' K + €t ws; w{k) — KPPy — A FE" Dy Py .

one can bhuild the standard ¥ constraints:

C = er‘gigfsE"yéth.ij =H—iD, (EfJ'J’:)

Lo} —

C,=iE:'F'ij=M;—inJ: P";.
With this machinery, one may rearrange terms in the expression (4.21) to find
S :f d*x{iA",- Ei' = NC—-VIC —¢" Jr-} + / d3a [——9 Vo— NC - &*’-’C,;} C(1.26)
M T K
The Lagrange multiplier associated with the Gauss constraint here has the explicit form
o= =12 55 — 167 E Dy N + ik PV (1.27)

IFurthermore, now we have

C=VhH- iv(dr);e Pijng,s‘i =ao(ys— vy )

1
Ca = er - —\/(_7_[.111 - ;&2‘?] )

where o = hY/25~12, (Again, C and C, are not constraints.) At this poiut the densitios
g, Jr, and j, have the same forms as in (3.22) and (3.27) but are constructed with the
canonical Ashtekar connection. Therefore, off the constraint surface in phase space defined
by the Gauss constraint, the energy density ¢ is no longer manifestly real. Notice that C has
been defined as a density of weight one, because it is paired with the boundary Lagrange
multiplier [V, which we have taken as a density of weight minus one. We also remark that the

kinematical torsion which is present in the Ashtekar connection modifies the boost relations.
Therefore, for instance, it is not true that & = v — vy ji in the canonical picture.
Before considering the variation of the action (4.26), we find it convenient to rewrite the

Lagrange parameter ¢ in the following way. Take
¢is = —Tise = —NTsp —wis; V7, (1.23)

and also write



—i6PE; D;N=—-iNa" = ~iNI" (4.29)

where a; = Ej;[log N] are the triad components of the spacetime acceleration of u. With
these relations one can set

o =P NI ) — kA7 VI, C (4.30)
which is, of course, essentially the well-known result that ¢ = T+ ;;, = —A7,. We

shall need the expression for ¢~ when the radial gauge condition is enforced,
@t =2NTW 53, — A" V7. (4.31)
Using V3 = V¥ ni 4+ V4 o}, one can put this result in the handy form
@" =2NTW ;| — kA" ;B V" +in (G VE +5.V°) (4.32)
Direct calculation yields the following for the variation of the canonical action (4.26):
6S = (terms which give the constraints and equations of motion) + i /:' “ &3z A" 6E;7
- [r d*z /o [Céﬁ -G 6Vt — N /2 (7 3% — vyt 4 1/ki[p)o® + A a“b) (60).,5]
+i- /7 &z /5 [k (7 e — vr€) + 6.V — 1/20 54 66 — -'1;/: &z 46y/7, (4.33)

where here N is h1/2 ¥, and it would perhaps be better to express (60)qs as a variation in

terms of the densitized dyad (as is certainly possible). Also above,
A=—idEIVE = VE =5 Ve +i/s (2NT® 35 — ") . (4.34)

With the interpretation (4.32) A vanishes. Modulo the Gauss contraint the boost relations
(4.2) are valid, and, therefore, one finds that

(65)p ~ — /T &z /5 [€6N — 50 67* — N /2 5% (86)]
1 - o ) 1 B
= / $2 /& (kNG + 8.V = 1/20% 6u) 86—~ [ dzd6V/a,  (4.35)
K Jr ) x JBr
where now one must again consider the quasilocal densities to be expressed in terms of
the Sen connection. The density j-» = —1/50% I3, and in the non-canonical picture I, =

—1/2N(6ap+8.Vs +6,V,), so the middle integral on the right-hand side vanishes in this case.
With the 7 Sen connection expression 7 = €3 A3, 0:® and the results (3.21), we then have

(6S) ~i/ &Pz A ;6 (VHE j)-l/B"d’xqéé\/— (4.36
Ty J K3 x g g, .36)
in agreement with the variation (3.14) of the non-canonical action.
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V. DISCUSSION

We conclude by briefly commenting on several technical matters. These are the inter-
pretation of the imaginary boundary term —S?, the relationship of our formalism with the
Sparling two-forms, and problems encountered in the attempt to extend the Brown-York
notion of gravitational charge to the Ashtekar-variable construction.

As mentioned in the introduction, we have chosen to formally treat the imaginary bound-
ary term —S? as a true subtraction term ala Brown and York. However, we now argue that
in some contexts it is necessary to consider the freedom to append to the action § = §f —5?
an additional arbitrary subtraction term —S2,,.,,;. In the interest of economy we restrict
our argument to matters concerning the quasilocal energy surface density ¢, though much of
this discussion also pertains to the other quasilocal densities. Consider first the Brown- York

expression
1
=—(k-k%). .
€ n(k ) (5.1)

In the metric formalism, as in this paper, k represents the trace of the extrinsic curvature of
B as embedded in ¥ and comes from an S! action in the derivation. The k? term represents
the trace of the extrinsic curvature of a two-surface which has the same metric as B but which
is uniquely embedded in a three-dimensional manifold different than X. In the Brown-York
formalism it arises from a subtraction-term —S?,, ..., contribution to the action, where now
—8), nerat 18 real and unspecified. When possible, —S7,..,,; is typically chosen such that the
different three-space is R3, and hence the k? term references the energy against flat-space.
For a given asymptotically-flat spacetime, the presence of the appropriate k° term is crucial

if the quasilocal energy,
1 2 0

is to agree with the ADM notion of energy in the suitable limit. [2,19]
Though we have added the imaginary boundary term —S? term to S? in this paper, the
resulting quasilocal energy,

.\ 1
_ 2 aé 4. —b%— 2
E—/Bd:t: o€ Az 0: n/Bd z\ok, (5.3)

is really only the “unreferenced” energy. If we wish to put the the Ashtekar-variable expres-
sion for the quasilocal energy into fuller accord with the ADM notion of energy, then we
should allow for the freedom to append to the action yet another subtraction term —SZ, .. .-

Use of the larger action §' = § — S? — S,,..,o; in our analysis would yield
E= /B &z /7 (€2 Ass 0 — €8¢ AL, 6:°) (54)

for the Ashtekar-variable quasilocal energy. The new reference-point contribution €3¢ Al 0:°

stems from —S,,..,o;. In this case —S7,,..,, is an arbitrary functional of 7 data. With this

9
new freedom, we could define the quasilocal energy in such a way that it agreed with the

ADM expression in the suitable limit for a particular asymptotically-flat spacetime.
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As is well-known, the the i'eal and complex Sparling two-forms obey the Sparling relation
dos = d0(+)‘; =1+ G d €, (5.5)

where €} is a basis for three-forms, G; ¢ is the Einstein tensor, and 7; are the Sparling three-
forms. The explicit form for 7; (which is real) is not needed here but may be found in, for
example, Ref. [15]. The Sparling relation suggests that 7; (when pulled-backed to a three-
dimensional slice ¥ of spacetime) may be interpreted as a tetrad-dependent local energy-
momentum density for the gravitational field. [15,5] The corresponding frame-dependent
potential can be taken either as o; or o{*) ;. If we fix a two-surface B and its spanning
three-slice ¥ in spacetime, then the boundary structure of our selection provides a natural
(almost-unique) frame at B. Namely, the radial time-gauge tetrad of Appendiz A, which
has the ¥ hypersurface normal u as its time leg and n, the normal of B in X, as its third
space leg. With this frame choice, the pullbacks s*(o(+) ;) to B (s is the inclusion mapping
s: B — M and j runs over (L,F,a)) are precisely the densities —k ¢ /o d?z, & ji- /o d’z,
and «0;°%j, /o d*z (here expressed in terms of the ¥ Sen connection and triad). Fur-
ther, the pullbacks s*(o;) of the real Sparling two-forms are the real parts —x ¢! /o d?z,
& (j4) Vo d?z, and k05 °(5!)s /o d%z o; of these quasilocal densities.

The Brown- York notion of gravitational charge is based on the 7 momentum constraint,

_211. (7“('.3' — (7?0)"]-) = —I/K, \/-—'7’7; A G“,\, (56)

where 7'/ is given in (3.7) and, in the metric formalism, (7°)" = 65,,..,,/6%; depends only

on ¥%; (and so it annihilated by D;). Now we work on-shell and in vacuum so this expression
vanishes. Brown and York define a “stress tensor” 79 = 2/,/=7 (7 — (7%)"/). Assume that
T possesses a Killing field ¢/, and so D; 7 (; = 0. Therefore, since —i; 77 = £a’ + j, 0%,
one has the following conserved charge: [2] ’

Qu(B) = [ &7 (e + 1ra¥) ;. (5.7)

When attempting to introduce such a notion of charge into our formalism, we run into some
difficulty since our subtraction term S? is triad-dependent. The natural way around this
difficulty is the following. First define

() = 65°/6 (V=767) - (5:8)
In our situation (I1°);; = & (II’)"; is not annihilated by D;, though D; (I1%)uy = 0.
Therefore, set (7)) = /=7 /2« ((fI”)" kY9 - (l:I”)("j)) and use it in the above construction.

The charge Q¢ may now be imaginary, but, subject to the assumptions made above, it is
conserved.
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APPENDIX: KINEMATICAL FRAMEWORK

Appendices A, B, and C outline a kinematical framework for examining how the intrinsic
and extrinsic geometry of spacetime as foliated by a family 7 hypersurfaces is related to
the intrinsic and extrinsic geometry of spacetime as foliated by a family of ¥ hypersurfaces
With this framework one can express objects such as the T extrinsic curvature ©;

the time-gauge 7 Sen connection A" ; in terms of the intrinsic and extrinsic geometry of
spacetime as foliated by ¥ hypersurfaces. Such a “splitting” of the 7 Sen connection is
needed in order to derive a similar splitting of the £ radial-gauge Sen connection A?; in
terms of the geometry of the ¥ foliation. The splitting of A” ; is used to obtain the boost
laws (4.2) for the quasilocal densities. The kinematical framework consists of (i) two distinct
spacetime tetrads (one adapted to the ¥ foliation and one adapted to the 7 foliation), (ii) the -
transformation equations between these tetrads, and (iii) the inhomogeneous transformation
law between the sets of associated connection coefficients. The relevant spacetime tetrads
are constructed in Appendiz A, and their associated connection coefficients are tabulated in
Appendiz B. Appendiz C outlines the splitting procedure by applying it to ©,;, the simplest
example. We then quote the splitting results for the 7 time-gauge connection coeficients
T35, AT j, and A" ;. The final Appendiz D applies some of this formalism to explain the
origin of the corner terms in the action (3.5).

APPENDIX A: ADAPTED TETRADS

The boundary structure of M suggests two natural classes of spacetime tetrads. The
first class is a subclass of time-gauge tetrads determined by the boundary structure of X.
The second class is a subclass of “radial-gauge” tetrads determined by the B foliation of 7.
It should be mentioned that these tetrads need only be defined on some small spacetime
neighborhood surrounding 7. We do not address the issue of whether or not either of these

tetrads can be extended globally over all of M.

1. RT-gauge tetrads

Enforcement of the time gauge condition locks the time leg of the tetrad to the ¥ foliation
normal u. This condition is indicated by replacing the tetrad time label 0 with L so that
e, = u. Because each I slice has a boundary B, a natural subclass of all time-gauge tetrads
exists which is determined by an auxiliary condition on 7. This further requirement is that
on the three-boundary T one of the space legs of the tetrad, chosen to be e- = e3, coincides
with n. One should note that this correspondence is not made between e; and 7 in general.
Such a choice of tetrad is said to obey the radial time-gauge or RT-gauge. RT-gauge indices
and labels take the values (L, 1,2,F). Now the usual assumption is that the vector field 3/8t
points everywhere tangent to the hypersheets of constant r. Equivalently, (dr,3/0t) =
or gr/dt = 0, and the r coordinate is Lie transported along the integral curves of the
time vector field. This assumption results in almost no loss of physical generality. It does
demand that the integral curves of the time vector field may not emerge from or flow into
the three-boundary 7. However, since the spacetime-filling extension of the three-boundary
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T in terms of hypersheets of constant r is completely arbitrary, on the interior of ¥ these
integral curves can be chosen to flow in any direction (as long as the tangent field 8/8t¢ lies
at each point within the future light-cone). Subject to the requirement dr/dt = 0, one can
write the most general radial vector field mapped to unity by dr as 8/9r = an + 8, which is
similar to the familiar formula /0t = Nu + V. As seen earlier, the variables a and $8° are
respectively the kinematical “lapse” and “shift” associated with the induced radial foliation
of the ¥ slices. Therefore, we have the following explicit formulae for the RT-gauge tetrad
and cotetrad:

1 (0 ;
CL=U='N—(-8—£‘-VGE5—VFE}-) 6’L=th

ea=FE; =0; et = 6% + Véde + ,Badr (Al)

e;.=n=E;.=i(—a-—ﬂal9&) e” =adr+ Vhdt.
a \or

2. Radial-gauge tetrads

The radial-gauge condition requires that one of the space legs of the tetrad, taken to be
er = e3 , coincides with the 7 normal . A natural further requirement can be placed on
radial-gauge tetrads. Namely, the time leg e,/ = e can be tied to the B timelike normal @,
so the indices and labels associated with this class of tetrads run over (L1, 1,2, F). Such a
tetrad is referred as time radial-gauge or TR-gauge. Now the radial vector field is written
as 8/0r = an + f3, though it still points tangent to the ¥ slices. The variables & and g~
are associated with the 7 foliation of M. On T one can express the time vector field as
8/0t = Ni+ V, where N and V° are the gauge variables associated with the B foliation of
T. The RT-gauge tetrad and cotetrad is

el.:&:f_ﬂ:%(.ﬁ_v&ga) 6L'=th+/§i'dr

ot
€5 = Ea =0; et = g8 + Védt +B&d1‘ (A2)
1 3 Za = =1 5 ' -
eplzﬁzg(—a—r—ﬂafa—ﬂl éli) e’-=adr.

APPENDIX B: ASSOCIATED CONNECTION COEFFCIENTS

For the special tetrads considered above, certain of the corresponding connection coeffi-
cients have notable geometric meanings. This subsection is a glossary of various connection
coefficients and their geometric interpretations. RT-gauge connection coefficients are rep-
resented as I'¥ ;;, while TR-gauge connection coefficients are represented by I'*' ;... Note

26

b b Wt | gy ot v ¥ o

e & At SEIREL TV



that inspection of the indices allows one to discern which set of connection coefficients is
being dealt with. In following lists, since the geometry of M is torsion-free (i.e. the torsion
two-form of Cartan vanishes [16]), all of the extrinsic curvature tensors are symmetric.

1. RT-gauge connection coeflicients

The RT-gauge connection coefficients are tailored to B as embedded in £. We have the
following correspondences:

K’,-E*e’“e;"vuel“z—I"J_,-
a Ee’“e_,_”v,,ej_“=["u_

(B1)
Ke=—e'ye;" Vet = T = —w're
b’Ee’“e.."V,,e..“=I"p...,

Note that the formulas for K7 ; and a” are general time-gauge expressions. Also, b" are the
tetrad components of the spacetime “acceleration” of n, while the £ “acceleration” of n has
componets b%. For b" the # is a 7 index and can take the values (.L,a), while for K ; and
a’ the # and 3 are ¥ indices taking the values (i,2,F).

2. TR-gauge connection coefficients

The TR-gauge connection coefficients are tailored to B as embedded in 7. We have the
following correspondences:

O ;=—-€,e"V, e =—-I"ps;

S
1l

ef u €t v Vy €t = FF [T
(B2)

Ia5§ —-e““ea"V,,e_u“=—I‘“J_;c-= -—'7_;(‘_1_:5

a=e e ' Voeu =17 1450,

Like before, the formulas for O7 ; and b’ are general radial-gauge expressions. For O ; and
b in this list the # and § are 7 indices taking the values (L’,a).. The @" (# can take the
values (&,+’)) are the tetrad components of the spacetime acceleration of @, while the 7
acceleration of % has componets aé = 7¢ ;..
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APPENDIX C: SPLITTING PROCEDURE
1. Transformation equations

The set (2.6) of transformations for the metric variables can be used to express the
transformations between the RT-gauge tetrad (A1) and the TR-gauge tetrad (A2). For

example,
1 {0 -
elvzﬁ(a—vb&)

._l 2——V”9¢,-V'ﬂb0b

N \ ot

_l _‘2__ b — r_a_ r_?___ r b ‘

—N(at V2o, V3r+var ViB"0s

=veLtvye-. (C1)

The complete set of transformations is

el = veL +vyer et' = yet —vyer
€t = VY€, +7e}~ e.—' - -v76‘L+’Y€’- . (02)
€ = €; et = ¢t

Notice that the B legs of both the tetrads are the same, which is why the notation can be
compressed so that TR-gauge tetrad indices like 4’ run over (L', a,+’).

The inhomogeneous transformation rule describing the behavior of the spacetime con-
nection coefficients under the above tetrad transformation is the following:

F’sl G'3 = eﬁ' & F& P €t b €31 i + 6‘3’ & €71 B e,-, {651 é] . (C3)
This law provides the bridge between the TR-gauge connection coefficients (B2) and the
RT-gauge connection coefficients (B1).

2. Geometric link between 7 and £

As an example, we apply the developed formalism and derive the splitting result for
the three-boundary extrinsic curvature ©;;. This result has been obtained via ordinary
tensor methods with projection operators in Ref. [10]. However, the ordinary projection-
operator method is not sufficient for calculating the analogous split of the 7 Sen connection.
We provide the splitting calculation for ©;; here as a simple demonstration of how such
calculations are performed. Beginning with the first expression of (B2), one uses the rule
(C3) in tandem with the set (C2) to find

O ;=—€e" (U‘Yra .L;i+7F&}-,1) —e Les[vy] —ereilv] - (C4)

(Note that in this equation # and § are T triad indices which take the values (L’,&).) A bit
of work and the relations (B1) yield the set of © ; triad componets,
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OY = —ya" + vy K" — e [v] — vyPer[v]
Ot i=K"s—7eslv] (C3)
é&é -—-’)!kaé-‘}"v’y]{&é.
With the set (C5), construction of the sought-for splitting of ©;; is not difficult. For conve-
nience work in spacetime coordinates. The boundary three-metric may be written as '

'7;»' =0y — ﬁp Uy ) (CG)

where the two-metric 0, = g, — fiu 7ty + U, U, here serves as the projection operator into
the B slices. Wiring the above form of 4#, the identity operator on T, on each of the free

indices of ©,,, one obtains
é‘w :I_t“ﬁy(:)iq_l'-Qa(“O’;}) 6L1A+G£G’:@A,‘, (CT)

where an appeal to the symmetry of ©,, has been made. Plugging @, = vy u, + vy n, and
the results from (C5) into (C7), one arrives at the following split of the three-boundary
extrinsic curvature:

(:),w = k“,, + vy K','J' O'i O’;i
+ {72 upuy + 207y ny) + (v7) 0, "v} (C8)
X {'y n'a; —vyn'n’ Ki; + v ufv] + v73n[v]}
+2 {7 U, a,‘;) +vyng, o'f,)} {nj Ki; —~* D;v}
Enforcement of the clamping condition v — 0 recovers equation. (A.16) of Ref. [2],

Oup = kap + ua ug n‘a; + Zu(a or/'é) n’ Ki; . (C9)

The set of T time-gauge connection coeffcients is {*JT"i L1ty T8 10g, TOsy, 70 a&}a where
the first two have been considered in the set (B2). The spittings of these expressions are
oha, =" oha, + (v7)? by — vy 0] n® K, + vy o, u* Van,
L =7 K 0000 + vk,
TaeLr = 7Y TaeL + VY Waar (C10)
Tach = Wach - ”

Using this set and (C8), one finds the following split of the time-gauge T Sen connection in
terms of the radial-gauge ¥ Sen connection and other gauge variables:

A, = (yu, + vyn,) (v7 A" jn? — (29/K)Ty3, + (7% k) ulv] + (ivy®/x) n[v])
- a;} (A*' r+ (E73/k) V,\v)
(C11)
A2, = (yu, +vyn,) (v'yzAé,- 0 +ivy? e Ay n? + (1293 /£) T3 — (2042 /K)e¥ T &._._)
-a) (v'yA‘iA +ivet  A%)),
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where explicity one has 2I'") ;5| = 753, —ian; and 2T 5, = T1 +1€s: ¢®. Taking the
v — 0 limit, one finds the clamped result
At p=—uu(2/6) i3 — 0'3 A"
(C12)
Ad =, (i2/k) T3 — o) ef s A%,
To find the splitting of the radial-gauge & Sen connection in terms of the radial-gauge

¥ Sen connection and other gauge variables, first find the split of A7 ; in terms of the T
foliation variables, :

Ay = =7, (2/R) T g3, — o) AY )
(C13)
A%, =7, (12/6) T8 L — o) e Ay,
where 2T 45, = @3, + 1b; @ and 20(H)4 |, = T4 |, 4+ 1% b;. Combination of this
result with (C11) gives
Ay = =7, (2/K) T 3, + 02 (A7 2+ (572/%) V)
' , (C14)
A%, =7, (i2/6)THE i tio) (v'yA“’;\ + i'ye‘ieAé,\-) :

The boost relations (XX) for &, 7+, and J, can be derived with these expressions. To derive
the boost results for 5%® and £°®, one must use these expressions and also the result

2T g5, =2TW 45 +TW 45 —iv?af]. f (C15)

Note that on the left-hand side the selfdual coefficient is TR-gauge, while those on the
right-hand side are RT-gauge.

APPENDIX D: CORNER TERMS IN THE GRAVITATIONAL ACTION

This appendix presents a simple tetrad method for analyzing “sharp-corner” terms in
the gravitational action principle. We show liow the corner terms in the action (3.5) arise.
As mentioned, the Goldberg action differs from the Hilbert action by the pure divergence

”Q{—; /Md (eﬁ " a,;) - %/M d'z V=g V. (eﬁu e; " I ﬁt/) . (D1)

To ensure that, upon the use of Stokes’ theorem, this divergence gives the desired “T'rK”
and “T'r©” terms on the boundary elements, tie e; to the u = e, hypersurface normals
on t' and t” and tie e; to the normal # = e~ on 7. However, if these gauge conditions
are enforced simultaneously, then in general the tetrad is doubled-valued on the corners
B' and B”. Therefore, in order to both retain the desired “I'rK” and “TrO” terms yet

avoid double-valuedness on the corners, use a limit procedure in which the condition on ez is
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relaxed in a small neighborhood of the corners. Next, consider the limit as this neighborhood
“shrinks” to the corners.

The precise procedure is as follows. Suppose that e; does indeed coincide with u on #'
and t”, but that on 7 the tetrad has the form

e =Yu—wPn
e3 =i —wpi, (D2)

where ¢ = (1 — w?)~Y/2. For each § € [0,1] w = w(z;8) is a suitably continuous and
dillerentiable point-dependent boost velocity defined on 7. Further, for cach § assume that
w(z;6) = 0 except on a “small” neighborhood N of the corners B’ and B”. For each é the
set N is not connected, but is comprised of the disjoint union of two connected pieces N
and V. The set M/ is “small” region of 7 which contains B’, and in the limit § — 0 we have
that (B’ — NY{) — 0. Similarly, the set A} is “small” region of 7 which contains B”, and in
the limit § — 0 we have that (B”—AN}¥) — 0. Finally, for each § demand that w(z;é) = v(z)
whenever z € B'(J B”. This ensures that on the corner two-surfaces 5 = u and e3 = n.
Our construction provides us with a family of tetrads parametrized by §. By construction
the member tetrad corresponding to each value of § is TR-gauge on most of 7, however, as
the corners are approached, each member is continuously boosted until it is RT-gauge on
the corners. Hence, each 6 tetrad is single-valued on the corners and everywhere else. The
idea is to use a é tetrad in our divergence expression and consider

1 3 _ 1 1 4 b, v,
= [ @aygTrK =lim= [ dov=gV, (e T75) (D3)

where the expression on the left-hand side symbolically represents the integral of the trace
of the extrinsic curvature of dM as embedded in M over all of dM (which picks up finite
corner contributions, since the normal of M changes discontinuously from u to 2 on these
two-surfaces). We can use Stokes’ theorem to find

1 4, k s, Ape N _ L [Y 3 - L 3, /== n. A e
;/Md 1\/—ng(e”“ea r ,3,\)--/ dxﬁlx-{-;/%d.z — Ny (c"’ e; " I ﬁ)‘),

K Ju
(D4)
FFocus attention on the 7 boundary term,
1 43 = = Py, v TG —
P A —7n“(e e; 5,,) =
1 — anl 6 S g . o
z[rdaw —¥ 7, € (e"a: e;? 17 s e5" + € 5 e,;[e,g" ]) . | (D5)

We have used the inhomogeneous transformation rule for connection coefficients to express
the § connection coefficients in terms of the connection coefficients I'*' ;,, determined by the
TR-gauge tetrad. Using the the boost relations (D2), we find after some algebra that

%[Td% —y 7, (e“”‘ es ¥ I? 5,,) = ——-};[Tdax\/:—? (@ + a[cp]) ) (D6)
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where © = =" 1150 = ~I" 5 (8 runs over (L',1,2)) and ¢ = @(2;6) = tanh™ (w(x; 8)).
Next, since & = 1/N(9/8t — V), with some integrations by parts the final integral on the
right-hand side becomes

——{;[j_dax —yalp] = —%/;”dzm\/;‘,o-i'%‘[fdax‘?\/;‘%/Tdsx\/;"g (‘Sb‘?b) - (D7)

We have that lims_o@(z;6) = 0 everywhere on 7 except for corner points where
lims—o¢(z;8) = ¢(z). Therefore, in this limit only the first corner-term integrals on the
right-hand side survive. Hence we have the main result

t”

[ #eyrgTe =~ [

K JoMm [

5, 1 3 =5 _ 1 "
ECovhK - [ @2y=50-— [~ a4, (D)
KJT K JB’
which justifies (3.5). Since the action S? in (3.5) is essentially a metric action, we have
borrowed the results from Ref. [10] to obtain the variation (3.6). However, it is not diflicult
to use the § tetrad method to obtain this result. To perform this calculation it helps to
assume that §w = 0, or, in other words, the variations of the § tetrad and TR-gauge tetrad

are “locked” together. We note in passing that a straightforward though somewhat lengthy
calculation shows that variation of the action (3.1) is

1 .
F - ____/ 4 — BY o, & pu
S - Md z/—gG" ez, be
1 4 b [ v] ~p6 v g
- /Md V=gV (2% s e es 1 — T s e ;") 867 . (DY)
One must insert the & tetrad into this expression and then take the limit § — 0.

The pure imaginary boundary term (3.12) added to the Goldberg action may also be
expressed as :

1 : o 650t
-850 = —2—;/:“ d*z /=g V, (e(; P I‘,;;,:,) . | (D10)
The variation of this expression is

—6S°% = —-2in- /M diz . /_g Vs,V (ea,\‘m €sr Se “) . (Dll)
+§£E /M d*z /=g Vo [957 Tyur (2 657 + €57 s — €57 €1 €%  Sex ") |

Clearly, the first integral vanishes. Using the § tetrad in each of the expressions, one can
take the lims_o and verify that —S? and —657 contribute no corner terms.
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