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ABSTRACT 

We invcstigate the possible valucs of the cosmological constant allowed by 

quantum cosmology. 

If we formulate quantum cosmology respecting the causal nature of 

fundamental equations in the semiclassical regime of the universe, then any classical 

universe should have at least one symmetric surface, i.e., a spatial surface on 

which every component of the extrinsic curvature vanishes. Combined with the 

Hamiltonian constraint, this implies that the allowed values of the cosmological 

~9nstant are bounded from above. 

Applying this argument to the Robertson-Walker unIverse, we obtain the 

theoretical upperbound for the cosmological constant, being of order (Hole f·. 
This upperbound can also be interpreted as being determined by the adiabatic 

Schwarzshild radius of the whole universe. In this way, the question as to 'why the 

cosmological constant is so small is reduced to the question, why there is so much 

matter in our universe. 
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1. Introduction 


The smallness of the cosmological constant has been a mysterious problem for 

physicists, although the inconsistency it implies has not yet affected the present 

activities in physics directly. The main problem consists in an extraordinary 

discrepancy between the two expected values of the cosmological constant, one 

from quantum field theory and particle physics and the other one from cosmological 

observations and observational cosmologyJ1],[2] 

Any kind of vacuum energy should be treated as a part of the cosmological 

constant, A, when general relativity is taken into account. The zero point energy, 

for instance, contributes to A as 

to each componcnt of each quantum field. Here, 10 and Mo denote a cut-off 

scale, while Ipl and Mpl dcnote the Planck scale. As an illustration if we put 

Mo = Mpl' the scale at which general relativity itself breaks down, we get 

A1\ vac ""'J 1-
pl 

2 
""'J 

(10-33cm)-2'. 

On the other hand, we ~now from cosmological observations that the total 

matter density and spatial curvature do not greatly exceed 1 at present, in units 

of :~ and (Ho/c)2, respectively. (Here, Ho = 50 - 100 km· s-l . Mpc-1 =: 

h . 100 km· s-1 . Mpc-1 is the Hubble parameter at present.) With the help 

of the Einstein equations, this implies that Aobs should .alsc-~_~f, the order of 
;~~.;., 

Thus, Aobs/Avac ""'J 10-122 . This discrepancy between theory and observation 

is the fundamental problem of the cosmological constant.[1],[2] 

Here, let us note the special feature of this problem. Although there is a 

definite discrepancy between Avac and Aobs, there remains a freedom to choose 

a (negative) bare parameter Ao suitably to adjust Ao + .Avac Aobs' The queer""'J 
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feature which bothers us, then, is that it looks as 'if this parameter Ao had been so 

chosen in advance at the very early stage of the universe as to exactly cancel the 

present value of Avac. Moreover, the exact value of Avac at present is sensitive to 

the precise details of the dynamics of fields from the big-bang to the present - field 

species, symmetries, form of interactions and coupling constants. It is hard to think 

that the early universe have chosen Ao correctly with the accuracy of 0(10- 122 ), 

"knowing exactly" and "worrying about" the future value of Avac. (The problem of 

"prearrangement" J3]) In this sense, this problem has more to do with the problem 

of "unnaturalness" rather than any theoretical contradictions. Thus, we are not 

interested in any ad hoc explanation for it, because such a theory tends to be a 

graceful rephrase of "unnaturalness" . 

Hence, we need to find a natural explanation for the smallness of A = Ao +A vac , 

rather than Avac. Quantum cosmology is supposed to be effective for this purpose, 

because it can handl: a wide variety of universes simultaneously, including a wide 

variety of values for Ao. Works by Hawking[4] and by Coleman[3] are skillful attacks 

on the problem along this line. They have shown a promising p~sibility that the 

answer to the problem lies in the realm of quantum cosmology. We will discuss 

these theories in the final section. Here, it suffices to recall that their arguments 

heavily rely on the Euclidean formulation of quantum gravity, postulating some 

technical assumptions which are open to question at present,[5] 

In this paper, we consider the cosmological constant from the viewpoint of 

quantum cosmology, but with a different perspective. Keeping the specific nature 

of this problem in mind, we examine the logical consequences of the pursuit of 

"naturalness", in the sense that we rely on a theory based on the assumptions 

which seem reasonable and minimum, avoiding uncertain impositions as far as 

possible. In other words, we investigate how far we can proceed along a path of 

"prearrangement" ,[3] 

Here, we respect the pseudo-Riemannian characteristic of space-times. We 

assume that the path-integral formulation of quantum theory can also be applied 
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to general relativity at suitably low energy scales. We postulate that the stationary 

phase configurations have relevance, while we need not assign any probabilistic 

meaning to the absolute value of the "wave" function", as far as our discussions 

below are concerned. 

2. Quantum cosmology and selection of spacetimes 

By combining general relativity with quantum theory in a suitable way we 

can restrict global properties of the universe to a great extent: quantum theory 

handles all possible histories at one time, compares them with each other and 

chooses preferable ones from among them. 

Recently, one natural formulation of quantum cosmology, which respects the 

causal nature of the semiclassical universe, has been presentedJ6] Since the closed

time path formalism[8] (the in-in formalism), which is one useful version of the 

path-integral formalism, plays the central role in this theory, let us recall this 

briefly. To make an explanation simple, we consider a mode q( T) with action 

S[q(·)] and source J(T). 

In the closed-time path formalism, we perform the path-integration on a specific 

contour along the time axis: first go forward in time from T = 0 to T = T, turning 

at T = T, finally go backward in time from T = T to T = 0 (we parametrize this 

backward-route as T : T - 2T). Here, the boundary condition is q(O) = q(2T) = qo. 

Let us denote symbolically the class of all paths of q(T) subject to this special 

boundary condition as c(qo). Equivalently, we can restate this procedure as follows: 

We double the degrees of freedom from q(.) to q+(') and q_(.). We assign actions 

S[q+J and -S[q-l for q+(') and q-('), respectively. We then perform the path

integral during T : 0 - T with the boundary condition q+(O) = q_(O) = qo, 

q+(T) = q_(T) = qI. Finally, we integrate over qI. 
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More specifically, we calculate the following quantjty: 

exp~nv+,L]:= 1 (dq)exp~(S[q(.)] + jJqdr)
c(qo) fl, 

=j dql j(dq+)lq+(Ol_" (dq-)lq_(Ol= .. 
q+(T)=ql q_(T)=ql 

exp ~ {(S[q+(-)] + iT J+q+dT) - (S[q-O] + iT Lq_dr)} . 

From nW[J+, J_], we can neatly obtain various expectation values, e.g., 

Ii 81V _ J_ < qolq( r)lqo >J+ 

=< qolq(r)lqo > J
i 8 J+ ( r) - J < qO Iqo > J 

- + 1l+=J_=J 

The most important point is that, only after putting J+(.) = J-(.), we obtain the 

real, causal quantity < qO Iq(r) Iqo > J J9] Here, "causal" means the property that 

< qolq(r}lqo > J depends only on {J(r/}}o~TI::5T' i.e. only on the past information 

of J. In this way, the closed-time path formulation yields expectation values 
""I. 

nat urallyJ8],[9] 

Now, let us return to the main subject. The fundamental object (h 4J), which 

is of a central importance in the theory of our concern, is defined as 

(1) 

Here, S9:= JRJ-g, Sm:= 167rG/c3 x (matter action) and 0::= 1;1 = 167rGh/c3• 

In this context, h is always an abbreviation for hab. For the technical convenience, 

we will confine ourselves to the case of the spatially closed spacetimes throughout 

this paper. The symbol c( h, 4J) implies the class of closed-time paths with the 

boundary value hab and 4J. If we need, it is convenient to choose the gauge-fixing 

condition for eq.(l) as JoT N+dr = JoT N_dr , N+i = N-i = O. 

We include the cosmological term into the matter action Sm. First, the original 

bare cosmological constant is included in Sm in the form (-2Ao}v=g. One can 
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attach to this term a dynamical meaning, if, e.g., one introduces a special kind 

of field with 3 anti-symmetric indicesJIO],[4],[1] Hence, we understand that dAo 

is included formally in (d¢) of eq.(l). Secondly, other contributions, .\', to the 

cosmological constant of dynamical origin, e.g. the zero point energy of quantum 

fields, are also included in Sm implicitly. In this way, we can understand that the 

symbolical argument ¢ in (h ¢) includes the cosmological constant A, in the sense 

that A = Ao + A'. 

Parallel to the previous example with q(.), we can define ~V[g+,g-] as 

1. j Z. 
exp-tV[g+,g_]:= (d¢)exp-Sm(¢:g) . (2) 

0: c( h,t/» 0: 

This time, the metrics g± play the role of source J± automatically. Hence, eq.(l) 

can be expressed as 

(h ¢) = j (dg) exp i(Sg + W[g]) . (3) 
c(h) 0: 

When we are interested in the semiclassical regime of the universe, the typical 

fluctuations in gravity induce a macroscopic change in the action, I Sg I> 0:, so 

that the stationary phase approximation for (h ¢) becomes appropriate. 

From the first variation of the phase in eq.(3), we obtain 

Gg: oW - 0 
ab + " ab - ,ug± 

or, 

(4) 


Here, the suffix "g±" attached to Gab and Tab implies that these quantities 

should be calculated using g+ or g_, respectively. We use the symbol Tab to 

express the energy-momentum tensor including the cosmological constant, Tab := 
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Tab - 8~~ Agab · Since the left-hand side of eq.( 4) is real, the right-hand side should 

also be real, implying that g+(') = g_(.) = 3go(')' Thus, eq.(4) reduces to 

the semiclassical Einstein equation, which is believed to be appropriate for the 

description of (semi)c1assical gravity with quantum matter: 

(5) 

We should note that (h 4» correctly yields the causal equation of motion eq. (5) in 

the semiclassical epoch of the universe, which fits to our way of describing Nature. 

Here, by the term "causal", we mean that eq.(5) does not refer to the information 

outside the past light-cone of x. This causal character can be seen prominently in 

the right-hand side of eq.(5) : there appear expectation value < 4>ITab(X)I4> >, and 

not < otltITab(X)lin >. 
. 	 . 

Even though we have constructed (h 4» in a general manner, we can extract 

from (h 4» a great deal of information about the global properties of the uni verse, 

some of which we will mention now. 

Since the phase in eq.(3) should be stationary also at T = T, g+ = 90 and 

g- = gO should be joined smoothly on the~'T = T,sf>atlal surface ET, because the 

Einstein equation produces a smooth manifold from a smooth initial condition. 
abThis means that 7r = 0 on ET, where 1T'ab is momentum conjugate to hab . Here, 

ablet us call a spatial surface E with 7r = 0 a symmetric 'surface. The sense of 

this term comes from the fact that one can construct, if one wishes, a symmetric 

configuration of spacetime, with E as 'a reflection surface. Now, ET: symmetric 

implies ET: maximal, i.e., 7r = 0 on _ET. With the help of theorems on maximal 

surfaces, we find out that[6] 

. (a) 	 If the strong energy cond.iti?n for < Tab> is satisfied, any classical universe 

should be the one which start~ from, and ends in a singularity. 

(b) If the dominant energy condition ,f<?f·'<. Tab' > is satisfied, possible 3

dimensional topologies of the classical universe ar~ severely restricted. 

-. ~ essentially elliptic. 
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By investigating the second variation of the phase in eq.(3), we can also obtain 

the' validity conditions for semiclassical gravityJ7] 

The present formulation of quantum cosmology, which respects fundamental 

concepts in physics (in the semiclassical regime), e.g. pseud-Riemannian structure 

of spacetime and causality, seems to be one of the reasonable ways to combine 

general relativity and quantum theory. Below, we investigate another implication 

of (h cP): the restriction on the value of the cosmological constant. 

3. The symmetric surface and the cosmological constant 

In this section, we investigate the constraint on the cosn10logical constant 

resulting from the existence of a symmetric surface. 

We fix a spatial surface E. Let n a be a unit normal vector to E. Using n a , 

we can construct the spatial metric hab = gab + nanb and the extrinsic curvature 

j\ab = ~.cn hab = hae'9enb = h(a e hb) d'9end. 

Then, the Hamiltonian constraint reads 

A = -(R - o/h.Tnn - 2A), (6 - a) 

where 

1 2 ab) ~ -2 }?'2 }?' }?'abA : = n _ 27r - 7rab 7r V u = \ - \ ab \ . (6 - b)( 

Here, R is a spatial scalar curvature constructed from hab, Jh 
7rab := (I{ab - Khab)y'h and Tnn := Ta~nanb. 

On a symmetric surface, A = 0 so that 

where the suffix "s" denotes the quantity on the symmetric surface. 
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Using the equation of motion for matter, we can express Tnn in terms of hab 

and the initial condition for matter. 

We parametrize the spatial compact foliations as Er (r E R). If we choose 

one-parameter families of hab and fjJ, {hab(·, r)} and {fjJ(., r)}, we obtain a function 

of r, 

(7) 

Then, the necessary condition for A to give a classical universe corresponding to 

fixed one-parameter families {hab(·,r)} and {fjJ(·,r)} is, 

(8) 


since this condition is necessary for the existence of a symmetric surface. 

Here, we should note that a symmetric surface favours a positive curvature as 

is obvious frorn eq.(6-a). In fact, R = o./h.Tnn (:= o./h.Tnn +2A) on a symmetric 

surface, implying R 2:: 0 if we require the energy condition for 'inn. This induces .... 

a severe limitation of topology of EJ6] 

Now, let us estimate a behavior of f{h}{4>}(r) more specifically, introducing the 
1 

"scale factor" , , := vh "-1. The typical behavior of Rand Tnn are R ex: ,-2 and 

Tnn ex: ,-(n~1+6) (<5 2:: 0). Thus, the typical behavior of f{h}{4>}(r) is 

(0., ,82::0) 

so that 

2 ) n-;+6 ( 2 )" ~} (o.n-l+6) n-;+6 
SUPrf{h}{4>}(r) f"V { ( n -1 +b - n -1 +b {32 

=: fo 

Thus, we obtain an upperbound for A, i.e., A ;S fo. It is important to note that 

the existence of a symmetric surface imposes the upperbound on A, t.-ftough it is 
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difficult to specify the numerical value for this bound for general {hab} and {<p}. In 

the next section, we will find an exact theoretical upperbound for A by restricting 

{hab} to the Robertson-Walker metric and {¢>} to a suitable matter. 

4. The theoretical upperbound for the cosmological constant 

To make ,the discussion in the previous section a more specific one, let us 

confine ourselves to the case of the closed Robertson- \Valker universeJll] Then, 

the fundamental equations become 

(9) 

c2.. 4 G etA 
~ = __Tr_(p +3P/c2 ) + _....:....(0...;;..)_ (10) 
a 3 3 

\Ve consider matter which satisfies 

P/c2 = JlP (po: constant, -1 < Jl ~ 1) . (11) 

Especially, the case Jl =0 (dust) is known as the Lemaitre modelJll] 

Here, we explain the meaning of oA(o) in eq.'s (9) and (10). For a given Jl 

and a given p, the special value of the cosmological constant which allows a static 

solution (iz = 0, a =0) is determined from eq.'s(9)-(11). Let us denote this value 

as A(o). Regarding A(o) as a unit, we can express the general cosmological constant 

as A = oA(o), where 0 is a parameter. 

Now, from eq.'s (9) and (10), (pa3 ) +P/c2.(a3 ) = 0, so that, with the help of 

eq. (11), 

(12) 

or 

(13) 

where Po is a constant. 
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Putting a = 1, it = 0 and a = 0 in eq. 's (9) and (10), we can express Po in 

terms of J.l and A(o), so that (13) becomes 

_ 1 A-!(1+3JJ) 2 -3(1+1') (14)P - 47rG X (0) c a , 

.- (1+3JJ)t(1+3~)
hwere \ .- J. • , (l+JJ)l(1+~) 

We summarize what we have done above. For a given J.l, we get pa3(I+ JJ ) = 

. h' 1 A-!(1+3JJ ) lATh' Aconst. By equatIng t IS constant to 4iG X (0) , we get a va ue (0)' IS (0) 

is the specific value of the cosmological constant which allows a static solution for 

given jJ and pa3(1+JJ). We express the general cosmological constant in the unit of 

A(o): A = aA(o)· 

Now, it is convenient to re-express eq,(9) as 

(')2 ~ ~ +U(a) = aA~o), (15) 

where 

, c2 87rG 
U(a) : = - -3-Pa 2 

(16) 
_ c2 2 A-!(1+3JJ) 2 -3(1+1') 
- a 2 - 3" X (0) ca. 

The function U(a) has the form of A - B with A ex: a-2 and B ex: a-3(I+JJ) 

(-1 < jJ ~ 1), so that it has one and only one maximum lJ.max. It is obvious that 

Umax = ¥c2 , From eq.(10), it is also easy to show that a <, =, > 0 ~ 
it <, =, > 0 (respectively). Thus, for any allowed Robertson-Walker universe, 

i.e. anyone with a symmetric surface, a should be a < lor, 

A < Acrit := A{o) . (17) 
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Let us recast this .\crit in more convenient form. From eq.(14), 

(18) 

where H := ~, n := p/~~~, as usual. From eq.'s (10) and (11), 

where, as usual, q := _~H-2. Substituting this relation into eq.(9), we obtain 

(19) 

Substituting eq.(19) into eq.(18), we obtain finally, 

2 3(1+#-,)

2 ) 1+3#-, (3n q +1) 1+3#-,. 2 
Acrit = (1 + 31l) ( 3n . 2 - 1+ J1. (HIe). (20) 

Since Acrit = A(o) remains constant during the evolution of the classical universe, 

we can calculate the right-hand side of eq.(18) or eq.(20) at any time in the classical 

epoch. Especially~ we can substitute the present values H = Ho, n = no, q = qo 

into eq.(20). Regarding that no = 0(1) and qo = 0(1), we find out that 

This is the absolute upperbound for A which has been suggested by cosmological 

observations. 
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It is also helpful to recast Acrif in another form. When p. =1= 0, the quantity 

of a mass-dimension pV = 27r2pal does not remain constant during the evolution 

of the universe. It is more appropriate to define the adiabatic quantities. Let us 

define the adiabatic Schwarzshild radius with respect to the matter content of the 

unIverse: 

(21) 


which remains constant during the evolution. Then, eq.(18) can be expressed as 

(22) 

Hence, the upperbound for the cosmological constant comes from the adiabatic 

Schwarzshild radius of the whole universe. 

In this way, the question as to why the cosmological constant of our universe is 

so small has been reduced to the question why the adiabatic Schwarzshild radius 

of our universe is so large compared to the Planck length, which ill equivalent to 

the question as to why the adiabatic mass of our universe is so large compared to 

the Planck mass. 

The last question seems easier to answer compared to the original question. 

For instance, the inflationary scenario[12], which produces a large amount of matter 

after inflation, may be one possible path for it, although satisfactory version of this 

scenario has not yet been presented so farJll] 

We should remind ourselves that there are many origins of the cosmological 

constant. For example, as discussed in ~1, the zero-point energy of quantum fields 

is expected to contribute enormously to A, typically in the order of M;" Whenever 

there is false-vacuum energy, it also contributes to A in the order of p4 / M;" where 

p. denotes the scale of the spontaneous symmetry breaking. As discussed in §1, 

what is meant by the cosmological constant problem is a vast discrepancy between 

such an expected A, OeM;,), and the real A, O(Ho/c)2. 
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Now, the symbol A in eq.(6 - a) means the summation of the original bare 

cosmological constant and all the other contributions of dynamical origins. Then, 

according to the present theory, only those universes are selected, in which the 

resultant total A obeys the condition (8) or (17) at sufficiently late stages in the 

classical epoch, irrespective of both the details of the origin of A and the detailed 

dynamics of fields before and after the Planck epoch. In this way, the suitable value 

for Ao is chosen and fixed to adjust the value of Avac at sufficiently late stages of 

the universe. ~ote that, in the early stages of the classical epoch (e.g. before and 

around T = 100Ge\' which is the scale of the electro-weak phase transition) in 

which the behavior of matter is quite different from the one in the later stages, A 

can take larger values than the present value because Avac changes according to 

the dynamics of the matter fields, while Ao is a fixed constant. 

The above result, derived only from the combination of general relativity, 

quantum theory and causality, is natural enough to make one feel relieved to 

observe the smallness of the cosmological constant. 

5. Discussion 

There are two type of difficulties which we occasionally face in formulating 

various theories of physics (especially cosmology): 

(a) 	 those where the results/assumptions of the theory indicate a limitation or a 

deficiency and 

(b) 	 those where the results/assumptions are in contradiction with our sense of 

naturalness. 

For example, difficulties of galaxy formation from nearly isotropic density, 

perturbations may enter into class (a), while the so-called isotropy problem 

in cosmology, may enter into class (b), because the Robertson- \Valker models 

themselves do not induce any fatal self-contradiction. For the purpose of removing 

this "unnaturalness- in (b), it is preferable to avoid ad hoc assumptions and 

arguments. 
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The cosmological constant problem, in this sense, may be appropriately 

classified into (b), because there is al~ays the freedom to choose the value of the 

bare parameter Ao to cancel Avac sufficiently. In the resolution of this problem, we 

have tried to conform to a sense of "naturalness", though the precise definition of 

this term is difficult. 

As mentioned briefly in §1, Hawking and Coleman gave impressive explanations 

for the cosmological constant problem. In the remaining part of this paper, we 

discuss a few specific points about their theories. They utilized skillfully the logic 

of the Euclidean quantum cosmologyJ3],[4] However, it might be fair to say that 

their arguments do not completely satisfy our want of "natural" explanation of 

the problem. Both of their arguments heavily rely on the absolute value of the 

wave function of the universe, which is based on the Euclidean path-integral. If we 

analyze our feeling of uneasiness about these theories cautiously, we realize that 

it mainly comes from a lot of uncertainty in this Euclidean formulation, in which 

proof is replaced by belief. 

..... 
Some essential points are left unquestioned in the shadow of fascinating features 

of the Euclidean formulationJ5] It is not clear whether saddle point configurations 

have dominant contributions to the divergent integral. It is uncertain whether such 

a divergence can be handled meaningfully without harming physical implications. 

It is also not clear whether the integral can be approximated by configurations 

of 4-spheres connected with each other by narrow wormholesJ14] It makes us feel 

uneasy to discuss about the infinite-height peak at A = 0+ derived by a special 

approximation scheme in ~he integral expression which itself is subject to a serious 

divergence, or which requires a specific extra prescription for making sense. There 

appears also a possibility' for the argument of wormholes to fail to answer the 

cosmological constant problem after in depth investigations of the integraJ.J15],[16] 

We should also note another specific characteristic of these theories: their 

mechanisms work too well to allow non-vanishing A of order (HO/c)2. Recent 

developments of observational cosmology suggest that the non-vanishing A with a 
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cosmological scale is not unprovable,[2] Suppose that Aobs #- 0 would be established 

by observations. Then, this would mean that there is at least one fatal defect in 

either the assumptions or arguments in those theories. This is especially true for 

the theory with wormholes because we need fine-tuning of the boundary condition 

for the wave function of the universe to allow A #- 0)3] If this might be the case, 

however, our gain of knowledge of a defect somewhere, either in the saddle point 

approximation, in the treatment of wormholes, in the Euclidean formulation or 

else, would compensate .well for reluctantly abandoning those appealing theories. 

In this sense, the observational determination of whether the cosmological constant 

is exactly zero or not has an essential significance for the understanding of physics 

in the very early uni verse. 
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