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ABSTRACT 

The concept of Ricci inheritance has been studied for perfect fluid 
space - times. The necessary and sufficient conditions for such space­
times to admit space-like Ricci inheritance vector has been obtained 
in terms of the kinematical quantities of the space-like congruences 
generated by a unit vector n a orthogonal to the flow velocity vector 
ua. Dust and irrotational dust universes have been considered and 
the conservation laws for space-like Ricci inheritance vector are given. 
For some special choice the results of this paper reduce to perfect fluid 
space-times admitting Ricci collineation. 
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1. 	INTRODUCTION 

In the general theory of relativity, the curvature tensor describing 
the gravitational field consists of two parts viz., the matter part and 
the free gravitational part. The interaction between these two parts is 
described through the Bianchi identities. For a given distribution of 
matter,the construction of gravitational potential satisfying Einstein 
field equations is the principal aim of all investigation in gravitational 
physics, and this has often been achieved by imposing symmetries on 

. 	 the geometry compatible with the dynamics of the chosen distribution 
of matter. The geometrical symmetries of the space-time are express­
ible through an equation of the form 

Lt,A - 20A == 0 	 (1) 

where A represents a geometrical/physical quantity, Lt, denotes the 
Lie derivative of A with respect to the vector field e(this vector field 
may be time-like, space-like or null), and n is a scalar. 

One of the most simple and widely used example is the metric 
inheritance symmetry for which A == 9ij in equation (1). In this case 

athe vector field e is called the conformal Killing vector which includes 
a homothetic vector and a Killing vector according as O,a == 0 and 
n == 0, respectively. 

In a series of papers, [1] - [5], Katzin, Levine, Davis and collabora­
tors have identified sixteen symmetries for the gravitational field with 
their interrealtionships and have obtained the corresponding weak con­
servation laws as the integrals of the geodesic equation. Different types 
of matter distribution compatible with geometrical symmetries have 
been the subject of interest of several investigators for quite some 
time, and in this connection, Oliver and Davis [6], for the space-times 
filled with perfect fluid, have studied the time-like symmetries with 
special reference to conformal motion and family of contracted Ricci 
collineation. The perfect fluid space-times including electromagnetic 
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field which admit symmetry mapping belonging to the family of con­
tracted Ricci collineation have been studied by Norris et al [7]. The 
role of metric symmetries in the study of fluid space-times, with an 
emphasis on conformal collineation, has been explored by Duggal [8,9] 
( For a comprehensive review on the subject of collineation see [10] ). 

The curvature and Ricci inheritance symmetries defined through 
equation (1) when A is replaced, respectively, by the Rien1ann cur­
vature tensor and Ricci tensor have recently been studied by Duggal 
[11,12] who obtained a number of results relevant to material curves, 
proper conformal and proper nonconformal symmetries. 

Motivated by the all important place of symmetry inheritances 
in general relativity and the role played by the Ricci tensor in the 
study of perfect fluid space-times, in this paper we shall study the 
Ricci inheritance for the perfect fluid space-times. In fact, we shall 
find the conditions under which a perfect fluid space-time may admit 
a space-like Ricci inheritance vector. The main theorem A and its 
proof is given in section 2 along with some related results. Section 3 
contains, in detail, the consequences of theorem A and a discussion of 
the results has been given in section 4. 

2. RICCI INHERITANCE 

Let V4 be the space-time of general relativity with Einstein field 
equations 

(2) 

where Tab is the energy momentum tensor of the perfect fluid, i.e., 

(3) 

Here p, p and hab = gab + UaUb, respectively, are the energy density, 
the isotropic pressure relative to the fluid flow velocity vector U a and 
the projection tensor \vhich projects into the instantanous rest space 
of an observer with four velocity U a ­
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It is known [12] that the integral curves of a vector field Xll are 
material curves ( a curve that always consists of the same fluid parti­
cles) if the fluid lines inherit symmetry properties with respect to X a . 

The interest in the material curves arises froIn the theory of space-like 
congruences first devaloped by Greenberg [13]. This theory has its 
applications in relativistic hydrodynamics and relativistic electrody­
namics of continous media. 

The space-like vector Aa orthogonal to the flow velocity vector ua 

is defined as 

The Ricci inheritance is defined through the relation 

(5) 

The deformation of the congruence generated by n a at any point P 
can be measured if at P an observer with four velocity ua orthogonal 
to n a is specified. Since naua = 0, an observer comoving with the fluid 
with four velocity ua may be employed at P. Once the observer has 
been specified at any point of the congruence, the observers employed 
at all other points along the congruence can not be assigned arbitrar­
ily, thier four velocity must satisfy the transport law [13]: 

a'If a comoving observer with four velocity u is chosen at anyone 
given point, then the observers employed at all other points along the 
congruence can be COllloving observers with four velocity if and only 
if 

u'ah'bnb = - (nbu'b)na 

where an overhead dot denotes covariant differentiation along a fluid 
bparticle world line, for example, Xa = X'b u , and a dash denotes 

the covariant diffrentiation along an integral 
) 

curve of na , for example, 
y'a = yg nb., 

) 
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In this section, we shall find the conditions under which a perfect 
afluid space-time may admit a space-like Ricci inheritance vector A or­

thogonal to the flow velocity vector ua in ternlS of expansion, rotation 
and shear of the space-like congruences generated by na. In fact, we 
shall prove the following 

Theorem A : The necessary and sufficient conditions for a perfect 
fluid space-time satisfying Einstein field equations to admit a Ricci 
inherita,nce vector Aa = Ana are that 

(i) (p + 3p)wacnc - ~(p - p)La o (6) 

(ii) (p - p)(Tab - 20;\-1) = 0 (7) 

(iii) (p - p)[n~ + (log)..),a - ~£na] = 0 (8) 

(iv) (p - p)[~£ + nci.{ - 2fU-1
] o (9) 

o (10) 

We shall first devalope some results that are necessary for the proof 
of theorem A as follows: 

We define 
La = hbnb - u'a + (nbu'b)na (11) 

It can be shown that [14] La = 0 is the necessary and sufficient 
condition for the integral curve of na ( naua = 0 , nana = 1 ) to be 
material u.fve in the fluid and therefore the comoving observer u a can 
be employed all along the n-congruence if and only if the curves of 
the congrnence are material lines. 
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For the space-like congruences generated by na as measured by an 
observer moving with four velocity ua , the expansion c, the rotation 
tensor nab and the shear tensor Tab are given by [13] 

q abnaib (12) 

(13) 

(14) 

where qab is the projection tensor that projects onto the two-space 
orthogonal to ua and na 

: 

qab == gab + UaUb _ nanb , qabub == 0 , qabnb == 0 (15) 

The covariant derivative of na may be decomposed as ([13]) 

na;b = Rab + ~t:qab + Tab + n~nb - nanb + ua(nCuc;b) 

+(nCuc)uaUb - (ncu'C)uaUb (16) 

where c, nab and Tab are given by equations (12) - (14) respectively. 
From the definition of Lie derivative, we have 

L)..a=)..na Rab == A[R~b + 2ncRc(a (logA) ,b) + 2Rc(an~b)] (17) 

where R~b == Rab;cnc. 
With the assumption that equation (5) hold with Aa == Ana as 

Ricci inheritance vector and Einstein field equations are satisfied for 
a perfect fluid, equation (17) takes the form 

~(p' + 3P') + ~(p' - P')hab + 2(p + P)[P(aUb) - U(au~b)ncl 
+(p - p) [n(a;b) + n(a(logA) ,b)] == 2rlA-1 Rab (IS) 

Contracting equation (lS)in turn with uaub, uanb, uaqbc, nanb, naqbc, qab 
and qacqbd - !qabqcd, we get 

uaub : p' + 3p' + 2(p + 3p)[naua - rlA-1] == 0 (19) 
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(20) 

~(p - p)h~na - (p + p)(u~ - nbu,bna ) 

1 ( 	 ) b c+2 p + 3p qan Uc;b == 0 (21) 

p' - p' + 2(p - p)[(log;\)' - 0;\-1] = 0 (22) 

naqbc: (p - p)q~[n~ + (log;\),b] = 0 (23) 

qab: pl-p'+(p-p)[e-20;\-1]=0 (24) 
1qacqbd _	 _qabqcd: (p _ P)[Tab - 20;\-1] = 0 (25)
2 

The momentum conservation equation for perfect fluid is ( [15] ) 

(p + p)Ua == - p,bh~ 	 (26) 
aContract equation (26) with n to get 

(p + p)uana = - p,bh~na = - p' (27) 

With all the above considerations we are now in a position to prove 
theorem A. 

Proof of the Theorem A 

(i) From the definition, we have 

nCuc;b = 2ncU[c;b] + u~ == - 2wbcnc - (ncuC)ub + u~ (28) 

where Wab is the vorticity tensor which determines the rigid rotation 
of the fluid. The vorticity pseudo-vector wa, dual to Wab, is defined as 
( [16] ) 

(29) 

which gives Wab = 'TJabcdWcud so that 

a _ 0 abW Ua - = W Ub, 	 (30) 
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CI~arly this vector is space-like and its magnitude 

1 
w = (wawa)1/2 = (-WabWab) 1/2

2 

is the vorticity of the fluid . 
. Substitution of equation (28) in equation (21) leads to the condi­

tion (i) of the theorem . 
. (ii) This has been proved by equation (25). 

(iii) Expand equation (23) to get 

(p - p)[n~ + g~(log)..),b + ubua(log)..),b nbna(log)..),b] = 0 

which from equation (20) yields 

(p - p)[n~l + (log)..),(1 - (log)..)'na ] - 0 (31) 

But from equations (22) and (24), we have 

p' - p' + 2(p - p)[(log)..)' 0)..-1] - [p' p' + (p - p) (£ - 20)..-1)] = 0 

which gives 
(p - p)[2(log)..)' - £] = 0 (32) 

This equation together with equation (31) leads to the condition (iii) 
of the theorem. 

(iv) Substituting the value of p' from equation (27) into equation 
(19), we get 

(33) 

Now using p' from equation (27) into equation(24) we obtain 
I 

p' (p + p)naua + (p - p)[£ - 20)..-1] = 0 

and substituting p' from equation (33) in this equation, we get
! 

1
(p - P)[2£ + naua - 20)..-1] - 0 
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which proves condition (iv). 
(v) From equations (27) and (33) substituting the values of p' and 

p', respectively, into the equation (22), we obtain 

(p - p)(logA)' == -(p - p)(naua - 2r2A-1
) == 0 (34) 

which from equation (32) yields 

(p - p)(logA)' == (p - p)(naua + £ - 20A-1
) == 0 (35) 

Now, fronl the definition of £ (i.e., equation (12)), we have 

(36) 

and with this, equation (35) reduces to 

(p - p)(logA)' == (p - p)(n~a - 20A-1
) == 0 (37) 

Also, equation (22) can be written as 

p' - p' + (p - p)(logA)' - (p - p)OA-1 + (p - p)(logA)' - (p - p)OA-1 == 0 

which when used in equation (37) yields 

(p - P),aAa + (p - P)(A,ana + An~a - 40A-1
) == 0 (38) 

which gives [(p-P)Aa];a == 4(p-p)OA-1 and this proves the condition 
(v). 

Thus, if Aa == Ana is a Ricci inheritance vector then the conditions 
(i) - (v) of the theorem are fulfilled. 

Conversely, let the conditions (i) - (v) hold alongwith Einstein 
field equations. Now using equation (16) for na;b, equation (8) for 
(p-p)(logA),a, equation (28) for nCuc;b' equation (6) for (p+3p) wacnC, 
equation (8) for e, equation (27) for p' and the remaining conditions of 
the theorem in equation (18), after a lengthy but simple calculations, 
we get 
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and hence A a Ana is a Ricci inheritance vector. 
This completes the proof of the theorem. 

3. CONSEQUENCES OF THE THEOREM • 

1. If n == 0 then theorem A reduces to the fluid space-times 
satisfying Einstein field equations to admit Ricci collineation vector. 

2. If n == 0 then equation (10) reduces to 

(39) 

which serves as a conservation law for the vector All, and for dust 
model (i.e., p == 0) the conservation law for the vector Aa == Ana is 
[pAna];a == O. 

3. If W == 0 then frolll equation (G), either p - p (stiff equation of 
state) or La == O. When La == 0, the integral curves of na are material 
curves in the fluid. Thus, theorem A provides a direct relationship 
between Ricci inheritance vector and material curves. 

4. If the fluid satisfies the stiff equation of state p == p then 
equation (6) reduces to wacnc == 0 for w#O. Now contracting wacnc 
with ",abcdwcUd and using equation (29), we get 

na == [wcnc/w2]wa (40) 

and as n a and wa are nonzero, we have 

(41) 

Thus, n a may be considered as a unit vector tangent to a vortex line 
( [13] ). 

5. From equation (7), either the fluid satisfies the stiff equation of 
state p == p or the shear tensor lab is related to the Ricci inheritance 
vector Aa through the equation lab - 20A-1. 

6. From equation (8), either p == p, or 

1 
2[na n~ + (logA),a (42) 
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while form equation (9), either p == p, or 

(43) 

" which may be considered as a kinematical equation. From equations 
(42) and (43) we have 

(44) 

which is a relation between the covariant differentiations along a fluid 
particle world line and along an integral curve of na , and the Ricci 
inheritance vector. 

7. It is known [16] that for a radiative perfect fluid, the resulting 
universe must be homogeneous and isotropic. Thus, if we take p == ip 
then theorem A reduces to 

Corollary 1: A homogeneous and isotopic universe satisfying Einstein 
field equations admits a Ricci inheritance vector Aa == Ana if and only 
if 

(ii) Tab == 30(Ap)-1 

(iii) ~p[n: + (log)..),a - ~Ena] 0 

(iv) ~p[~E + ncuc - 20)..-1] = 0 
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From (iv) above, since :p=/=-O, 

n\ 1 1[, ·c2~£A - == - + nc·'lL2 . 

which when substituted in (ii) of Corollary 1 yields 

rr 3 [1 [, .C] -1 
'ab == 2"2 + nc'lL p 

which is a relation between the expansion and shear of the space-like 
congruences generated by na. 

8. When p == 0 then theorem A leads to the following 

Corollary 2: A dust universe satisfying Einstein field equations ad­
mits a Ricci inheritance vector Aa Ana if and only if 

(ii) Tab == 20(Ap)-1 

(iii) p[n~ + (log)..),a - ~Enal 0 

1
(iv) p["2[, + ncuc 20A-1] 0 

9. Irrotational dust space-time have recently been studied by . 
Maartens et al [17] who showed that such universes in general rel­
ativity must have both gravito-electric and gravito-magnetic fields. 
For these universes to admit Ricci inheritance vector we have 
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Corollary 3: An irrotational dust universe (p = 0, Wa = 0, P > 0) 
satisfying Einstein field equations admits a Ricci inheritance vector 
)...a = )...na if and only if 

(i) ~PLa = 0 

(ii) Tab = 20()...p)-1 

(iii) p[n~ + (log>"),a - ~£na = 0 

(iv) p[~£ + niLe - 2(2),.-1] = 0 

Since p=j:.O, it follows from (i) above that La = °and thus the 
integral curves of na are material lines in an irrotational dust space­
time. 

4. DISCUSSION 

The results obtained in this paper are dynan1ical as they are ob­
tained with the help of Einstein field equations, and they depend 
upon the nature of the energy momentum tensor and the equation 
of state. The relationships between the Ricci inheritance vector, the 
material lines of the fluid space-time, expansion, shear and vortic­
ity of the space-like congruences generated by na have been estab­
lished. The stiff equation of state (p = p) is seen to be related 
with the vorticity vector Wa. For isotropic and homogeneous universe 
(p = !p), dust universe (p = 0, w=j:.O) and irrotational dust universe 
(p = 0, Wa = 0, P > 0) the existence of Ricci inheritance vector is 
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obtained in terms of the expansion and shear of the congruence gen­
erated by na

, and it is seen that in an irrotational dust universe the 
integral curves of na are material lines. 

It may be noted that for the scalar n .= 0, the results obtained 
here reduce to the space-time admitting Ricci collineation. Moreover, 
similar results can be obtained if the energy momentum tensor of the 
perfect fluid is replaced by the energy momentum tensor of imperfect 
(i.e., viscous and heat conducting) and anistropic fluids. 
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