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1 Introduction 

Large empty regions virtually devoid of galaxies - called voids - are a distin
guishing feature of the large scale structure of the t.:' niverse as revealed in redshift 
surveys. Sizes of individual voids are known to vary considerably and range from 
5h- 1 :\Ipc to 60h- 1 Mpc (3J. The importance of voids in providing a key to un
derstanding the large scale structure of the Universe was pointed out years ago 
by Zeldovich, Einasto &; Shandarin [7J. In this talk I shall attempt to summarise 
some of the results obtained by B.S. Sathyaprakash, Sergei Shandarin and myself 
from a study of voids using the adhesion model of structure formation (5). 

2 The Zeldovich approximation and the Adhesion m~del 

Particle motion in a self-gravitating medium can (until shell crossing) be accu
rately described by the Zeldovich approximation as a mapping from Lagrangian 
(initial) space q to Eulerian (final) space x : 

x =q - a(t)\14> (1) 

where 4> is the linear velocity potential and a(t) is the scale factor of the Universe 
(6). (In linear theory 4> and the gravitational potential ¢ are related: cp oc: 4>, if 
the Universe is flat and matter dominated.) The deformation of a unit volume 
element under the Zeldovich approximation (ZA) is described by the Jacobian 
of the transformation from q to x. so that 

dYE = dVL [1- a(t)Al(q)J [1 - a(t)A2(q)J [1 - a(t}A3(q)J (2) 

where dVe and dVL I are the volume elements in Eulerian space and Lagrangian 
space respectively, and A1, A2 and A3 are the eigenvalues of the deformation 
tensor l/;ij : 

(3) 

Invited talk delivered at the Rome meeting on "The Birth of the Uni
verse and Fundamental Physics", Rome, Italy, May 1994. 
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Clearly, positive values of Ai indicate collapse along at least one direction sug
gesting that the particle in question will ultimately end up in a caustic. Negative 
values of Ai (i = 1,2,3) on the other hand imply that the given volume element 
will expand rather than contract, such regions will be the progenitors of present
day voids. 

Fig.1. A one dimensional illustration of the geometrical prescription involving a 
paraboloid and the linear gravitationalpotential used to demarcate regions which are 
stuck within pancakes and those that are free. The panels from top to bottom corre
spond to increasing cosmic epochs and therefore to increasing values of the radius of 
curvature of the paraboloid. The peaks of the potential correspond to voids at early 
times. A particle having Lagrangian coordinate qo is free in the uppermost panel, and 
has just entered into a ca.ustic in the middle pa.nel. The middle and lower panels de
scribe the merger of clumps. 

The Zeldovich approximation ceases to be valid after pancakes form and one 
has to use other dynamical methods to study the development of large scale 
structure during later epochs after shell crossing has occurred. The adhesion 
model (AM) provides us with a useful extension of the Zeldovich approximation 
within which the study of voids can be followed into the strongly non-linear 
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regime [1]. Like ZA the adhesion model too describes motion as a single step 
mapping between Lagrangian and Eulerian space. This mapping can be described 
geometrically by descending a paraboloid with ra.dius of curvature proportional 
to the sca.le factor of the Universe aCt), onto a three dimensiona.lsurface defined 
by the linear gravitational potential t/J. If the paraboloid osculates t/J in a given 
point having Lagrangian coordinate q then the Eulerian position of q can be 
determined by noting whether the paraboloid touches or intersects the potential 
at any point other than q. If it does, then the given point (q) has already 
entered into a caustic at a time t and is labelled stuck, otherwise it has not 
and is labelled free (for details see figure 1 and [5]). The location of caustics 
viz. pancakes, filaments and knots can be determined from the corresponding 
Lagrange space picture by moving the border between stuck and free regions 
by means of the Zeldovich approximation (1). The distribution of filaments and 
knots is shown superimposed on the Lagrangian picture of stuck and free regions 
for a two dimansional toy model Universe in figure 2. 

/

/
/ 

•
Fig. 2. Filaments (dots) and knots (filled circles) in Eulerian space are shown super
imposed on free (shaded) and stuck (unshaded) Lagrangian regions. 

It is easy to determine the volume of a void in Eulerian space by applying the 
Zeldovich d~formation formula (2) to the corresponding free region in Lagrangian 
space. The volume of one such void is 

N 

VE =L dVL [1 - a(t)'\l(qi)] [1 - a(t)'\2(q.)] [1- a(t)'\3(qdl (4) 
i=l 

• 
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where N denotes the number of elementary free volume elements in a given 
Lagrange space void. The above ansatz provides an elegant semi-analytical ap
proach for determining the distribution function of voids (the void spectrum) for 
cosmological models in which structure forms through gravitational instability. 

3 Results 

Some key results obtained by applying the adhesion model to the study of voids 
are summarised in figures 3 - 8. Briefly these are: 
(1) The dynamics of voids can be fairly complicated, some voids contract un
der the influence of larger voids surrounding them - ultimately disappearing, 
whereas others expand and grow with time. As a result the void spectrum (which 
describes the fractional volume contained in voids of a given diameter class) 
evolves considerably with cosmological epoch as is clearly demonstrated in fig
ure 3 for a primordial power spectrum which mimicks the standard Hot Dark 
matter model. (Also see [2, 4, 5].) 
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Fig. 3. The void spectrum for a cosmological model with a truncated Harri
son-Zeldovich initial spectrum, is plotted for two values of the expansion factor. The 
x-a.xis is an indica.tor of the void diameter in units in which the box size is 128. The 
error ba.rs correspond to the rms dispersion over three simulations. 

In all our simulations we find that there are a substantially greater number 
of large voids at later. times than there were at earlier times. A consequence of 
this fact is that for scale invariant power spectra P(k) ()( kn the mean void 
diameter grows as Dmean ()( a(t)2/(n+3) for -1 :s n :s 1 . For simulations 
performed on a 128 Mpc box with the COBE-normalised CDM model (with 

• 
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Ho =50km/sec/Mpc) the mean void size is Dmean ~ 11 Mpc, the maximum 
void size is considerably larger Dmtu: ~ 60 Mpc. 
(2) The sizes of voids are strongly correlated with the value of the gravitational 
potential at void centers -larger voids seem to be associated with higher regions 
in the potential. This relationship is shown in figure 4 where the value of <P at the 
(Lagrangian) center of a void is plotted against the void diameter. This corre
lation increases with time and c~ be approximately described by the empirical 
relation (<P)/<Prm, ex: .jli"(t) where (<p) is the mean value of the gravitational.po
tential averaged over all void centers at a given cosmological epoch. (Details of 
our results can be found in Sahni et 'a1. (1994).) 

I I
"",' 

r-
 CDM, H=50 
l-


I-


r-
I

I 

I-


r- 
r  -r-
' 

r-  ---
-
-

-o -- -I T 
a 20 

. 


r- 

- "

r- 

-


-


-


-


I 


I 

40 


-


-
 '
-

-
-
-
-
-
-
-
-
-
-

I 

60 


Void Diar.neter (Alpc) 


Fig.4. The value of the primordial gravitational potential at void centers (in units 
of its rms value <!>rm.) is plotted against the void diameter for one realisation of the 
COBE - normalised CDM model. 

(3) Some features of gravitational clustering seem to be relatively insensitive to 
the value of the spectral index. An example is the fraction of matter in caustics 
f(a) (1 - f( a) is a measure of the underdensity in voids) shown in figure 5 
for different power law spectra. We clearly see that the rate of infall of matter 
into caustics is virtually insensitive to values of the spectral index in the range 
-1 ~ n ~ 1 . Our results show that by the epoch when k;;,t ~ R. =y'30'l/0'2 
virtually all of the matter is already in caustics. (O'j are the moments of the 
distribution of <p: 0'] =~ Jdkk2k2j l<pkI 2 .) Interestingly k;;,t ~ R. also marks 
the epoch when cellular structure in the Universe is completely formed. For 
k;;/ < R. gravitational instability proceeds via panacaking, whereas for k;;/ > 
R. hierachical clustering describes the mutual atraction and subsequent merger 
of pancakes, filamen ts and knots formed during the previous 'pancaking' epoch. 

http:gravitational.po
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Fig. 5. The matter fraction in caustics (dotted) and the related underdensit.y of mat
ter in voids (soJid) are shown at. different expansion epochs for power law primordial 
spectra. (The upper (lower) dotted curve and the lower (upper) solid curve correspond 
to n = -1 (n. = 1).) 

(4) Voids can be populated with substructure such as mini-Zeldovich pancakes 
and filaments which pass through a void that is bounded by major Zeldovich 
pancakes. In Lagrangian space such voids will be distinguished by having an 
individual topology t.hat is not trivial: an empty void with no substructure will 
have the topology of a sphere, whereas a void with a single mini-pancake within 
it will have the t.opology of a torus etc. A convenient measure of the topology of 
a compact surface is its genus, a void having N units of substructure will have 
genus = N when its topology is measured in Lagrangian space. In figure 6 we 
show a void from our simulations of the eDM model which has the topology 
of a torus in Lagrangian space. In figure 7 we plot the genus measure of voids 
belonging to a given diameter class against the void diameter. 

We find that larger voids are on an average more likely to possess substructure 
than smaller voids. We also find that void substructure evolves with time as do 
the voids themselves. We demonstrate this result for the eOBE-normalised CDM 
model in figure 8 in which the evolution of the mean genus averaged over the 
entire void ensamble is shown. 

We find t.hat. approximately one void in fifteen will have some substructur at 
the present epoch in t.he CDM model. Evidenc~ of substructure in several voids 
including the Boot.es void and voids in the erA survey seems to support t.he point 
of view that struct.ure formed via gra.vitational instability as demonstrated by 
the adhesion model. 

6 8 
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Fig. 6. A void in Lagrangian space having non-trivial topology. 
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Fig. 7. The mean genus measure of voids belonging to a. given diameter class (g;), is 
shown plotted against the void diameter for t}te COBE-normalised CDM model. 
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Fig. 8. The mean genus characteristic evaluated for the entire ensa.mble of voids in the 
CDM model, is shown for different values of the expansion factor a (a =9 corresponds 
to the present epoch). 
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