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ABSTRACT

For the purposes of making a viable cosmological
scenario, it is knowh that the wuniverse must evolve into the
radiation dominated Friedmann stage after enough inflation and
successful reheating. . This can be achieved if the potential,
V(¢), has a global minimum with respesct to ¢. While the
realistic potentials which appear in particle and supergravity
theories " are too complicated to be handled analytically, the
forms of the exponential potentials uséd in the literature thus
far also do not display these features at the same time. Here we
suggest a simple exponential potential which has a global minimum
(like the one dictated by the particle-theory potentials) and
descrlibes the inflationary scenario rather satisfactorily.
Attempts are made to investigate the solutions of: the
corresponding classical equation of motion for the scalar field ¢
and accordingly the power law inflation scenario is discussed.
The tunnelling probability and the density perturbations are also

computed within this framework.
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1. Introduction ,

With a view to producing symmetry breaking one needs to
introduce in the ambit of discussion a potential function V(¢)
with a nontrivial classical minimum. "While such features of the

potential must show up in a natural manner on the basis of some

dynamical arguments, Colemani). Guch) and Guth and UeﬁnbergS)

have endeavoured to look for their origin in the renormalized
version of "massless" scalar slectrodynamics. However, the

corresponding mathematical structure of V(¢), obtained in these

cases for T = 0, viz.
_ 25 2 4 2, 2 1 4 .
Vig) = i5 & [¢ In(p"/07) + 5 (o7 - ¢ )] (1)

turns out to be difficult to handle analytically. A form such as

. this will be termed as the realistic one. Here a2(= 1/45) is the
strong coupling constant and o(x>~ 1.2 «x 10'> GeV) is the broken-

symmetry minimum valuea)*of Vig). As compared to several other
known  forms, the structure (1) has a smooth behaviour near ¢ = O
and also explains several temperature-dependent features.

Other competing mechanisms to understand the

inflationary universe have found expressionswli) in terms of

variocus versions of inflation characterized, for instance, by
chaotic Iinflation, extended inflation, stochastic inflation émong

others. In the case of chaotic inflation one considers a massive

non-interacting scalar field ¢ with the Lagrangian density

1

£ = (M*/4m) R + 50 ¢ ey - vig), (2)
P H

-2
P 1]
the Planck mass, R the curvature scalar and m is the mass of the

scalar field appearing in V(g) such that m << M . "If the scalar
P

with G = M 1.2 x 10 Gev

as the gravitational constant; MP

field # is sufficiently homogeneous in some domain of the

universe, then jits behaviour inside this domain is governed by

the equations

"+ 3H @ = - (aV/ap) , o (2)
H? + (kP/a%) = (az/:-n[%é’ f V(] . ()

2



Here V(¢) is the effective potential of the field ¢; H = (a/a),

a(t) the scale factor of the locally Friedmann universe (inside
the domain under consideration); 2’ = (Bn/Mz), and k = +1, -1, O

correspond to the closed, open or flat universe, respectively.
In this work we confine ourselves to the case of the flat (k=0)
universe.

It is now well known that the resolution of the
appropriately posed cosmological problems of horizon and flatness

are attributed to the inflation scenario or to the exponential

expansion of the cosmic scale 1in the early universeiz). In

particular, the cosmic scale factor a(t) is found to grow as a(t)

= a tP, (p >, In fact such a power law expansion is

realizable mainly through the scalar field ¢ with an exponential

potential, in that the potential V(g) = Vo axp(-A¢) dominates7-9)

the energy density of the universe. For the exponential form of
V() the solution of the noniinear classical equation of motion
(3), no doubt, exhibits'’ an attractor but the desired features
mentioned above are missing from this form of V(g), Also, in
order to achieve a viable cosmoiogica] scenario the universe is
expected to evolve into the radiation-dominated Friedmann stage
after enough inflation and successful reheating. For this
purpose the potential must have a global minimum- a requirement
not fulfilled by the above burely exponential potential. To find

an answer to this daunting problem several variants of the

i1,12)

inflation scenario are discussed in the literature.

While Yokoyama and Maedas) accounted for the energy
dissipation by introducing a term, c ¢, in eqg.(3) (the origin of
this term can also be attributed to the couplings of some other

fields, if present, with ¢), they proposed a toy potential for

inflation, viz.,
Vigp) = 2Vo [ cosh(xg) - 1] (5)

for the ‘inflaton’ field ¢. In the limiting cases this potential




reduces to an exponential or a harmonic form

Vig) = V_ exp(-Ag) for -¢ » (1/N\), (6a)

~ V) 2o for || « (1/N). (6b)

depend{ng essentially on the relative strength of the inflaton
field ¢ vis-a-vis At Interestingly, ths forms (6a) and (6b)

have been used in recent yearsll) to describe the inflation

scenario in different stages by what are known as exponential and

new inflations, respectively. Whilse form (5) does not
accommodate the dasired features, its use in (3) is no less
challenging for the purpose of mathematical treatment. On the

other hand, a generalized version of the limiting cases (6a) and

(Bb) is founle) particularly useful from the point of view of
investigating the inflation scenario. Therefore, in order to
address several additional aspects pertaining to inflation we

propose, in the present work, an effective potential of the form¥
- _ 2z A(g-¢y)
Vig) V0 (¢ ¢0) e , (7)
where ¢:¢o = 1.2 x 10" GeV is the position of the global minimum
in V() of (7) and there also exists (cf., Fig.1l) a maximum at ¢ =

¢, - (2/\). The quantities V_ = 77.35 x 10%® Gev? and A = 2.86 «x

10°*® GeV™* have been fixed in accordance with the realistic
potential (1). The potential (7) exhibits a (mandatory) huge
slow-roll regime as well as a minimum at ¢ = 0O (cf. Fig.l) for
these values of the parameters.

In Sect. 2, we discuss the dynamics of the system and

show that there exists an attractor for the solution of eq. (3)

* Mathematically, it is not difficult to visualize the origin of
the harmonic factor in (7) if one confines only to the second

order variations of V(¢) with respect to A through (8°V(g¢)/a*)

. . . . . 7) .
and such a variation makes sense since A is also linked with n

in (4+n)-dimensional Kaluza-Klein type supergravity theories.



with V(#) given by (7). In Sect.3, we demonstrate the

possibility of existence of yet another attractor in the solution

of (3) by introducing a friction term, (f c ¢™@, in it.
m

Necessity of such a term arisela) in the study of inflation with
thermal dissipation. Slow-roll scenario is also discussed herea.
The tunnelling probability and the density perturbations
corresponding to potential (7) are estimated in Sect.4. Finally,

concluding remarks are made in Sect. 5.

2. Dynamics of the System
Now we investigate the solutions of the <classical
equations of motion (3) for the potential (7). After defining f

=‘¢o-¢. eqs. (3) and (4) can be rewritten, respectively, as

£+ BH f + V_f(z-af) oM - 0o (8)
3H? = a2 (% £+ v_ 1 e My, (9)

Note that Vo' A, 2 and H are true constants and'obviously no

variation 1in their wvalues is possible while studying the

stability of the solutions of (8), Exact integration of eq. (8)

is possib1914) if one drops the second term in eq.(8) and sets

o

the initial conditions as f = 0, f = O at t = O (which correspond
to th; solution at the global minimum). However, such a solution
of (B8) cannot be fully justified and we therefore look for the
solution of eq.(8) without imposing the above conditions. For

this purpose, we transcribe eq.(8), for conveniencé, as

X° 4 BHX + V_x(2-Ax) e = 0 (10)

and prefer to write it equivalently in terms of a pair of first

order differential equations in two different ways, namely

Case A : X = y (11a)

y = -3Hy - V_x(z-x0 e, (11b)




Case B : X = y -3Hx . (123)

y o= -V x (22X oM (12b)

With the reduction (12) note that eq.(10) can immediately be

15)

identified with the Lienard equation

X° + g(x) x + h(x) = 0,

where g(x) = 3H is a constant and h(x) = Vox(z—xx) e_Kx satisfies

the reguired conditionslS) in order that a Liapunov function

X

F(x,y) = g(x) + % yz. with g€(x) = I h(u)du can be constructed.
0

The Liapunov function finally turns out to be

FOy) = Vi o My % vz, (13)

which Is positive definite for all real x and y. Similarly, F is
‘obtained from

_ 8F o 3F o
£ = Xt eV (14)

after using (13), (12a) and (12b) as

f = -3Hy x2(2-ax) e ¥

which is negative definite as x varies over 0 < x < (2/A) or ¢
varies over a region ¢0— 2/ <@ <¢o where the slow-roll of ¢ in
the potential dominates. Thus,vthe origin (0,0) in the x-y plane
is a uniformly stable critical point, i.e., there is a unique

attractor at ¢ = ¢o of the potential. However, for the region

0<x < (2/2) F is negative semidefinite and therefore (0,0) is
asymptotically stable. |

Alternatively, one can as well carry out an analysis of
the phase portraits on the x-y plane for the system (12): In
this case one obtains three critical points C1: (0, 0), Cz: (2/N,

6H/A), Ca: (o0, ). It can be shown15) that C1 is a stable node,

Cz a saddle (unstable) and C9 an unstable critical point (sincse

one of the eigenvalues in this case is zero, implying a critical

point which is not isolated). In the same way, if one carries



out the phase plane analysis for the case A (cf. eqs.(11a) and
(11b), then the nature of the «critical points and subsequently
the topology of the trajectories turns out to be the same except
for the fact that the . axes now stand rotated relative to the case
B.

3. Slow-Roll Scenario and the Effect of Dissipation
It may be mentioned that in exponential inflation the
dependence of ¢ on the time varidble t is negligibly small during

the inflationary stage whereas it is not so in the case of power

law inflation. For the former case $° in eq.(3) can be dropped
and consequently this equation implies that P = %ﬁ (%%).
Thus, the inflaton field ¢ rolls down the pure exponential

potential more rapidly then it rolls down the potential (7) in
‘the vicinity of the global minimum. To some extent such a
phenomenon can be attributed to the couplings of the ¢-field with
other fields, if present, which in turn implies that the

inflation proceeds through some dissipation processes. While the

7,8)
role of such friction forces has bseen investigated in the

literature by inserting a term of the type c & in eq.(3), it is

also argued that this term owes its existence to the particle

creationa). This is perhaps the simplest way (as one retains

only the first power of @) of accounting for the dissipation in
the system. I1f one resorts to account for the dissipation in a
different (and possibly a little more complicated) way, then the
corresponding dynamical system is going to exhibit several other
interesting features as far as the nature of attractor (stability

of solutions) is concerned. For example, for the friction term
of the type (¢°-1)@ or co(¢z+$z-1><} the existence of a limit

cycle in the system can be readily demonstrated.

In ardar to aocount for the thermal dissipation in the

Inflation scenario, Lee and Fangis) have recently suggested the




use of a term of the type (c ¢m)$ with c_ > 0. One may as well

use more generalized version of ‘this form, namely (L cm¢m)$ in

m
eq.(3). __While the first form clearly leads to a limit cycle for
certain values of c, and m = 2, we analyse the latter case here
in detail. Eq. (10) can now be written in the form

%° + 3H% - o> c X™% + V_x(2-Ax) e M = 0. (15)

The phase plane analysis of eq.(15) can be carried out in exactly
the same way as is done for the system (12) (cf. Case B). We

agéin obtain the same set of critical points C;’Cz'ca out of

which CI: (0,0) is a stable node as beforse. For the critical
point Cz: (% , gﬂ ) which was a saddle (unstable) earlier, the
situation now is different however. In fact, the eigenvalues in

the present case are given by

.1 _ m
ALZ— E'(SH § cm(Z/R) )
+ L eH-r ¢ (2/0™P+867%- 12F © H(z/M™ M2, (16)
2 m m m ™m
Clearly, for m = 0 and co = 0 one recovers the earlier result

i.e. a saddle at c,t (% , Sﬂ-); otherwise note that for

[3H-F c (2/00™1 % 8e™® < 12H T ¢ H2/0)™
m ™ m M

one can establish the existence of a stable spiral for certain
values of m and c - Thus the introduction of dissipation of the

type discussed here in the above system will definitely bring in

‘the role of more attractors which otherwise was not possible in

the approach of Yokoyama and Maedae). Moreover, once the

dissipation is present it will also accelerate the process of
16)

reheating
4. Tumnelling Probability and Density Perturbations

In this section we demonstrate the computation of some
results within the framework of the present exponential potential

model . For this purpose we make use of the standard techniques



available in the literature. In particular, we carry out an
order-of-magnitude estimation of the quantities whicﬁ have been
of pivotal importance in recent years; namely (i) the tunnelling
probability P through the barrier of potential (7) (ef. Fig.1),
and (ii) the density perturbations (&p/p).

In order to estimate the tunnelling probability P we

assume, following Lindei7), the formation of bubbles of a new

phase and make wuse of the Euclidean approach to the tunnelling
theory. This approach enables us to compute the decay

probability of the false vacuum and the expression for P in this
case is given by17)

P = A exp(-S5(g)), (17)
where S(¢) is the Euclidean action corresponding to the solution

of the equation

u¢=9_f—+vz¢=%sv'<¢> (18)

and takes the form

s(¢) = [ d*x [ %éz + % (V)2 + V()] . (19)

The factor A in eqg.(17) has the dimensions of (mass)4 and related

to the action 5 through the relation

2 ) - ’” -14/2
A = (§—9 [ det [ -o +V"(¢)] ] (20)
2n det[ -o + V' (¢)]
where "det’" represents the functional determinant of the

operator [-a0+V (#)1 such that its vanishing eigenvalues,
corresponding to the zero-modes of the operator, are ignored.
Here ¢ is assumed to satisfy the boundary condition ¢ = 0 as

x*+t> _» o and V(¢) satisfies V(O) = 0. The latter condition is

achieved from (7) by redefining V(¢) as V(g¢)-V(O), Recognizing

the fact that the quantities ¢(0), JV"(¢) and r ' (where r is

the typical size of the bubble) lie within an order of magnitude

of each other, the factor [clea’c'[—g+\/"(¢))/det(_c,+\/"(¢))]'1/z on

the right hand side of eq.(20) can be estimated so as to be of

9




- v 2
the same order i.e., of the order of (r ‘, ¢4(O), (V )™, Thus,
under the same assumption S5(¢) can be estimated, after using (4)

in (19), as

S(p) ~ 1. BH /T -~ (VN TE,

(3H2 /2

4 " -1
and subsequently the factor A as A ~ (Sz(¢)/4n Yy [V (@] .
Substituting the value of V (¢) at ¢ = ®, = ($,72/%\) as 20.931 x

208 2

10 GeV and the values of other constants, the tunneling

probability P from (17) is estimated to be P ~ 2.55 x 107" GeV’.

1t may be mentioned that it is tﬁe factor A (and not the factor
exp(-S(a))) in 17) that dominates the "values of P.

Alternatively, one can also compute P using the theory of Hawking

and Hossla). In this case one considers the tunneling from ¢ = O

through the barrier with a maximum at ¢ = ¢1 and as a result, P
is given by

3mM*

P 1 1 ’
P ~ A exp[ 5 [ Vo) V(¢1) ]]. (21)

On using the values of V(0) and V(¢‘) as obtained from (7) and

the value of A ~ 2.98 x 10" GeV? from (20), the relation (21)
yields the value of P as P =~ A exp(-6.42 x 10'®). It may be
mentioned that in the Hawking-Moss theory (cf. eq. (21)) the
exponential factor dominates over the value of A whereas in the
case of Euclidean approach (cf. eqg.(17)) the factor A dominates
bvef the exponsntial instead. In either case the value of P

turns out to be enormously smalil. This value is even smaller

than that obtained for the chaotic. type inflation17) where P ~

3
exp(-8n°/3x) ~ 107 ' for the potential V (e = %Mz ¢ - %
)

Fol lowing Lindel7 , we also carry out an estimation of

X Pt

the quantum fluctuations in the present model wunder highly

Fimplifying assumptions. Towards this end we use the expression

sptk)y _ 48 l2n v
T [ LI LA - (22)
P ; MoV (@) -

10


http:exp(-6.42

where the quantity on the right hand side is computed at the

value of the wave number k such that k -~ H(gp). Using V(¢) from
(7) an estimate of (&p/p) from (22) at ¢ = O furnishes a value of

.- -12 » ‘
6.39 x 10 and that - at ¢ = 1.0 «x 10*° Gev gives rise to (6p/p)

= 7.43 x 107,  While the variation in the value of (&p/p) in
the present model is just within one order of magnitude for the

allowed range of the scalar field ¢, it is, however, much smaller

than the value 10°* - 107° expected for the spectral amplitude on

a galactic scale and for a specially normalized spectrum.

5. Concluding Discussion

We have made an attempt to wunderstand the inflation

scenario within the framework of an exponential potential model
~for the scalar field inducing the power law inflation. While
this scalar field potential accounts for almost all the desirable

features as dictated by the particle physics theories, the

solutions of the corresponding equation of motion are found to

exhibft an attractor. It is shown that another attractor also
comes into play if one accounts for the dissipation by
introducing a term of the fype - EE cm¢m] & in the equation of
motion. In fact ths importance of a similar term is realized
recentlyla) to understand the inflation scenario with thermal

dissipation.

Other features of this exponential potential model
investigated in the present work pertain mainly to the estimation
of the tunnelling probability P .and the quantum fluctuations
through the computation of (Sp/p). It is found that the use of

either of the methods, namely the Euclidean approach17) and the

theory of Hawking and Mossle), yields enormously small values for

the tunnelling probability as compared to the one estimated (see,
Ref. (17)) on the basis of a chaotic- type scalar field
potential. Similar is the trend of the results obtained for

(Sp/p) in the present model. A% the maximum between the "false"

11




and "true" vacua is not very pronounced in potential (7) (cf.
Fig.1) we expect better understanding of the slow-roll phenomenon
and subsequently that of the reheating mechanism in this model.

Further studies are in:progress.
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Figure cCaption

Fig. 1. The effective scalar field potential V(¢) described by
Eq. (7).
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