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Abstract 

"": We study the geodesics of the singularity free metric considered in the preceding 

Paper I and show that they are complete. This once again demonstrates the absence 

of singularity. The geodesic completeness is established in general without reference 
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stable. The question of inapplicability of the powerful singularity theorems in this 

.._ case is discussed. 
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I. Introduction 

In pap~r I [1], we have deduced a general form of the singularity free spacetime 

with cylinckical symmetry [2] by effecting a simple and natural inhomogenisation 

and anisotropisation of the Fried~an-Robertson-Walker (FRW) metric with 

negative curvature. This metric can represent a perfect fluid, a fluid with r~dial 

heat flow and massless scalar field as well as two distinct vacuum solutions. The 

matter field has acceptable physical behaviour and satisfies energy and causality 

condi tions. In here we wish to examine the nature of the geodesics of the general 

metric, not necessarily representing a fluid model. vVe shall sho'w that the spacetime 

is geodesically complete and hence free of singularities. This will however restrain 

the range of free parameters occurring in the metric. 

In §II we reiterate some general features of the metric while §III is devoted 

to a detailed analysis of the non-spacelike geodesics to establish that they are 

complete,i.e. they can be extended to the arbitrary values of their affine parameter. 

That means geodesics never tenninate indicating absence of singularity. Since the 

spacetime is singularity free~ how does it avoid the application of general results of 

the powerful singularity theorems [3]? It turns out that all the energy and causality 

conditions hold good but the assumption of existence of compact trapped surfaces 

fails. Finally this as well as global hyperbolicity and causal stability of the metric 

are discussed in §IV. 

The geodesic completeness of the singularity-free radiation spacetime [4] has 

been established through a detailed analysis [5]. We shall follow the same procedure 

to study this general case. 

II. The Metric 

Even at the risk of repeatation we shall briefly reiterate the general features of 

the metric discussed in detail in Paper I. this is to make the paper self contained 

enough so that it can be read independently. From Paper I, we take the metric for 

singularity free spacetime and write 
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(1) 

. 
where C(x) = coshx, S(x) = sinhx. This will represent a perfect fluid universe with i 

\' 
cylindrical symmetry with appropriate constraints on the parameters a, {3", a, b, c 

and m, k. In fact, it gives rise to a two parameter family (i.e. of the eight parameters 
I 

only two remain free) of exact solutons of Einstein's equations. In the natural 

comoving coordinates, the fluid velocity field is given by 

which is orthogonal to the spacelike hypersurface t = constant. The fluid congruence 

is hence rotation free but it has non-zero expansion and shear which read as follows: 

() = (21 + (3) kT(kt) (3)
A 

q2 = 3!2 ('Y - pj2k2T2(kt) (4) 

where T(kt) = tanh(kt) and A = CQ(kt)CB(nlr). It is clear that expansion and 

shear change their sense at t = 0, ()~O as t~O). Both tend to zero as t -+ ±oo or 

r -+ 00 if a > 0, a > O. 

The veloc~ty field (2) is not geodetic and the acceleration vector is 

(5) 


The non-geodetic character of the congrueI1t:e plays the crucial role in avoiding 

formation of singularities. It means that there exists spacelike pressure gradient 

that counteracts gravitational attraction to provide a bounce for the universe when 

it is in contracting phase for t < O. It converts contraction to expansion at t = 0 

without formation of a singularity. The presence of shear also helps in this process 

for not letting the congruence to focus. 
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The regularity of Weyl and Ricci curvatures and the isotropy of fluid delnand 

a + f3 = 1, a = I and, 

(i) b = c,a = -b(l + 2b)-1,k = m(l + 2b) 

(ii) b+ C = 1,a = -b(l- b),k = 2m. 

These are the only two cases for which the metric (1) yields a family and singular.ity 

free models. For the former there exists no equation of state in general, for b = -1/3 

it gives the Senovilla radiation universe [4] with p = 3p while for the latter it is 

always p = p representing the stiff fluid. 

The density and pressure of the fluid in general read as follows: 

(6) 

(7) 

where A = Ca(kt)Ca(mr). It can be easily verified from the above expressions 

that p = 3p for b = -1/3 = c and p = p for b + c = 1. At a given t, p and p 

are maximum at r = 0 and the overall maxirnum occurs at t = 0 and r = O. The 

paranleter m or k can be identified with the largest value of energy density, that 

can be chosen as la.rge (or slnall) as one wishes. p and p can be Inade positive 

everywhere satisfying the strong energy condition. Since p and p are regular and 

finite everywhere, it indicates absence of physical (or Ricci) singularity. We have 

verified that the metric (1) is free of vVeyl singularity as all vVeyl curvatures are 

regular and finite and so are the killClnatic paranlcters. 

The metric adlnits two spacelike killing vectors :. and :4> which are mutually 

as well as hypersurface ort.hogonal. The spacetiIne is cylindrically sYlnmctric wit,h 

27r period for the angular coordinate ~. The singularity at r = 0 is the coordinate 
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singularity of cylindrical coordinates. The t coordinate decreases or increases along 

every past or future directed non-spacelike curve, and hence it defines a cosluic 

titne for the spacetilllc. The gradient of t always rClllU.ills tiIllClikc which illlplies 

th~ Cll.uHttl ahtbHity of U1C l1lCLric. H iH thc f:lLl'ullgcl' COIHJHiuu UU1,l I11dudcH well.k(~r 

chronology and causality conditions. 

Having seen that the metric (1) is free of the curvature singularities and also 

satisfies proper causality conditions, we shall in the next Section show that the 

spacetime is geodesically cOlnplete. That means it cannot be extended, ruling out 

the possibility of hidden singularities. This is though quite transparent froln the 

form of the metric, we shall however show it explicitly by studying the geodesics of 

the metric in detail. 

III. Geodesics 

To demonstrate the geodesic cOlnpleteness of the luctriC., we should show 

that all non-spacelike geodesics can be extended to arbitrary values of the affine 

parameter. For this let us write the geodesics of the metric (1) following the standard 
'11 

procedure and they would read as follows : 

C 2Q(kt)C2a(mr)(i2 - r2) - L 2C-2P(kt)C-2b(mr) 

- 1112 M2 S-2(111r)C-2"Y(kt)C-2C(111.1') 8, (8) 

(9) 

(10) 

of + a1Tl,T( mr)( i2 + r2) + 20'.kT( kt )ir 

- 1\12 111.3 S-3(1nr)C-2("Y+ o )(kt)C-2(c+a)+1(nlT)(1 + cT2(111.1·)) 

- L 2bmS(mr)C-2(P+Q)(kt)C- 2(b+a)-1(mr) = 0, (11) 
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r-I- HJ/r(~:/)(j'l 1/':l)I'2ullI'l'(II,r)i," 

11-I- 1~'1I1'l A(l S '1.( lI'I')S(I.:I)(,' ,'1( -, I It,' I(I.:I)C 'J.( /' 1 '( HI,.) 

+ /3h:L2S(kt)C- 2(f3+ CX )-1(kt)C-2(b+a)(nlr) = O. (12) 

A dot denotes derivative with respect to the affine paralneter, and Land Mare 

the two constants of Illotion corrcspolldillg to the two killillg vcd.ors rq>H'scllt.illg 

the conserved z and 4> Inomenta. The another constant of IllotiOll is 8 due to the 

rest mass which is one for tilllelike and zero for null geodesics. Since all the tenns 

in equations (8-12) are non-singular hence the solutions to the equations will exist 

and they will be unique. 

We shall now exalnine the behaviour of first and second derivatives of the 

coordinates relative to the affine parameter. \Ve should put finite bounds on the 

first derivatives [6] which will illiply that the geodesics are cOlllplete. However, the 

second derivatives should not be singular to ensure that the field is overall non­

singular. Without any loss of generality we can restrict to the future pointing 

geodesics. In this discussion, we donot restrict t.o fluid distribut.ions, I.e. t.he 

paralneters 0, /3, 1, a, b, c, '11, h~ are treated as arbitrary. Following the ref. [5], we 

shall first consider the particular geodesics an'd shall then conle to the genentI case. 

(a) Fluuid congruence : The siInplest geodesics are the OIlCS associat.ed wi t,h t.he 

fluid congruence. For these we have ,: = ;p z= O. It follows fronl cq. (2) that the 

only geod('sic possihle ill t.his ('nst' has f,o Ji<' OIl tIl<' axis,. 0 alld it is gi\'('11 hy 

That means 0 must be non-negative and then the geodesics are obviously conlplete. 

(b) Axial geode.sic.s : For the geodesics lying on the axis we have ,', o = 4>,7' = 0 

and so we write 
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provided a + j:J ~ o. TheIl the derivatives will be boullded every when' BIld t.he 

geodesics will be complete. Note that the coordinate t attains infinite value only 

when so does the affine parameter. This property will be sha.red by all the geodesics 

and will not be referred to henceforth. 

(c) Radial null geode.sic.s : Here i = 0 = ~,8 = 0, the first integrals give 

i = If I, i = hC-2°(kt)C-2a (nu'), h = const. 

It is clear that IfI = i :::; h provided a ~ 0, a ~ 0 and then the geodesics will 

be cOlnplete. The geodesics with fixed </Y cOlllfortably contiuue along 7r + </> after 

crossing the axis. 

(d) Radial timelike geode.sic.s: Here 8 = 1, i = 0 = </Y. Let us paranletrise i and 1~ 

by writing 

i = C(v)A(r, t), f = S(v)A(r, t), v = B(r, t, v)A(r, t) 

where A = C-O(kt)c-a(1nr). Then 

B = -[arnT(rnr)C(v) + akT(kt)S(v)]. 

We have a ~ 0, a ~ 0 and ta.ke k, n1 ~ 0 which will imply i, :::; o. We shall consider 

the role of the second derivatives in the end. The saIne reasoning will apply here 

to show that geodesics are complete. 

(e) Null geode.sic.s with zero angular momentum: In this case we have ~ = 0,8 = 0 

and as before we wri te 

i = Cf(v)E(r, t), f = S(v)E(r, t), 

and 
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v= E(r, t)F(r, t, v). 

Then we obtain 

F = -[k(a: - {3)T(kt)S(v) +mea - b)T(mr)C(v~] 

We shall require a: + {3 ~ 0, a + b ~ 0, a: ~ {3 and a ~ b for v :::; 0. 

(I) Null geode3ic3 on the hyper3urlace3 Z = con3t. : These are defined by z= 0, <5 = 
0, and as before we have 

i = C(v)P(r,t),r = S(v)P(r,t) 

and 

v= per, t)D(r, v) 

where 

D = k(,- a:)T(kt)S(v) + nlC(v)[(c - a)T(mr) +T- 1 (mr)]. 

As has been noted earlier that the regularity of the Ricci tensor requires a: = 7. 

Hence D = D(r, v) as assumed. 

In this case we can obtain one of the equations of the orbit that on integration 

yields 
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Since C(v) ~ 1, the coordinate I is bounded between the roots of S(ml)cc-a(ml) = 

N. Clearly Ivl is bounded and the geodesics are cOlnplete. Alnollg thenl there could 

be a circular geodesic, corresponding to the double root, which will go around the 

axis at the fixed radius. 

(gJ Gene,al non-spacelike geodesics : Now we come to the general case. From eq. 

(11) it follows that r will be negative for positive t and increasing I provided b ~ 0 

(for large r the term with L2 will dominate over that with M2). With r < 0, the 

I-coordinate cannot diverge to infinity in a finite proper time. As I decreases ~the 

if term will dominate over the (i2 + f2) term while the L2 term will tend to zero 

as I --+ O. In the vicinity of the axis I = 0, r > 0 for decreasing I and t > O. Thus 

the geodesics cannot collapse quickly enough into the axis to become singular. It is 

this feature that really provides the bounce off to the universe, turning contraction 

to expansion at t = O. 

The above arguments will apply to the cases (d) and (e) above and hence 

the geodesics will be complete for thein. As regards the t-coordinate, r should be 

negative for large values of t, so that it keeps its growth in check, not letting it 

diverge to infinity for finite values of the affine parameter. Fr0111 eq. (12), it can 

be seen that this will be so even if f3 S; 0 because the (i2 + r2) will always be 

the dominant term (for decreasing I the ir term will not be relevant) . .i is always 

regular so long as t and r are regular. ~ diverges as r --+ 0 but with ~ "# 0, the, 

geodesics can never reach I = 0 as has been dernonstrated in (f) above. In the 

neighbourhood of the axis eq. (10) simply represents the centrifugal effect. 

It is straightforward to carry out the similar calculations as done in the previous 

cases but they are very combersome and not very enligh tening and hence we will not 

report them here. It can be verified that the general geodesics are also complete. Let 

us now collect together all the restrictions prescribed by the above considerations 

on the paralneters and they are : 

0' > 0, a: + /:; > O. n ~ /3 
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°
a ~ 0, a + b ~ 0, a ~ b, b ::; 0, k ~ 0, m ~ 

and 0' = f implied by the regularity of the Ricci tensor. It is interesting to note that 

0', {3 and a, b satisfy the similar conditions. All this follows purely by requiring the 

geodesics to be complete without any reference to the matter distribution. That is 

in this framework one can a priori ensure the geodesic completeness by adhering to 

the above conditions on the parameters. The singularity free perfect fluid models 

discussed in Paper I satisfy all these restrictions. 

IV. Discussion 

It follows that all the conclusions drawn in Ref. [5] for the radiation model 

[4] renlain true for this general case as well. We summarise some of them in the 

following: 

The surfaces t = const. are global cauchy surfaces and hence the spacetime 

is globally hyperbolic. This will mean that it is also causally simple. This is 

quite obvious from this analysis of the previous section. Since every t = const. 

hypersurface is a global cauchy surface and t defines a time function in the 

spacetime, it follows that every non-spacelike curve (need not be geodesic) can 

be extended to arbitrary values of its generalised affine parameter as it has to cross 

all the cauchy surfaces. That means the spacetime is 3ingularity free. 

It is transparent from the expression for p and p that the strong energy as well 

as the generic conditions are satisfied. This indicates that our spacetime satisfies all 

the energy and causality conditions. However, it fails to obey the condition of the 

existence of compact trapped surfaces, which has been assumed in the singularity 

theorems. And this lets it escape the application of the theorems. ;We shall now 

demonstrate that the spacetime does not admit trapped surfaces. 

For this we should compute trace of the two null second fundamental forms [3] 

and that is given by 
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1v'2 C - O (kt)C- a +1(mr)S-1 (mr) 

[=Fm m(b + c)T2 (mr) - k(, + ,B)T(kt)T(mr)] 

It is clear that (X:)_ :5 0 provided b+ c + 1 ~ 0 and (X:)+ ~ 0 for m(l + b c) ~ 

k(0; + (3). Since the traces have opposite signs, hence there are no closed trapped 

surfaces. 

This means that the outgoing and incoming radial null geodesics are 

respectively expanding and contracting everywhere. For existence of a closed 

trapped surface, in some region they should all be contracting, i.e. the trace should 

be > 0 for the both in some region. It can be verified that the singularity free 

models of Paper I satisfy the conditions just deduced. Thus there occur no closed 

trapped surfaces in the singularity free family of metrics. 

In Paper I (and Ref.· [2]), we have deduced a general singularity free form 

for the cylindrically symmetric metric. In this paper, we have demonstrated by 

analysing its geodesics that the general metric is really free of singularities with 

proper restrictions on the parameters. This is a general analysis without reference 

to any matter drstribution. That is the constraints on the parameters deduced 

above have always to be respected may what be the energy content of the universe. 

The non-existence of closed trapped surfaces can be ensured in advance so as to 

escape the application of the singularity theorems [3]. This however does not conflict 

with the requirements of the energy as well as the fluid consistency conditions. 

That is dropping of this assumption has no adverse physical implications, makes 

the theorems inapplicable and provides a singularity free cosmological model. 

One of us (LKP) thanks IUCAA for hospitality. 
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