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We show that the metric for the singularity free family of fluid models [3] can be 

obtained by a simple and natural inhomogenisation and anisotropisation procedure 

from Friedman-Robertson-Walker metric with negative curvature. The metric is 

unique for cylindrically symrnetric spacetime with metric potentials being separable 

functions of radial and tilne coordinates. It turns out that fluid models separate 

out into t·wo classes, with P IlP in general but P = 3p in particular and p = p. 

It is shown that in both the cases radial heat flow can be incorporated "vi thout 

disturbing the singularity free character of the spacetime. Further by introducing 

~ massless scalar field it is possible to open out a narrow window for 1l,4 2:: J.L 2:: 3. 
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I. Introduction 

The standard view, the universe had a big-bang singular origin predicted by the 

standard Friedman-Robertson-Walker (FRW) model, was supported on the formal 

grounds by the strong singularity theorems [1]. That occurence of singularity is 

inescapable if we adhere to reasonable energy and causality conditions and to general 

relativity (GR). To handle the cosmic singularity several attempts have been made 

by several authors. They include modification of GR, invoking quantum effects 

and new fields, ascribing unusual properties of matter etc. By sacrificing energy 

conditions and other physical properties, it is. easy to construct a singularity free 
model, the most well-known example of this class is the deSitter universe. That is 

there exists a large number of such models where acceptable physical behaviour of 

matter has been traded off for avoidance of singularity. 

Under this background Senovilla's singularity free solution[2] is remarkable 

that it satisfies the energy condi tions and has very acceptable equation of state 

p = 3p. This is the first solution of its kind that is free of singularity with physically 

reasonable behaviour of matter. Further Ruiz and Senovilla [3] have discussed the 

singularity free character of inhomogeneous cylindrically symmetric spacetime and 

have separated out a family of singularity free perfect fluid models. It has been 

shown [4] that these solutions are geodetically complete and are able to escape the 

singularity theorems because they do not obey the assumption of existence of causal 

trapped surfaces. 

In this paper I we first establish a linkage between the FRvV metric and 

the Ruiz-Senovilla singularity free family. We argue that a natural and simple 

inhomogenisation and anisotropisation of the FRW open model leads to the 

singularity free family. Transfornl FR\V metric into the cylindrical coordinates, then 

inhomogenise and anisotropise it by using the functions of rand t as they occur in 

the transformed form and the resulting metric is the singularity free family. Further 

the singularity free family is unique for separation of variables in the cylindrically 

symmetric metric potentials. It turns out that fluid solutions separate out into two 

classes, having p f. ILP in general (but in particular p = 3p) and p = p. The stiff 
fluid solution yields two distinct cosmblogical vacuum solutions as its matter free 

(p = 0) limit [5]. 
From the point of view of general study of singularity free cosmology it 'would be 

of relevance to examine how robust is the singularity free character of the spacetime? 

That is, can we generate singularity free vacuum solutions or can we introduce heat 

flow, viscosity etc. retaining the singularity free character? In this context we 
have [6] considered viscous fluid and found that it is not possible to have viscosity 

non-negative for all tinles while heat flow [7] can be incorporated easily. \Ve give 
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the heat flow generalizations of the two classes of fluid models mentioned above. 

Further if we introduce massless scalar field with the fluid distribution, then the 
resulting fluid can have an equation of state p = I-lP, with 4 ~ I-l .~ 3. 

In §II we describe the inhomogenisation and anisotropisation procedure of FRW 

metric that leads to the singularity free family of spacetime. We also consider the 

regularity of Weyl and Ricci curvatures for this metric. ~III is devoted to the study 

of perfect fluid, fluid with radial heat flow and fluid with massless scalar field models. 

vVe conclude in §IV with discussion of results obtained in the paper. 

In the following paper II a general study of the g~odesics of the singularity free 
metric is carried out and they are shown to be complete.indicating the absence of 

singularity of any kind. We also explicitly exhibit the non-occurrence of compact 

surfaces that makes the singularity theorems inapplicable to this family of metrics. 

II. Singularity Free Metric 

Ruiz and Senovilla [3] have separated out a singularity free family of solutions 

of Einstein's equations for perfect fluid. The spacetime has cylindrical symmetry. 

With metric potentials as separable functions of rand t the family is unique. 

We begin wi th the general form of the metric 

(2.1) 


Here we have A = A 1(t)A2(r), B == Bl(t)B2(r), C == C1(t)C2(r) and have used the 

co-ordinate freedom to write Gtt = Igrr I. The metric admits two space-like I(illing 

vectors tz and tc/> which are mutually as well as hypersurface orthogonal inlplying 
cylindrical symmetry. That means we should write C2(r) = rf(r) so as to satisfy 

the regularity conditions on the axis r = °and the elementary flatness condition in 

its vicinity. 

The prime requirement for a nletric to be singularity free is that its coefficients 

have no zeroes for real values of the co-ordinates and Ricci and Weyl tensors are 

regular everywhere. Ricci curvatures for the metric (2.1) are given in the Appendix 

and they will be regular provided 4, -;: etc. are regular. At the outset C2 (r) = r f(r) 
would imply A1(t) = C1(t) (by delnanding: coefficienlof r- 1 0.) This regularity 

condition has no reference to matter distribution. 
Assuming the matter content of the space-time to be perfect fluid we impose 

the fluid conditions, R14 0, and Rll = R22 R33 for the comoving velocity field 

u = Adt (2.2) 

After some calculations it can be shown that R( 4) = 0 ilnplies that Al (t) == 
C1(t) = TQ(t),B 1(t) == TP(t) and .42 (r) == B~(T). That is the time variation in 
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t.he ulctric stClll~ 1'1'0111 OUe' sil1g1c fUl1ctiUl1. SuGsequeutly llu == R22 == R33 (froul 

Appendix) will imply 

(2.3) 

0 11 B" 
_2 __2 = (ex _ (3)k2 (2.4)
O2 B2 

- B' B(Q-P)/PC2 - 2 2 • (2.5) 

Eq. (2.3) admits the general singularity free solution 

(2.6) 

where we have chosen the integration constants ](l = 1, to = 0 and written 

ex + f3 = ..\2,C(x) = cosh(x). The other solutions for ..\2 ~ 0 have been ruled 

out by the singularity free and positivity of density conditions. 

In [3] it was assumed that ex + f3 = 1 and the time dependence steming from 

the same function T(t) which we have shown above as to follow from R14 = O. It 
turns out that there is no loss of generality in the former assumption either for 

it would just imply an overall scaling in the expressions for density and pressure 

(i.e. CQ(kt) ~ co/),2("\kt)). We can hence take ex + f3 = ..\2 = 1. For space

dependance Ruiz and Senovilla employ four arbitrary functions (g44 f=. Ig111) and 

obtain the general solution of the system of equations (2.4) and (2.5) with the 

condition ex + f3 == 1. The solution in our notation, will read as 

where .Y' = X(r) and lvI, N, L are constants of integration. In Ruiz-Senovilla case 

)((r) is arbitrary which gets deternlined for us because of the choice g44 == Ig11l. 
It turns out that we can integrate for X in tenns of elementary regular functions, 

only for N = 0 to give the general solution 

where S(mr) = sinh(mr) and A2 = Bi == ca(mr). The fluid consistency equations 

(2.4), (2.5) and the equation R14 == 0 will give relations bet"veen the parameters 

a, b, c, lTI, k and Q. 
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where S(mr) = sinh(mr) and A2 B~ = Ca(mr). The fluid consistency equations 

(2.4), (2.5) and the equation R14 = 0 will give relations between the parameters 
a,b,c,m,k and Q. 

Thus we obtain the metric for singularity free space-time as 

ds2 =C2a(kt)C 2a(mr)(dt2 - dr2) - C 2f3(kt)C 2h(mr)dz2 

- m -2 S2(mr)C2C(mr )C2a (kt )d</J2 (2.7) 

which is unique for perfect fluid distribution with appropriate relations between free 

parameters. 

We next argue that the above metric can be deduced through a naturaf 

anisotropization and inhomogeneisation of the FRW metric. Consider the FRW 

metric with negative curvature, 

ds2 = dt2 _ T2(t) ( dr2 + r2d82 + r2 sin28d</J2) (2.8)
1 + r2 

and transform it into cylindrical co-ordinates 

d-2 )
ds2 = dt2 - T2(t) ( 1 -: f2 + (1 + f2 )dz2 + f 2d</J2 (2.9) 

by the transformation 

r = (S2(z) + f 2 C2(z))1/2 tanfJ = f . (2.10) 
, S( z )v'1+ f2 

Further writing mf = S(mf) and then dropping caps we get 

(2.11) 

Now inhomogenise and anisotropise by taking differen t powers of T( t) and C(7nr) in 

the metric coefficients. That is the metric (2.7) with T = C(kt). Here m-2S(mr) 

is just (C2 (mr) = r f( r)) to provide 27r periodicity to the angular co-ordinate ¢ 

and elementary flatness near the axis r O. Hence it does not participate in 

the inhomogenisation and anisotropisation procedure. Thus a natural and simple 

inhonl0genisation and anisotropisation of the FR\V model leads to the singularity 

free family given by (2.7). 

The metric (2.7) can be written in the spirit of (2.9) as 

ds2 =(1 + k2t2)<~-1(1 + m 2r2)adt2 - (1 + k2t2)Q(1 + m 2r2)a-1dr2 

- (1 + k2t2).B(1 + 1n21·2)bdz2 - r2(1 + k2t2)a(1 + m 2r2)Cd¢} (2.12) 
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which goes over to the FRW form for a = 0 = c, b = 1 and a = {3. If one were to look 

for simple functions that were regular and free of zeroes, so as to have metric free 
of singularity, the obvious choice would have been the hyperbolic function C(mr) 

or (1 + k2r2). The amazing thing is that this obvious choice is the right one giving 

rise to the unique singularity-free cylindrically symmetric metric (2.7). 

The kinematic parameters for the metric (2.7) expansion 8, shear (72 and 

acceleration ur are given by 

(2.13) 

(2.14) 

(2.15) 

They are all regular and finite throughout the spacetime. The Ricci and Weyl 

curvatures will also be regular as they involve AIA; A'lA etc. which are all regular 

and finite for the metric (2.7). This would also imply the regular behaviour for 

the physical parameters p and p. There would however be some conditions on the 

parameters. 

It is the non-vanishing of acceleration and shear that is responsible for 

avoidance of singularity. It is physically conceivable that acceleration and shear 

donot let the fluid congruence to focus into a small-enough a region to form 

trapped sufraces leading to singularity. Acceleration of congruence viewed as spatial 

pres.Htre gradient which opposes gravitational attraction and provides the bounce 

to transform contraction into expansion at t = O. The shear makes goedesics 

of the congruence to slip through without letting them converge into a small 

region. It helps in defocussing of the congruence. It is however obvious that their 

presence alone is not sufficient to avoid singularity as we can easily check by letting 

C(kt) -t S(kt) in (2.7). Then the spacetime is singular at t = 0 with acceleration 

and shear non-zero. Hence it may be a necessary condition but not sufficient. For 

sufficiency we should have regularity of the metric and curvatures. Then energy 

conditions will have to be satisfied. 

In [8], the geodesics of the metric (2.7) have been extensively studied and it has 

been shown that the above space-time is geodesically complete for a ~ 0, a + /3 ~ 
0, Q: ~ /3, a ~ 0, a + b ~ 0, a ~ band b ::; O. The geodesic completeness is established 

without reference to any matter distribution. It is obvious that the space-time is 

causally stable and satisfies stronger causality and energy conditions. Thus there 

occurs no singularity in the space-time. 
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For the metric (2.7) we give below the Ricci and Weyl curvatures to show 
explicitly that they are regular. The expressions read as follows: 

2(t{;o + t{;4)A2 =m2(2a - 3c + b - 1) - k2(0: - (3) + 20:(0: - (3)k 2T2(kt) 

+ m2[2a(c - b) + (b - c)(b + c - 1)]T2(mr) (2.16) 

2(t{;o - t{;4)A2 =mk(o: + (3 - 1)T(kt)T-1 (mr) + {20:(c - b) 

+ 0:(2a - b ~ c) + (3(b + c - 2a) + (b - c)}T(mr) (2.17) 

2t{;2A2 =k2(1 - 20:) + m 2(2a + b - 3c - 1) 

b2+ (b + c - 2a + 2bc - - c2)m2T2(mr) 

+ (20: + 0:
2 + (32 - 20:(3 - 1)k2T2(kt) (2.18) 

A2 Rll =m2(1 + b + 3c) - o:k2 + {b(b - 1) + c(e - 1) - a(b + e + 1)}m2T2(mr) 

- {o:(o: + (3 -1)}k2T2(kt) (2.19) 

A2 R33 =1n2(b + 3c + 1) - o:k2 - 0:(0: + (3 - 1)k2T2(kt) 

+ {e( e - 1) + be }m2T2(1nr) (2.21) 

A2 R44 =(20: + (3)k 2 - 2am2 + a(l - b - e)m2T2(mr) 

+ {(3«(3 - 1) + 0:(0: - 1) - 0:(0: + (3 + 1)}k2T2(kt) (2.22) 

A2 R14 = mk[;3(b - a) - Q(a + b)]T(kt)T(mr) (2.23) 

where 
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The above quantities will be singularity free if the coefficients of T-l(mr) vanish, 

so we obtain the condition 

a+,8=l. (2.25) 

With a,,8 as restrained above, Ricci and Weyl curvatures are regular and finite 

everywhere indicating that the metric is free of any kind of singularity. Now we can 

introduce matter to determine other parameters occurring in Rik consistent with 

the energy conditions. 

The conditions for perfect fluid R14 = 0 and R(ll) = R(22) = R(33) would imply 

(a-,8)(a+,8-1) =0 (2.26) 

(,8 - a)k2 = (b - 1 - 3c)m·2 (2.27) 

(b - c)( b+ c - 1) = 0 ( .2.28) 

a(b+ c + 1) = b(b - 1 - c) (2.29) 

a(a + b) = ,8(b - a). (2.30) 

The first condition is satisfied in view of (2.25) which has to be obeyed always as it 

is dictated by the regularity of Weyl tensor. 

The remaining conditions give rise to the following two cases 

(i) b = c 

(ii) b + c = l. 
These are the only two possibilities for singularity free fluid models satisfying the 

energy conditions. The former in general represents a fluid without an equation 

of state. Only 'when b = -1/3, it represents Senovilla's [2] radiation model \vith 

p = 3p. The latter will always have p =p, representing stiff fluid model [5]. In this 

case \vhen we put p = 0, we get two distinct vacuum solutions as its matte.r free 

limit [5]. The point to be noted is that these are all general unique solutions for 

the singularity free fonn (2.7). It is also interesting that the two cases p -=I I-lP in 
general (but p !p in particular) and p = p separate out nicely. 

III Fluid Models 

\Ve shall consider the perfect fluid, fluid with radial heat flux and fluid with 

massless scalar field models. It is possible to introduce heat flux in both the cases 
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considered above. Inclusion of massless scalar field opens out a narrow window 

4 ~ Il ~ 3 for P = IlP which otherwise had only the discrete value Il = 3 allowed in 
the case (i). 

3.1 Perfect fluid 

Einstein's equations for non-empty spacetime are 

(3.1) 


where for perfect fluid 

(3.2) 

Ca8e (i) b = c. 


We write from eqs. (2.27)-(2.30) 


a: = (1 + b)(l + 2b)-1 ,a = -b(l + 2b)-1, 7= n = (1 + 2b)-1. (3.3) 

This determines the metric (2.7) in terms of the two free parameters band k, say. 

The density and pressure have the expressions: 

(3.4) 

(3.5) 

where A = CQ( k.t )ca(nkr). This is the Ruiz-Senovilla [3] model. For satisfaction 

of the energy conditions we shall require - ~ < b ::; - ~ and the Senovilla radiation 

model results for b = -~. With b so restricted, p and P are positive for entire 

spacetime. For b =f:. - ~, there is no equation of state of the type p = IIp. The 

maximum density would occur at t = 0 and r 0 which decreases to zero as 

t ~ ±oo and r ~ 00. The parameter k can be identified with pmax which can be 

freely chosen. At a given t, P is largest at the origin r = 0 and at given r, it is 
largest at t = o. 

Ca8 e (ii) b + c = 1. 

In this case we have 

1 2 nn2 1 
a: = "2 (2 - b), a = b( b - 1), c = 1 - b, n = k 2 - (3.6)

4 
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and we get the stiff fluid [5] model with 

b2 - 2 _ 2 ( )4)
87rP = 87rp = ( 4A2 k C kt. (3.7) 

Clearly the energy condition will be obeyed for b2 ~ 4, i.e. b lying outside the 

interval -,2 ~ b ~ 2, the end points of which give the two distinct vacuum 

cosmological solutions [5]. These solutions are given as follows: 

For b = 2 

For b =-2 

ds2 =C4(2mt)[C12(~r)(dt2 - dr2) - C 6 (mr)m- 2S2(mr)d</>2] 

- C-2(2mt)C-4(mr)dz2. (3.9) 

It can be easily verified from eqs. (2.16)-(2.18) that both the solutions are Petrov 

type 1. The former (3.6) is static as Weyl scalars have no time dependence, while 

the latter can asymptotially represent a plane gravitational wave. Since there are 

no obvious localized sources for the solutions, hence the only possible source can be 

gravitational radiation. However, one knows that in realistic situation the metric 

for gravitational radiation is of type I almost everywhere [7]. 

3.2 Fluid with heat flow 

The energy momentum tensor for fluid with heat flow is given by 

(3.10) 

Here qi is the heat fio'w vector. Here we are relaxing the condition (2.30) by taking 

radial heat flow. vVe take the tetrad cOlnponents of qi as q(a) = (q,O,O,O). The 
parameters p, p and q are given by 

87rpA2 =(a 3b)m2 + ((3 - ex)k2 + ((32 + 2ex(3 + ex - (3)k 2T2(kt) 
1
2(a - 3b)(b + c -1)rn2T 2 (mr) (3.11) 
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81rqA2 = mk[a(a + b) - f3(b - a)]T(kt)T(mr) ~ (3.13) 

where A = CQ(kt)ca(mr). 

Case (i) b = c. 

In this case we have 

1 - 2/3
b = c, a = 1 - /3, a = (3.14)

1 +2b 

We treat band n as arbitrary parameters. The physical parameters are then given 

by 

81rqA2 = (1 
k+ 

2nb 
2b) {(n2 - 1) +4b(b + 1)n2}T(kt)T(nkr) (3.15) 

k2 b2(1 - 2b)
81rpA2 =_(n2 -1){1 - n2(1 + 2b?} + n2k2C-2(nkr)

4 (1 + 2b) _ 

+ ~{n2(1 + 2b) - 3}{1 +n2(1 + 2b)}C-2(kt) (3.16)
4 

k2 


81rpA2 ="4(3 + n2){1 - n2(1 +2b)2} 


_ b(l - 2b)(2 + 3b) 2k2C-2( k ) 
(1+2b) n nr 

+ ~{n2(1 + 2b) - 3}{1 +n2(1 + 2b)}C-2(kt). (3.17) 

From the above equations it can be easily seen that the pliysical requirements 

p ~ 0, p ~ 0 are satisfied for 

1 1 3 < n 2 < 1- < b < -- (3.18)
2 - 3' 1 + 2b - (1 + 2b)2 

From (3.15) it is clear that q == 0 ilnplies n2 == (1 + 2b)-2 and the nl0del reduces 

to the perfect fluid (3.3). For n = 3 we have the heat flow generalization of the 

Senovilla radiation lTIodel [7]. 
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Ca3e (ii) b + c = 1 

Here we write 

2 m 2 2{3 - 1 
a = b(b 1), c = 1 - b, ex = 1 - (3, n = k2 = 4(b _ 1) (3.19) 

and obtain 

81rqA2 b(b - 1)(4n2 -1)nk2T(kt)T(nkr) (3.20) 

2 
k (4n2 _ 1){1 _ 4n2 (b _ 1)2}
4 

~ [4n2(b - 1) - 1][4n2(b - 1) + 3]C-2(kt) (3.21) 

k: [4n2 _ 1][3 + 4n2(b - 1)2] 

k2 

+ "4 [4n 2 (b - 1) - 1][4n2 (b 1) + 3]C-2 (kt). (3.22) 

The physical requirements p > 0 and p 2:: 0 restrict nand b to the ranges 

1 < b < 2. (3.23) 

For n2 = ~, it reduces to the stiff fluid model (3.6). 

The phenomenological expression for the heat conduction is given by 

(3.24) 


where 'ljJ is the thermal conductivity and F is the temperature. For the cases under 

consideration only radial heat flow is retained. Hence eq. (3.24) can be integrated 

if 'ljJ is a function of t alone to give 

F =l(t)Ca(nkr) 

k 
167ra~ {ex(a b) (3(b a)}C-a(nkr)C-a(kt)T(kt) (3.25) 

where let) is an arbitrary function oft. Thus temperature distributions for the cases 

(i) and (ii) can be obtained. 
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The heat flux has been considered in the evolution of the cosmologial models 
by several authors (see [7]). 

9.9. Fluid with massless scalar field 

The energy momentum tensor for a perfect fluid with massless scalar fields V is 
given by 

(3.26) 

where UiUi = 1 and Vi = ~. We take the scalar field V. to be function of t only. 
V has to satisfy the equation 

(3.27) 

the first integral of which is given by 

v = lC-(P+'Y)(kt) (3.28) 

where 1 is a constant of integration. The introduction of the scalar field does not 
affect the fluid conditions and hence the free parameters continue to be governed by 

the conditions (2.26)-(2.30). In this case also the solution separate into two classes, 

(i) b = c and (ii) b + c = 1. In the latter case the solution represents a stiff fluid 

in the presence of scalar field. Since any stiff fluid solution also has a scalar field 
interpretation this case does not lead to any new possibility. However, in the former 

case b = c, we obtain 

l+b -b 
f3 = 1 - 0'. (3.29)a=-

0' = 1 + 2b' 1 + 2b' 

The density and pressure have the expressions: 

42 =b(2b - 1)(2 + 3b) k2C-2 ( k )87rp.. (1 + 2b)3 n r 

_ [(b + 1)(3b + 1) k2 + 12] C-;(kt) (3.30)
(1 + 2b)2 

2 
87rp4.2 = b (1 - 2b) k2 C- 2 (nkr) 

.. (1+2b)3 

_ [(b + 1)(3b + 1) k2 + 12] C-2(kt) (3.31 ) 
(1 +2b)2 
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where A = CQ(kt)Ca(nkr). 

For b - ~, the solution represents a scalar-field generalization of Senovilla 

radiation model. For [2 = (b111l~3~~1) k 2 the fluid distribution of the model has an 

equation of state p = J.Lp where J.L = -i(2 + 3b). The positivity of p and p restricts 

b to the range - 4< b :::; - k so that 3 :::; J.L :::; 4. 

IV. Discussion 

We have argued that the singularity free family of perfect fluid spacetimes 

obtained by Ruiz and Senovilla [3] can be inferred through a simple and natural 

inhomogenisation and anisotropisation of FRW metric for the open universe. This 

establishes a kind of linkage between the two. If one were to write a..singularity free 

metric, without reference to anything else, the natural choice for metric functions 

would have been hyperbolic or quadratic functions without zeros. The amazing 

thing is that this obvious choice is the right and the only choice. However, one has 

to assume cylindrical symmetry in place of spherical symmetry. 

It turns out that the metric (2.7) is the unique singularity free spacetime 

for cylindrically symmetric spacetime with separable variables. In the context of 

cosmology separability is an appropriate assumption for the overall behaviour of 

universe should not depend upon the interactions arising out of interaction between 

variables. vVe are already taking a big step deeper by giving up homogeneity and 

isotropy of the today's universe as described by FRW metric. This was'motivated by 

the consideration that universe has to have inhomogeneity and anisotropy at early 

times so as to have generic initial conditions as well as to facilitate formation of 

structures. It is obvious that in order to consider anisotropy and inhomogeneity 

effectively one has to consider less restrictive symmetry than spherical. That 

leads naturally to cylindrical symmetry. We would hence argue that choice of 

cylindrical symmetry is almost determined by inhomogeneity and anisotropy of 

the early universe. There can, ho\vever, be more general metric without symn1etry 

but cylindrical symmetry is the simplest choice. 

For the avoidance of singularity acceleration and shear play the crucial role. 

The former provides the bounce to the universe at t = 0 where contraction turns 

into expansion while the latter makes the fluid geodesic congruence to slip through 

without letting them to focus in a small enough region to form compact surfaces 

leading to singularity. The overall scenario is : universe has very low density tending 

to zero at t ~ -00, wherefrom it starts contracting and attains the dense state at 

t 0 where contraction changes to expansion and it expands to lo\v density again 

at t ~ 00. The momentum gained during the contraction phase takes the universe 

through t = 0 to the expanding phase. The ma.:'<imum density at t = 0 and T' = 0 

can be made as large or small as one pleases by choosing the paran1eter k. All 
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through all the physical and kinematic parameters remain regular and finite. The 

presence of acceleration and shear may be necessary but by no means sufficient to 
avoid singularity, In addition the spacetime should be regular. 

Let us recall that a = I was dictated by the cylindrical symmetry while 
a + f3 = 1 for the metric (2.7) is demanded by the Weyl regularity. These two 
are general conditions without reference to any matter field. That is of the three 

a, {3, I only one is free for the singularity free spacetime. It may be noted that all 

the fluid models (which are the only ones for the metric (2.7)) discussed in §III obey 

the conditions, a ~ 0, a +. {3 ~ 0, a ~ {3, a ~ 0, a + b ~ 0, a ~ band b :.s; 0, obtained 
in the following paper II for com plet teness of geodesics. 

The most important question for the singularity free models is how to evolve 

them into the standard FRW model which successfully describes the present day 
universe. The affirmative answer to this question will bring these models into the 

active arena of cosmology and would perhaps have very significant role to play 

in the early universe cosmology. The main difficulty here is that the anisotropy 

measure ((J' / 8) of the metric (2.7) is constant which means it remains anisotropic 

for all times. It would be interesting to find a singularity free solution with (J' /8 
decreasing with t so that it can isotropise at late times to go over to FRW model. 

This brings us to another important question: do there exist other singularity free 
solutions with lesser or no symmetry, or is cylindrical symmetry singled out? These 

are the questions that are currently engaging us. 
A brief report of important results discussed here has been submitted for 

publication elsewhere [10]. 

L.I<' Patel and R. Tikekar thank IUCAA for hospitality. 
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Appendix 

For the metric (2.1) we introduce the tetrad (}l = Adr, (}2 = Bdz, (}3 = Cdr/>, (}4 = 
Adt. The non-vanishing tetrad componentes Rab of the Ricci tensor for (2.1) are 
given by 

A prime and a dot indicate differentiation with respect to r and t respectively. 
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