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Abstract 

Post-Newtonian corrections to the gravitational waveform emitted' by coa

lescing binaries have been found to lead to a secular phase accumulation 

error as compared with the signal calulated in the Newtonian approxima

tion. The matched filtering process which relies on the correlation between 

the signal and the filter is extremely sensitive to errors in phase. We explore 

-the possibility of compensating for the phase difference caused by the post

Newtonian terms by allowing for a shift in the Newtonian filter parameters. 

We find that, on the average, we lose by about 30% in the correlation. 



!
i . 

Coalescing binaries are the most promising sources bf gravitational waves 

[1,2] for laser interferometric gravitational wave detectors. There are plans 

to construct such interferometers around the globe and by the end of this 

century the American LIGO [3] and French/Italian VIRGO [4] will be in op

eration. Recently it has been shown that post-Newtonian (PN) corrections, 

spin-orbit (S.D.) and spin-spin (S.S.) couplings, produce in the waveform 

an accumulating phase error from the one computed from just the Newto

nian expression [5]. Therefore, a template constructed from the Newtonian 

waveform would go out of phase with the signal and the so called "matched 

filtering" technique for detection would woefully fail. In this letter we show 

that as long as we are only searching for signals a Newtonian filter would per

form remarkably well even though the signal contains PN corrections. The 

key idea here is that we allow the parameters of the Newtonian filter to vary 

and adjust them so as to produce the maximum possible correlation with the 

signal. We have found that this flexibility allows for fairly high values of the 

correlation. In many cases of interest the correlation obtained is 80% of its 

maximum possible value which would have been obtained had the template 

been perfectly matched to the signal. On the other hand, a template with 

the same parameters as those of the signal produces correlations of about 10 


. to 20%. Also, as a correspondence between the parameters of the filter and 


the signal could be set up, it might be possible to estimate the parameters of 

the signal from those of the filter. In other words the filter parameters may 

be "renormalized". 

The signal waveform is constructed using the expression for the rate of 

change of phase given in [2]. Here we do not take into account the effects 

due to S.D. and S.S. coupling. The addition of such terms will not alter the 

thrust of the argument in that, some other Newtonian filter would perform 

best. We expect that this would change the results only quantitatively, but 

not qualitatively. Considering only the PN terms, following [2], we write 

1 



down the equation for the rate of change of frequency, 

j 9611" P, X2•5 
(1)

f2 = 5"M F(x) 

where, 
1 - 2x _ 81 X 2 _ 675 X 3 

F(x)- 2 8 16 
- 1 - lia~ x +411"X1.5 - 4.9x2 - 38x2. 5 +135x3 

and j represents the first time derivative of frequency. Here M is the total 

mass of the binary, p, the reduced mass and x = (11" M f)2/3 the PN expansion 

parameter. We integrate this expression numerically to obtain the phase as 

a function of time. For the amplitude we use the Newtonian dependence on 

the frequency i.e. A(f(t) ~ constxf2/3. Although this is not exact, we do 

not expect the errors in the amplitude to affect the correlation significantly. 

The Newtonian expression for the frequency is obtained by setting F(x) = 1. 

We treat here only the white noise case when the filter is just a constant 

times the signal. 

The filters are given by the Newtonian expression and are parameterized 

by eand t/J. The parameter eis the time taken by the binary to coalesce 

from a certain fiducial frequency fa., usually taken to be the lower cutoff of 

the detector bandwidth., Since the frequency monotonically increases with 

time for the coalescing binary signal fa. is the frequency at the time of arrival 

of the signal. The quantity eis related to the chirp-mass M = p,3/5 M2/5 by 

the relation, 
M ) -5/3 ( fa. ) -8/3 

e=3.003 ( Me 100Hz sec, (2) 

where Me is the mass of the sun (Me::: 2 x l033gms). The Kewtonian filter 

is constructed so that at t = 0 the instantaneous frequency is fa. and phase 

is t/J. For white noise the filters are given by, 

(3) 
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where, 
t

a(t) =1 - 
1 e 

and the N a normalization constant to be determined later. 

We now correlate the post-Newtonian signal s(t, JL, M, ¢) with the New

tonian filter q(t +~t, e+~e, if> +~if». Here although the signal depends on 

both the parameters M and JL, we nevertheless define efor the signal through 

the same equation (2), even though it does not represent the coalescence time 

for the signal. In the Fourier dOfi?ain the correlation is given by, 

c = 2 flu 8(f; JL, M, ¢)f'(f; e+ ~~" ¢ + ~¢)e-21ril6.tdf. (4)
lla. 

We consider three cases for the frequency intervals (fa., fu) namely: 

1. 100 - 400 Hz, 

2. 40 - 400 Hz, 

3. 10 - 100 Hz. 

where fu is the upper cutoff of the frequency range. In the first case the 

lower cutoff is taken fairly high and the upper cutoff fu is taken so that F(x) 

remains positive. For lower ranges of masses F(x) in fact does not differ 

significantly from unity. The lower cutoff in case (2) corresponds to the early 

LIGO stage, while in case (3) it corresponds to the advanced LIGO. The 

upper cutoffs in case (2) and case (3) are taken 10 times the lower cutoff's. 
This would give 95% of the correlations if there had been no upper cutoff's 

and the signal waveform Newtonian. 

We now maximise the correlation over the parameters by allowing vari

ations in ~t, ~e and ~¢. The normalisations for the signal and the filter 

in the three cases have been chosen so that the integrals of 8 2 and q2 in the 

time domain, corresponding to the respective ranges of frequencies are unity. 

This implies that the values of the correlations are always less than one. The 
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effectiveness of a filter is therefore guaged by the value of correlation as com

pared with unity (as would be the case if the filters were correctly matched) .. 

The results are tabulated in Table I for the three frequJncy ranges mentioned 
I 

above and in the range of masses 0.5Me to lOMe- AI~hough the expression 

in equation (1) is valid only for the test mass case we !nevertheless state the 

values of correlations for cases with comparable masses. We observe that the 

correlations on the average are about 0.7 risi'ng to above 0.8 in several cases. 
( The reason for these fairly high correlations is that the phase accumulation 

due to PN corrections is basically quadratic in time [6] and this is almost 

compensated by a filter whose chirp-mass slightly differs from that of the 

signal. The flexibility in the parameters of the filter allows for a fairly good 

matching. The t::..¢ is simply an additive correction to the phase; t::..t corrects 

for the difference in frequencies between the filter and the signal, making it 

in fact close to zero near the middle of the time interval for which the signal 

lasts; t::..e corrects for the rate of change of frequency, Hence the Newtonian 

filters are able to correct for the phase upto its second time derivative. Figure 

1 (a) shows the phase difference between the signal and the filter which have 

the same value of eparameter while figure l{b) shows the phase difference 

when the best matching filter is chosen. The above filter, we find, has neces

sarily different parameters. We notice that in figure 1 (b) the phase difference 

is kept quite small over a long period of time and therefore a high correlation 

is to be expected. 

We observe that for a shorter frequency range the matching is better. 

For example, in case (1) the correlations are higher than in case (2). Sec

ondly shifting to lower frequencies gives a better correlation because of the 

relatively mild changes in the frequency since j is smaller (see equation (1)) 

and therefore the correlations in case (3) are on the whole higher than in 

case (2). We must of course bear in mind the normalizations assumed in the 

table. In absolute terms the correlations for the 40 - 400 Hz case will be 

greater than those corresponding to 100 - 400 Hz since the normalizations 
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in the latter case for the filters are chosen larger than in the former. Any 

comparision should take into account these normalizations. Generally we 

find that for higher masses the correlations a~e lower, because of the- drastic , 
acceleration in the frequency as the masses fall towards each other. However, 

in case (3) even for very low masses the correl~tions are low. This behaviour 
I 

we attribute to the large integration time in ~hich it is difficult to find any 

Newtonian filter which matches well with the signal. 

What can we say about the shifts in the parameters 6.t,6.e and 6.¢>? In 

place of 6.t a better parameter is the number of cycles 6.n = fa,6.t. For 

Ml ;?::', 5M0 and M2 ~ 2M0 and for the frequency ranges 40 - 400 Hz and 

100 - 400 Hz, fl.t < 0 and fl.n lies between 2 and 3 i.e. the filter begins 2 to 

3 cycles after the signal has arrived. This number comes down to between 0 

and 2 cycles for 10 - 100 Hz. The fl.¢> adjusts itself to optimize the matching. 

Also in place of fl.e, the chirp-mass fl.M = Md - M" is the more suitable 

parameter for understanding these shifts. For the 100 - 400 Hz the fl.M 

is larger and can vary from 5 % for pairs comprised of lower masses to 17% 

for a 10M0 ,1.4M0 pair. For the larger ranges of frequency i.e. 40 - 400 

Hz the fl.M falls to about 1 % growing upto to 4% for larger masses. For 

cases (1) and (2) the chirp-mass detected is always larger than the signal 

chirp-mass. However for the 10 - 100Hz range fl.M < 0 'i.e. the detected 

chirp-mass is smaller, but the change is less than 1%. For this frequency 

range, a small value of 6.M suffices to adjust the phase optimally. Table 

II lists the values of fl.t, fl.M and fl.¢> for a few typical cases. It should be 

possible to use this type of correspondence to roughly deduce the chirp-mass 

of the signal from the value of the detected chirp-mass. The detected chirp

mass in general will correspond to several chirp-masses of the signal in a 

small neighbourhood. Also the arrival times could be estimated to a certain 

accuracy. Work on these aspects is in progress and will involve the study of 

the covariance matrix of the parameters of the signal and the filter. 

Here we have demonstrated that Newtonian filters work reasonably well 
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and could be used for a first detection with an average loss of 3~% on the 

~' ." 
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signal to noise ratios. If we consider higher derivatives of frequency f· say j 
etc. as parameters [6] we should get a better match, but the computation is 

very likely to increase. It should be possible to construct filters which not 

only enable us to save on the computation time but also span the set of signal 

waveforms adequately. A deeper analysis of the signal waveforms is in order 

~, 
so that efficient techniques can be developed. This work is now in progress. . 

' 
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Figure Captions 

Figure lea) &. l(b) : 
The figure shows how the phase difference between the signal with post
Newtonian corrections and the Newtonian filter builds up as a function of 
time. The masses considered for the signals are Ml = BMe and M2 = lAMe, 
the time of arrival ta = 0 and initial phase ¢> = O. The frequency interval 
considered is 40 - 400 Hz. In Fig 1 ( a) we take the parameters of the filter to 
be same as the ones used for generating the signal i. e. the same values for the 
time of arrival ta = 0, the chirp-mass M and the initial phase ¢>. In Fig l(b) 
we plot the phase difference between the same signal and the Newtonian filter 
which correlates best with the signal. This filter has slightly shifted values 
for each of its parameters from those of the signal. The shifts observed in 
this case are ~t = -0.54 sec, ~M = 0.0469M0 and ~¢> = 1.93 rad. We 
observe that this amounts to selecting a filter which maintains a small phase 
difference with the signal for the largest possible time. 



Table Captions 

• Table I: 
The table presents the correlations obtained for a representative com
binations of masses M1 , M2 for the binaries in the frequency ranges 

1. 100 - 400 Hz, 

2. 40 - 400 Hz, 

3. 10 - 100 Hz. 

All the masses are given in units of Me . 

• Table II: 
The table illustrates the comparision between the signal parameters 
and the best matched Newtonian filter parameters. All the three pa
rameters, the time of arrival to., chirp mass M and initial phase <p show 
shifts of which, the variations in ~M and ~t are regular. As <P is a 
very sensitive parameter, it exhibits no regular pattern in its shifts. All 
the masses are given in units of Me. 

11 



TABLE I 


Ml 
M2 

1.4 5.0 8.0 10.0 
(fa - fu) 

0.5 
.8350 
.8006 
.4860 

.7258 

.6363 

.8265 

.6969 

.5932 

.6682 

.6858 

.5759 

.6090 

100 - 400 Hz 
40 - 400 Hz 
10 - 100 Hz 

1.0 
.8452 
.7913 
.5697 

.8036 

.6983 

.8313 

.7784 

.6658 

.7121 

.7657 

.6510 

.6666 

100 - 400 Hz 
40 - 400 Hz 
10 - 100 Hz 

1.4 
.8632 
.7821 
.6175 

.8238 

.7235 

.8273 

.8087 

.6968 

.7301 

.8136 

.6866 

.6920 

100 - 400 Hz 
40 - 400 Hz 
10 - 100 Hz 

2.0 
.8598 
.7683 
.6848 

.8657 

.7467 

.8198 

.8536 

.7279' 

.7469 

.8409 

.7198 

.7158 

100 - 400 Hz 
40 - 400 Hz 
10 - 100 Hz 
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TABLE II 


M 1,M2 5,1 8,1.4 8,2 10,1.4 
M 1.8355 2.7221 3.3302 2.9943 

(fa - fu) 
~t(in sees) -.018 -.022 -.018 -.021 
~M(in M0 ) +.0886 +.3369 +.4709 +.5025 100 - 400 Hz 
~¢(in rads) 5.72 2.25 5.92 1.53 
~t(in sees) -.049 -.054 -.047 -.055 
~M(in M0 ) +.0063 +.0469 +.0706 +.0773 40 - 400 Hz 
~¢(in rads) 0.61 1.93 0.05 2.17 
~t(in sees) +.004 -.132 -.140 -.168 
~M(in M0 ) -.0105 -.0143 -.0165 -.0142 10 - 100 Hz 
~¢(in rads) 6.22 2.64 3.24 5.04 

iv 
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