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Abstract 
In this paper the self-gravitating nonlinear sigma model is considered in the context of 
inflation scenarios as an alternative to the self-interacting scalar field theory. The complete 
set of new exact solutions for the two-component sigma model in the frame\vork of spatially 
flat Friedmann-Robertson-Walker and de Sitter universes is obtained. 
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1. Introduction 

Different versions of the inflationary universe scenario have exploited a theory of a 
self-interacting scalar field (SSF) coupled to gravity within the context of cosmological 
spaces. The non-linear scalar field theory, possessing a self-interaction potential V( <p), can 
be regarded as the best effective theory which describes particle physics phenomenon in 
the early universe such as a spontaneous breakdown and restoration of the GUT gauge­
symmetry [1]. 

On the basis of a SSF minimally coupled to Einstein's gravity in the framework of 
isotropic and homogeneous Friedmann-Robertson-Walker (FRW) universe the models of 
'old inflation' [2] , 'new inflation'[3] and chaotic inflationary scenario [4] have been analysed. 
Anisotropic and inhomogeneous cosmologies as well as (N + l)-dimentional space-times 
have also been investigated (see, for example,[5-7]). 

Extended inflation [8] based on Brance-Dicke (BD) theory of gravity and it means 
in fact the existence of two scalar fields,namely BD field and 'matter' scalar field [9]. The 
BD type of a scalar-tensor theory of gravity as well as R2- gravity and induced gravity 
models are conform ally equivalent to Einstein's gravity coupled to a SSF [10]. The inflation 
scenarios in the presence of non-minimal coupling to gravity have been studied as well ( 
see [11] and literature quoted therein). 

Overlooking the models above, we can find, that all these inflationary models are 
closely connected with a gravitational field produced by a single scalar field. However 
the progress of great unification and supersymmetry theories shows that a gravitational 
field may be produced by several (effective) scalar fields in the very early universe.This 
approach has been used for the multicomponent inflationary model [12] and double (or 
multiple) inflation scenario [13]. Both of them are based on noninteracting scalar fields 
with different potentials and have led to better understanding of large-scale structure of 
the universe [14] and some other cosmological problems [12,13,15] like horizon, flatness and 
graceful exit ones. 

The next logical step is to introduce an interaction between scalar fields. And there 
exist at least two possibilities [161.The first one is to use a potential term depending on all 
scalar fields. These type of models has been considered, for example, in references [7,17-19]. 
The second possibility is chiral model (or nonlinear sigma model), where an interaction 
is introduced by the constraint on values of scalar fields [20]. The nonlinear sigma model 
coupled to metric tensor of eucludean signature (++++) has been proposed in ref.[241.The 
self-gravitating NSM, based on the space-time of lorentzian signature ( - - -+), has been 
introduced in [23]. In the framework of J<aluza-J<lein theories the nonlinear sigma model 
in the context of the early universe was considered in [21]. 

It should be pointed out here that we have different equations and different physical 
sense for J<aluza-I<lein theories and self-gravitating NSMs. We don't use the Einstein's 
equations for the target space, as has been usually.done in I<aluza-I<lein theory. Besides, 
the Einstein's equations for coordinate space-time contain the energy momentum'tensor 
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of chiral fields, while for Kaluza-Klein theory one has a vacuum Einstein's equations. 
Let us repeat again, that the SSF theory presents only the simplest example of 

an effective theory, describing gauge and Higgs fields (of GUT) coupled to gravity. The 
nonlinear sigma model (NSM) can be viewed as an effective model for GUT, as the SSF 
model is. Besides, the NSM is more rich than the SSF theory and bears many features 
corresponding to a gauge theory [20]. Moreover, the NSM can be reduced to the SSF 
theory [16,22]. 

In the present article the self-gravitating nonlinear sigma model is analysed in the 
framework of isotropic and homogeneous universes.As a first step of investigations of an 
inflation scenario, the system of Einstein's and chiral fields equations have been solved. 
The set of the exact solutions for the two componenet NSM in the spatially flat universes 
is obtained in the presence and in the absence of the cosmological constant. For the sake 
of completness all possibilties for the sign of the cosmological constant have been used, 
because of it importance in cosmology [25]. 

In section 2 the basic equations are presented, and the method of solving them is 
described. 

The section 3 contains the set of exact solutions for the spatially flat FRW universe. 
In section 4 and 5 the solutions for the spatially flat de Sitter universe are presented, 

with possitive and negative cosmological constant, respectively. 
Finally, in section 6 obtained solutions are discussed and few remarks are given. 

2. The model and basic equations 

Let us consider the self-gravitating NSM [23] in the presence of the cosmological 
constant 

{ m { R + 2A 0: A B ik} (1)83 = 1M d xJ9 2~ + 2 hAB'Pi 'Pk 9 , 

where x = (xl, ... ,xm) are the local coordinates of base space-time, Riemannian manifold 
(M,gik); 'P = ('PI, ... ,'Pn) is the multiplet of scalar fields which lies in a target or chiral 
space, Riemannian manifold (N, hAB); 0: is a coupling constant; 9 = Idet(gik)l; 'Pk := 
'P,k := 8k'P; R is the scalar curvature and ~ is Einstein's constant. Where repeated indices 
occur the summation convention is assumed. By varying the action (1) with respect to 'PA 
we obtain the equations of motion 

1 'k B D B C Ok}J98i(J9gl hAB'Pk) - {hcDrAB'Pi 'Pk gl = O. (2) 

Here the r~B are the Christoffel symbols of the chiral manifold (N', hAB). 
Einstein's equations for the model (1) with the energy momentum tensor 

(3) 
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can be reduced to the next form 

(4) 


It should be noted here that the NSM coupled to metric tensor with signature 
(++++) has been proposed in ref.[24]. In [24] the instanton and meron solutions for the 
system of equations (2),(4) have been obtained in the framework of conformally-Weyl's 
spaces. The self-gravitating NSM, based on the space-times of lorentzian signature, have 
been introduced in [23]. This type of models stand on the Einstein's conjecture: the energy 
momentum tensor of matter (3) creates a gravitational field. The start point in Kaluza­
Klein theories is quite different: the dynamics of matter corresponds to Einstein's vacuum 
equations in a space-time of more than physical (four) dimention. And the equivalence 
between equations of genaral relativity and Kaluza-Klein theory should be checked in every 
case. After that comment let us come to the concrete model. 

Let us choose the metric of space-time to be a homogeneous and isotropic FRW 
unIverse 

(5) 

Here 

A2 (r) = { Si~:):} 
sinh2 r 

for a closed, flat and open universe, respectively. 
We will use the chiral metric of the NSM, associated with the SSF theory [22], in the 

next form 

(6) 

Here the chiral potential P(¢) corresponds, in some sence, to the potential of self­
interaction V( <;6). Namely, PC ¢) should be equal to minus VC¢), if we want to get the same 
equation of motion for a nonlinear sigma model as for a scalar field one. Substituting (5) 
and (6) into (2) and (4), we can find that chiral fields ¢ and X should be dependent on the 
cosmological time t only. Therefore, doing some simplification, we can obtain the system 
of equations 

(7.1) 


(7.2) 


4 




3 dP 2 

2 at 4>t + 4>tt - d4> Xt = 0 (7.3) 


3 dlnP 
2atXt + Xtt + ~4>tXt = 0 (7.4) 

where k = +1,0, -1 for closed, flat and open universes, respectively. 
Let us turn our attention to the method of solving the system of equations (7). First 

of all, the gravitational field can· be calculated from the equation (7.1). Using this result one 
can obtain from the equation (7.2) the relation (ansatz) between chiral fields' derivatives 
and chiral potential term P(4». The ansatz (7.2) gives us the possibility to find the energy 
momentum tensor and to reduce the equation (7.3) to the ordinary differential equation of 
the first order. This reduced equation can be, in general, formally solved. But the result 
will depend on our suggestions about the chiral potential and first derivatives from chiral 
fields. Therefore we will present a set of possible solutions for each case. There is no need 
to solve the equation (7.4), because it is differential consequence of (7.2)-(7.3). 

It should be noticed here that the equation (7.1) can also be reduced to the first order 
ordinary differential equation 

dp a /zp dz + 2p2 - Az2 + 2k = 0, (p = Zt, Z = e 2), (8) 

which gives the standard gra'litational fields corresponding to the extremely stiff matter 
[26] or massless scalar field. 

Thus the equation (8) gives us the scalar factor ea(t) for the FRW and de Sitter open, 
flat and closed universes for the two-component NSM (6). In the case of spatially flat 
universes we have got the complete set of exact solutions for the model under consideration. 

3. Exact solutions for the spatially flat FRW universe (k = 0, A = 0) 

Taking into account A = 0, k = 0 in equations (7) we immediatly obtain from (7.1) 

K2(t) = ea(t) = ao(t + to)2/3, ao = const. 

Thus the metric of space-time (5) takes the form of the power law inflation 

(9) 

This gravitational field is independent from a chiral potential term P(¢). As well 
as the energy momentum tensor is. Non-vanishing components of the energy momentum 
tensor can be obtained now from (7.2) and read 

(!" _ T4 _ 1 _ -713 _ -712 _ _ Tl _ P 
~ - 4 - -- - -.L3 - -.L2 - 1 - • (10)

3~t2 
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It is obvious from (10) that the matter, corresponding to this solution, gets an ex­
tremely stiff state. And there exists a physical singularity for the solutions presented in 
this section as t -+ O. 

3.1 Solution A. 

Let <P; = h(t) and P = P(t). The dependence P from t may be suggested because 
during the phase transition there exists a dependence of the potential V( <p) from temper­
ature [1] and, consequently, from time. Thus, obtaining <Pt(t) from the equations (7), we 
can find ~: and then, by integrating, P as a function from <p. 

The solution can be written as 

(11) 


2 

p.2 = const, {32 = 2(3KO<)-1, P < ~2' 

We should remember that P < 0 when V > O. Therefore the chiral metric (6) has to 
have a lorentzian signature (+-). 

Introducing the time dependence for the potential "by hand", we can obtain some 
analytical solutions from (11). For example, when P = -v2t 2 , v 2 = const 

_ (3 1(3 + f( t) I
<P - - f(t) + 2" In (3 _ f(t) + <Po, 

f(t) = (lla) 

3.2 Solution B. 


Let us suppose that <Pt = "p~t/J) and P = P(<p). Then we can find the solution 
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J.L dtJ 1 (12)X=y'2 P(cP)t' 

J.L2 
J.L2 = const, P < f32. 

In this case the chiral potential P depends on the chiral field cP. Substituting the concrete 
potential P( cP) into the first integral in (12), one can find the dependence cP from t. And 
then to d~fine the chiral field X from the second integral in (12). 

3.3 Solution C 

Let us suppose that P( if» = Po = const as in the case of 'slow rolling' regime [1]. 
This assumption denotes that we investigate the theory of two non-interacting scalar fields. 
The solution in this case is 

cP = Cl In t + cPo, 

X = c2ln t + xo; (13a) 

P = Po, ci + 2Poc~ = f32. 

Note that there exists an exceptional solution when ci = 0 

cP = cPo 1= 0, P = Po, 

X = Xo + f3(12Pol)-1/2In t. (13b) 

In this case the potential does not equal to zero and coupling constant a should be 
negative when Po < o. The chiral metric (6) is degenerate for the solution (13b). 

3.4 Solution D 

Let Xt = 0 or XiX i = 0, that is X is an isotropic field. Then we have the standard 
solution for massless scalar field for any type of the chiral potential P( cP) 

cP = cPo + f3lnt, X = xo = const. (14) 

Note that if P = Po, the solution (14) is equivalent to (13a) with c~ = o. The chiral 
metric (6) is also degenerate for this solution. 

3.5 Solution E 

Let Xt = 1. This case, corresponding to the SSF theory [22], is described by relations 
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{J-Il(t)1
</J = 211 (t) + {Jln {J + 11 (t ) + </Jo,1 

11 (t) = J {J2 - p,2t, p,2 = const, (15) 

p, 1 
X = t + to, P(</J(t» = y2i' 

The relations (15) may be obtained from (11) by choosing pet). 

3.6 Solution F 

Let us consider the case of the exponential potential 

2P(</J) = me>",p, m = const, .A = const. (16) 

The solution for the case we can write: 

</J = -,8 In t + 2"\ -1 In(l + C3t>"f3), C3 = const, 

X = 2fJm-I Jt(3/2)AP-I [1 + C3tAP]-3 dt (17) 

It is clear, that for some relations between .,\ and {J (for example .A{J = n E Z) the 
last integral in (17) leads to the analytical function for X. 

It should be noted here, that the energy momentum tensor for all solutions, presented 
in this section, are determined by (10). 

4. Exact solutions for the spatially flat de Sitter universe (k = 0, A =I 0, A > 0) 

Solving the equation (7.1) with A > 0, we can obtain the exponentially expanding 
universe (5) in the form 

ds1 = (dt)2 - bo{cosh(r)}2/3{(dr? + r2[(d8)2 + sin28(d€p?]}. (18) 

Here r = tJ3.i\, bo = const. We have got again the gravitational field which is inde­
pendent from the metric of a target space (6). Non-vanishing components of the energy 
momentum tensor are 

t:'_T4- A _ ,..,,3_ ,..,,2_ T1_p 
<... - 4 - - 2 - -.1.3 - -.1.2 - - 1 - . (19)

Kcosh (r) 

The relations (19) correspond to the extremely stiff matter again. Moreover, we have 
got a non-singular solution, which belong to the oscillating universe of the second kind 
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[26]. When t = 0, the energy density 	does not equal to zero, and the gravitational field 
(18) becomes the Minkovskian space-time. Let us now take into account some special cases 
corresponding to the solutions in the section 3. 

4.1 Solution A 

Let 	¢>i = h1(t) and P = pet). The solution can be written as 


2 

¢> = j J-[Jl + P2] dr ,

P cosh r 

P, dTjp-1 (20)
X = J2 coshr' 

p,2 
- f32 < P < 0. 

It is clear that we have to introduce the time dependence for P( t) "by hand". 

4.2 Solution B 


Let ¢>T = g1 (¢» cosh-1 rand P = P(¢». Then (7.2) implies that XT cosh r = g2(¢». 

The solutions can be obtained from the relations 

r = arcsinh tan II (¢», 

I 1(4» 	 = J{_[v2p-l + p2]} -1/2d4>, (21) 

-~Jp(¢»-1 dr 
X - J2 coshr' 

21/ = const, _1/2 f3- 2 < P < O. 


The rule of obtaining solutions is the same as in the item 3.2. 


4.3 Solution C 

Let P( ¢» = Po = const. Under this assumption we have got the theory of two 
non-interacting scalar fields. The solution is 

¢> = Cl arctan(sinh r) + ¢>o, 


X = C2 arctan(sinh r) + Xo, (22) 
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4.4 Solution D 

Let Xt = O,(c~ - 0). Then, for any type of the potential P(<p), we can find the 
solution 

4> = ,8 arctan(sinh T) + <Po, 

x = xo = const. (23) 

The coupling constant a should be less then zero. 

4.5 Solution E 


Let XT = 1. 'This is the special case of the solution 4.1 A (20). 


4> = JJ_[fJ2 + v2p cosh r] d~ ,
cos T 

J1. h-1 (24)X = T + X0, P = v'2 cos T. 

4.6 Solution F 

Considering the case of the exponential potential (16), one can obtain the next solu­
tion 

4 v ~----
<P = <Po - ~ In cos( - \l'2Ka/3),

AKa 4 

v = 2"A 
arctan(eT 

), C3 = const, (25) 

2/KCtdv 
X = C3 cOs(vJ2Ka/3) ~.J{ }


The energy momentum tensor for all solutions, presented here, is defined by (19). 

5. Exa~t solutions for the spatially flat de Sitter universe (k = 0, A f= 0, A < 0) 

When A < 0 the solution of the equation (7.1) leads to the next metri~ of the space-
time 
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(26) 

In (26) 7J = -.J 3At, do = const. Non-vanishing components of the energy momen­
tum tensor are 

C' - 4-- A - T3 - T2 - T1 - PT4 ­",- --3--2--1-· (27) 
'" cos2 7J 

According to (26),(27) there exists some "pulsation" of the universe (26) and the 
energy density c. When t = O,we have Minkovskian space-time with the energy density 
e = -A",-l > o. Then space-time will collapse into the singularity with the infinite energy 
density when t = - ./:'31\ (~+n), n = -1, -2, -3, .... In this way, we have got an oscillating 
universe of the first kind [26]. 

Now we can obtain the solutions for chiral fields in the same special cases as in 
sections 3 and 4. 

5.1 Solution A 

Let <Pt = <Pt(t) and P = pet). The solution can be written as 

<P = Jv'p.2P-l + f32~, P < _p.2f3-2, (28)
cOS7J 

p. d7J r-;:)i"X = - Jp-1_-,7J = -tv-3A.V2 cOS7J 

5.2 Solution B 

Let <PfI = h(<p) cos-1 7J and P = P(<p). The solution can be obtained from the formulas 

7J = arcsin tanh [2 ( <P ), 

(29)12 (rf» = J 'f32 - ~:/rf>' 

X = ~Jp(<p)-l~,V2 cOS7J 

v = const, P < -v2 f3- 2 < o. 

5.3 Solution C 
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Let P{ </» = Po = const. Then we can write the solution 


1 + sin 1] I

</> = Cl In 1 . + </>0,

1 - SIn 1] 

1 + sin 1] I (30)X = C2 In 1 . + Xo,
1 - SIn 1] 

2c
P = Po, ci +2Poc~ = f32, -2:2 < Po < O. 

2 

5.4 Solution D 

Let X" = 0, i.e. c~ = 0 in the solution (30). Then for any type of PC</»~ we can find 
the solution 

</> = f3 lnl1 + s~n 111 + </>0, (31)
1 - sin 1] 

X = Xo = const. 

5.5 Solution E 


Let X" = 1. The solution is 


</> = Jvif32 - 2C3cos 1].!!:!L, (32) 
cos 1] 

C3 
X = 1] + Xo, P(1]) = --, C3 = const. 

cos 1] 

, 5.6 Solution F 


When the chiral potential takes an exponential form (16) we can find 


r-;;T f3>.. 11 + sin 1] I
</> = v -3Aln cosh{ -4 In . } + </>0, (33)
1 - SIn 1] 


The other field X can he found from "ansatz" (7.2). 


6. Discussion and renlarks 

The concept of inflation is based on the proposition, that the inflation is a temporary 
stage of eV\olution of the universe, posessing the next features: 
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(i) exponentially (or power law) expansion of the universe; 
(ii) vacuum-like state of matter p = -€ with the absence of particles; 
(iii) the spontaneous breakdown of the GUT gauge-symmetry, effectively described 

by a SSF coupled to gravity; 
(iv) nonvanishing cosmological constant A : A =1= O. 
In the present paper, it is proposed to use massless nonlinear sigma model as an 

effective theory (se.ction 2) instead of the self-interacting scalar field theory (see the item 
(iii)). It is found, that in the case of the two-component NSM there exists, in accordance 
with the item (i), an exponentionally and power law expansion of the universe (sections 3 
and 4). Besides, it is obtained the oscillating type of the universe (section 5) when the 
cosmological constant is negative. As for the statement (ii) it seems impossible to get the 
vacuum-like state of matter in the framework of massless NSM. By introducing the massive 
term (or the potential of interaction for chiral fields) it is , clearly, possible to reach the 
condition (ii), because of the strong correspondence to the SSF theory. Therefore in our 
investigation, based on massless NSM , we have introduced the cosmological constant "by 
hand". Nevertheless, it is possible to think about the reason of arising the cosmological 
constant in the same way, as for the SSF theory. Namely, A may arise from an additional 
term of the NSM like the mass or the potent.ial of self-interaction. 

It is shown, that all solutions of the two-component NSM lead to the extremely stiff 
matter, whith the equation of state p = c. It is found, that gravitational fields for the two­
component NSM are independent from chiral metric and coincide with the gravitational 
fields of the extremely stiff matter or massless scalar field. 

It seems, that solutions for the chiral field equations as well as the exact solutions for 
the gravitational field will be useful for further physical analysis of an inflationary scenario. 
If we will do the identification between the potential V( ¢) and P(¢), one can insert P(¢) 
as given function from ¢ into solutions presented in sections 3-5. It is also possible to 
use an appropriate approximation, corresponding to the version of the scenario, in general 
equations (7), presented in section 2. 

It is interesting to note, that solutions E (in the sections 3-5), corresponding to 
the SSF theory, show the physical sense of an auxiliary chiral field X as the time-like 
coordinate. I 
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