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Growth of non-Gaussianity during Cosmologic(ll 

Gravitational Clustering * 

Varon Sahni 


ABSTRACT 

We discuss the evolution of non-Gaussianity in Cosmological models of struc­

ture formation based on gravitational instability. In the quasi-linear regime non­

Gaussianity can be characterised by the density moments Sn =(6n ).:/(62)n-l 

which have known analytic forms. During the strongly non-linear regime the 

formation of caustics leads to growth in non-Gaussianity which can be examined 

using the Zel'dovich approximation and its perturbative extension: Lagrangian 

perturbation theory (LPT). We briefly discuss LPT and show that, although 

the Lagrangian series yields exact quasi-linear moments, it appears to be semi­

convergent and therefore of limited overall utility. We follow the evolution of 

non-Gaussianity in N-body simulations using percolation analysis and the genus 

curve. We show that the percolation curve is a very sensitive indicator of non­

Gaussianity and should be applied to other distributions such as the Cosmic 

Microwave Background. Examining gravitational clustering using N-body sim­

ulations we find that the filling factor of overdense objects decreases with cos­

mological epoch. The smallness of the filling factor indicates that matter is more 

likely to be dist.ributed in sheets and filaments (since these occupy less space). 

We use shape sensitive statistics to study density fields in N-body simulations 

and find that both filamentarity and pancakeness increase with gravitational 

clustering: filamentarity being more noticeable, possibly due to the alignement 

of neighboring clusters in a distribution. Filamentarity also appears to be more 

pronounced for spectra with greater large scale power, and we expect higher 

redshift objects in CDM-like models to be noticeably filament-like. 

* Invited talk at the Second International Conference: ASI,ronomy, Cosmoparticle Physics (CosnUon 96). Moscow, May 25· 

June 6. 1996. 
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1 NON-GAUSSIANITY IN THE WEAKLY NON-LINEAR REGIME. 

The standard paradigm of structure formation based on gravitational instability favours 

initial (seed) perturbations distributed in the manner of a Gaussian random field. Reasons for 

this stem both from the central limit theorem and from a consideration of density fluctuations 

generated by quantum fluctuations in a scalar field during Inflation. The probability density 

function (PDF) of a Gaussian random field (GRF) has the well known form 

1 [6'h ] (1)P(6R ) = O"R(t)J21r exp - 20"'h(t) . 

where O"R is the mean square fluctuation smoothed on a scale R. All odd order moments of a 

GRF vanish, whereas even orders' can be expressed in terms of O"R. All connected moments 

of rank> 2 are zero for such a distribution. 

The density field maintains its initial gaussian distribution in the linear regime while 

161,0" « 1. Asgravitational insta.bility progresses however, non-linear coupling between the 

fourier modes 61; leads to a build up of phase correlations and to the gradual development of 

a non-Gaussian PDF. In the weakly non-linear regime of gravitational instability the PDF 

can be described using the Edgeworth expansion (Kendall & Stuart 1977; Bernardeau & 

Kofman 1995; Juszkiewicz et a1. 1993b): 

P(6)d6 - 1 1 exp {_1I2/2)A(II)d6,
(211"0"2)2" 


A(v) - [1+(T~3H3(V)+(T2(;~H4(V)+ ~;H6(V)) 

3( S5 ( S3S4' ( (2)+ (1 120Hs,lI) + 144 H7 II) + 

Si ) ] (3)+ 1296 Hg(lI) + ... 

where JI = 6/0" and H,,{II) are the Hermite polynomials 

d.n
H,,(JI) =(-1)" exp (1I2 /2)- exp (-112/2) (4)

dll" 

The non-Gaussian behaviour of the PDF is encoded in A(II) which is a function of 

connected moments of the density field S,,: 

"'oJ 

(5)
(Dn)c 

8" - (62)"-1 . 

83 describes the skewLess, 84 the kurtosis etc., for a Gaussian distribution 8" = 0 for n ~ 3. 

The actual values of Sn can be determined in the weakly non-linear (or quasi-linear) regime 

using a generating function approach introduced by Bernardeau (Bernardeau 1992) [for 

more details see (SahIli & Coles 1995»). For scale invariant spectra P(k) ex k" with top·hat 
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final smoothing S3 = 34/7 - (n + 3) (Juszkiewicz et ale 1993a; Bemardea.u 1994). Velocity 

moments have also been studied and have the form (Juszkiewicz et ale 1993a; Bernardea.u 

1994) 

(6) 

(the angular brackets denote an ensemble average). For Gaussian fields, T3 = T4 = o. It is 

interesting that the ratio T4/Tj is virtually independent of n and can therefore be used to 

probe the value of the primordial spectral index n. 

In practice the Edgeworth expansion is only useful for early epochs of gravitational 

clustering (0- « 1) before the formation of strongly non-linear objects such as pancakes 

and other caustics. Further insight into the development of non-Gaussianity in the non-linear 

regime is provided by the Zel'dovich approximation (Zel'dovich 1970). 

THE ZEL'DOVICH APPROXIMATION 

The Zel'dovich approximation describes a mapping between initial (Lagrangian) coordinates 

of a particle and final (Eulerian) coordinates. In comoving coor~inates it has the form 

x = q +D+(t)u(q) (7) 

where D+(t) is the linear growing mode of the density contrast and u(q) is the initial 

velocity field of the particle (u(q) = dx/dD+). For irrotational flows u(q)'= -V+o(q), 

where +o(q) is the linear velocity potential. The Zel'dovich map q -+ x can be combined 

with the requirement of mass conservation dM = Po tPq = p(x, t) tPx, to give a simple 

expression for the density distribution of matter 

p(x, t) = ~ [1 - D+(t)Al(q)]-l [1 - D+(t)A2(q)]-.1 
a 

[1 - D+(t)A3(q)]-1 . (8) 


where AI,'\2 and A3 a.re the eigenvalues of the deformation tensor dij =~:::,;. (We assume 

A) > '\2 > A3.) 
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The Zel'dovich approximation predicts the formation of caustics which form when neigh­

bouring particle trajectories intersect [see fig. (1)]. Mathematically the first caus~ic forms 

when 1 - D+{t)Al = 0 (AI> 0). 

Zel'dovich was the first to realise that the network of caustics forms a percolating struc­

ture and that the percolating phase occupied a very small physical volume - a characteristic 

of a strongly non-Gaussian distribution (Zel'dovich 1982). The format10n of a network of 

percolating structures in the Zel'dovich approximation is easy to understand if one notes 

that caustics form only in regions where Al > 0 (such regions contract along at least one 

direction). For a gaussian distribution such regions occupy roughly 92% of the total volume 

in 3D and therefore percolate in initial (Lagrangian) space. (A percolating structure in a 

Gaussian distribution must occupy> 16% volume in 3D (Shandarin & Zel'dovich 1989).] 

Since the Zel'dovich approximation preserves topology, a region percolating initially will 

continue to do so when mapped according to (7). Thus a percolating network of pancakes 

& filaments forms generically in models of gravitational instability as described by ZA. 

Comparing the PDF obtained from ZA with that of N-body simulations (using identical 

initial conditions) we find quantitatively good agreement at moderately large smoothing 

lengths. For smaller smoothing scales ZA shows greater departure from N-body predictions 

(see fig. (2). Comparisons of ZA with Eulerian perturbation theory (EPT) show that ZA 
-

underestimates the quasi-linear moments Sn (Fry 1984; Grinstein & Wise 1987; Munshi et 

a1. 1994). 

2.1 Beyond the Zel'dovich approximation - Lagrangian perturbation theory. 

An attempt to improve upon the Zel'dovich approximation by including higher order cor­

rections to it was suggested in (~10tltarde et a1. 1991; Buchert 1989; Buchert 1992; Bouchet 

et a1. 1992). 

Such an attempt results in Lagrangian perturbation theory (LPT), which contains ZA as 

its lowest order solution. In a general Lagrangian framework 

x=q+q,(t,q) (9) 

where '11 is treated as an expansion 
n 

'11 = Eq,(n) 
i=1 

(10) 

The Lagrangian series (9) & (10) perturbs particle trajectories and complements the Eulerian 
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Table 1. Quaai.linear moments Sft for lagrangi&ll perturbation series L(n); L(l) is the Zel'dovich approxim.ation. 

Eulerian L(I) L(2) 1(3) 

83 4.857 4 4.857 4.857 

S.. 45.89 30.22 44.92 45.89 

85 656.3 342.2 624.4 654.6 

86 12653 5200 11666 12568 

approach which treats the dimensionless density fluctuation 6(x, t) = [p(x, t) - Po]/Po, as an 

expansIon 
00 00 

6(x, t) = L 6(n)(x, t) =L D~(t)L\(n)(x) (11) 
n=l i=l 

In analogy with n-th order Eulerian perturbation theory E(n) it was felt that Lagrangian 

perturbation theory L(n) would provide a consistently closer approach to exact dynamics 

than L(I) - the Zel'dovich approximation. A comparison of moments in L(n) and E(n) 

seemed to confirm this impression since L(n) gave accurate results for all quasi-linear mo­

ments upto 8n+1 (Munshi et a1. 1994). [See table 1 for a listing of the first four moments for 

L(I), L(2) and L(3)]. 

However an important issue which has remained largely unadressed, concerns the domain 

of convergence of the Lagrangian series (9) & (10). A recently concluded study of LPT 

in underdense regions led to a surprising result: higher order LPT gave increasingly less 

accurate 'results at late times, and the Zel'dovich approximation L(I) outperformed L(2), 

L(3) etc. in very underdense regions (voids). It now appears that the'Lagrangian series L(n) 

is asymptotic (or semi-convergent) since the inclusion of higher order terms in L(n) beyond 

an optimal point leads to a reduction in accuracy at late times (Sahni & Shandarin 1996). 

TOPOLOGICAL MEASURES OF NON-GAUSSIANITY. 

As gravitational instability advances into the strongly non-linear regime, matter begins to 

collect in progressively more overdense structures, the degree of asymmetry between over­

dense and underdense regions increases and the distribution becomes strongly non-Gaussian. 

Non-Gaussianity in the strongly non-linear regime can be probed using indicators such as 

the PDF and its moments described in the last section. However conventional measures of 

gravitational clustering (PDF, ~(r) etc.) must be complemented in the strongly non-linear 
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regime by 'topological' measures such as the genus curve and percolation analysis, which 

are sensitive to the'a.rrangement' of matter on large scales. 

3.1 Percolation analysis. 

Historically, the use of percolation theory to understand large scale structure was initiated 

by the Soviet Cosmology school led by Ya.B. Zel'dovich (Zel'dovich 1982; Shandarin 1983; 

Zel'dovich et ale 1982; Shandarin & Zel'dovich 1983). The methodology one follows in per­

colation depends upon whether one is studying a set of discrete particles or a continuous 

density distribution. In this talk I shall mainly deal with density distributions since most' 

discrete distributions can be converted into continuous ones by an appropriate 'smoothing' 

procedure. Our aim will be to study the connectedness of structure as a function of density 

threshold in cosmological N -body simulations. Key to our discussion of percolation is the 

concept of a 'critical density threshold' pc, separating the percolating phase from the unper­

colating one. A percolating cluster does not exist in a phase having p > Pc, whereas if P < pc 

at least one 'infinite' cluster exists in the system. In practice one deals with finite systems, 

and we define a percolating cluster to be one which 'runs through' the entire observational 
-'" 

sample or simulation box. Varying the density threshold leads to a 'percolation transition' 

when p crosses Pc. [Clusters in the above description are defined using a friends-of-friends 

or 'nearest neighbors' algorithm - we use six nearest neighbors to identify structures.] 

A convenient parameter to study percolation is the filling factor (FF) defined as the frac­

tional volume in all clusters/voids above/below a density threshold. As the density threshold 

is decreased from a high initial value, the FF in clusters increases. Eventually the volume 

fraction in the largest structure grows sufficiently and it fills the entire simulation box, 

this occurs when p = pc. For Gaussian random 'fields the filling factor at percolation is 

F Fc ~ 16%, distributions evolving under gravitational instability percolate at higher den­

sity thresholds Pc and correspondingly lower levels of the filling factor (Klypin & Shandarin 

1993; Sathyaprakash et a.l. 1996; Yess & Shandarin 1996). 

It is clear fronl the a.bove discussion that the percolation threshold pc (equivalently 

FFc) is a good measure of non-Gaussianity in a distribution, however it does suffer from 

some practical limitations, the foremost being its sensitivity to sample geometry. (Since 

most observational samples are wedge shaped F Fc will depend upon the 'path followed by 

the percolating cluster' clearly an undesirable property.) A powerful statistic which does 

not suffer from these limitations is the volume fraction in the largest clust,er Voo plotted 
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as a function of filling faC"~or (or density threshold) (Sathyaprakash et aI. 1996; Yess & 

Shandarin 1996; Sahni et al. 1996). The resulting percolation curves can be plotted for 

both overdense and underd'~nse regions. Fig. (3) shows percolation curves for overdense and 

underdense regions plotted against the density contrast b. We show the volume fraction in 

the largest cluster (thick solid line) and the largest void (thick dashed line)~ The volume 

fraction in all clusters/voids with the exception 0/ the largest is shown by thin solid/dashed 

lines. Percolation thresholds for clusters/voids are shown by vertical solid/dashed lines. 

Error bars showing dispersion computed from four realisations of a given spectrum are 

typically small. [The models we consider are N-body simulations of scale-invariant spectra 

P(k) =(lbkI2
) ex: k''', for k < kNv , and P(k) = 0 for k ?: kNv , n = -2, -1,0 and 1, where 

k.vv is the Nyquist cutoff.] 

We find that as clust".~ring progresses the percolation threshold for clusters increases 

(FF decreases) reflecting the greater ease with which structures percolate. For n = -2 the' 

increase in be is monotonic as matter continuously aligns on continuously increasing length 

scales. However for n = 0, be first increases then begins to decrease, as matter collects in small 

semi..isolated clumps with smaller co~erence length (marking the beginning of hierarchical 

clustering). Thus we find that the percolation threshold 6e is able to distinguish between 

complementary scenario's of clustering: long-range filamentarity /pancaking vs. hierarchical 

clustering. 

Percolation curves can also be plotted against the filling factor as is done in figure (4) 

(left panels). For a Gaussian distribution the two curves will exactly overlap, however for 

non-Gaussian distributions the asymmetry between the percolating properties of overdense 

and underdense regions causes the two curves to be shifted with respect to each other and 

the resulting plot resembles a 'hysteresis curve' (fig. (4». The area under the hysteresis curve 

is a good measure of non-Gaussianity, we find that it increases with epoch and is greater for 

n = -2 than for n = O. 

From Fig. (3) we find curves showing the volume fraction in all clusters with the exception 

of the largest peak just before the percolation transition. After percolation the number of 

disjoint clusters decreases because their mass/volume is transferred to the 'infinite' cluster. 

The threshold at which the volume fraction in clusters excluding the largest peaks provides 

an objective threshold at which to identify clusters in a simulation catalogue. We use this 

method when determining shapes of clusters discussed in Sec. 4. 
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3.2 Genus curve. 

Soon after percolation theory was applied to the analysis of simulations, it was realised that 

the topology of overdense & underdense regions could also furnish a useful descriptor of large 

scale clustering [see (Melott 1990) for a review]. The topology of ·jso-density surfaces lying 

above/below a density threshold v can be described by the Genus curve, which is related to 
\ 

the Euler-Poincare invariant, and can be expressed as an integral over the Gaussian curvature 

.I( of the surfaces Bv by the Gauss-Bonnet theorem: 41t'G(v) = Is" KdA. (Multiply connected 

surfaces have G ~ 0 while simply connected have G < 0.) We note that whereas properties of 

the largest cluster are used to determine PC, all clusters lying above/below a given threshold 

are used to determine GC. 

Plotted as a function of the density contrast, GC has a 'bell shape' which is exactly sym­

metric for Gaussian fields, and has the analytic form G(II) = A(1-1I2)exp(-1I2/2). During. 

non-linear clustering symmetry between over-dense and underdense regions is broken and 

the genus curve shows a small shift towards either 'sponge-like' or 'meat-ball-like' topology 

(Melott 1990) .. We plot the genus curve as a function of filling factor in fig. (4). When plot­

ted in this manner non-Gaussianity becomes easier to detect because the genus curves for 

underdense and overdense regions do not exacty overlap (as they do for Gaussian fields). 

We also find it easier to compare the predictions of the genus and percolation curves with 

each other (see fig. (4)). For n = 0 GC does not appear to distinguish between overdense 

and underdense regions, however it does show a marked decrease in amplitude presumably 

caused by nonlinear coupling between modes and increasing phase correlations (Sahni et 

al. 1996) (also see (Melott 1990)). (This result persists when we compare the genus curve 

with the 'gaussianised genus'· obtained by randomising the phases of particle distributions 

in N-body simulations.) For n = -2 the decrease in amplitude is small but void and cluster 

curves maintain a roughly constant separation as clustering advances. In general we find the 

separation between void & cluster curves is very sensitive to the primordial spectral index 

and shows remarkably little evolution with epoch (Sahni et al. 1996). 

Comparing genus and percolation curves for identical initial conditions and at identical 

Cosmological epochs we find that PC appears to be a more sensitive discriminator of non­

Gaussianity than GC (indieated by the area between void and cluster curves in fig. (4)). 

PC might therefore be used to probe non-Gaussianity in other situa.tions such as for maps 

of the Cosmic Microwave Background (Cl\1B) (string/texture models of structure formation 
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predict CMB maps that are significantly non-Gaussian on sluall angular scales (White et al. 

1994)). Some work in this direction is presently in progress (Mqessner et al. 1996). 

FILAMENTS IN ADVANCED GRAVITATIONAL CLUSTERING. 

The percolating phase occupies a fractional volume as s111all as 2-7% in cosmological models 

such as CDM and CHDl'vI which strongly suggests that the shape of individual objects in 

such models is more likely to be filan1entary or sheet-like since these occupy less space . 

. This assertion can be tested by using statistical lneasures sensitive to shape such as the 

'structure fUl1ctions' developed by Babul and Starkma!1 (1992) (Babul & Starkluan 1992). 

The structure functions consist of three numbers 8 1 , S2 and S3 each of which takes on values 

in the range [0,1] and is a f'..lnction of the radius around a fiducial point which is taken to 

be the center of mass of the cluster. SI characterises filaluentarity, S2 - planarity, and S3 

- sphericity [the reader is referred to, (Babul & Starkman 1992; Sathyaprakash et al. 1996) 

for details]. For our purpose we define density fields on a grid and determine the shape of 

individual regions lying above a given density contrast. [The density contrast is set at a 

threshold just higher than 8c - the critical threshold for percolatio~l. At such thresholds the 

siIuulation has lots of unconnected overdense clusters which at slightly lower thresholds link 

up to fonu a percolating chain, see fig. (3).] 

Our results unambiguously den10nstrate that fllamentarity dominates over planarity at 

all epochs and for all cosn1010gicalluodels tested by us. In Fig. 5 we show structure functions 

averaged over many random but high density points as functions of the' window size R. All 

four epochs of gravitational clustering kNL = 32, 16, 8 and 4 (in units of the fundamental 

luode) are shown in the san1e panel with darker lines corresponding to later epochs. We find 

that structures tend to become oblate only after a filament-like shape has already developed 

and that prol~teness dOlninates over oblaLcn.:_,-, ,:-:t ., 1~ e~)rJchs for both spectra considered by 

us. We also find that filamentarity appears to be more pronounced foJ.' spectra having greater 

long range power. \Ve therefore expect to see more filamentary objects at high red shifts in 

CDM-like models for which clustering of low mass objects took plate at higher redshifts 
• I 

. when the effective spectral index was n ::; -2 (Sathyaprakash et al. ] 996; Bond et al. 1996). 
~ I 
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5 CONCLUSIONS 

We discuss the growth of nOl1-Gaussianity in the quasi-linear a~ld non-linear regImes of 

gravitational clustering. In the quasi-linear regime .non-Gaussianity can be estimated using 

the mOlllents of the density and velocity fields Sn, Tn and the probapility density function 

(PDF). In the strongly non-li!lea.r regime, and until shell crossing, t'le Zel'dovich approx­

imation and Lagrange perturbation theory (LPT) can be used to probe non-Gaussianity. 

Although LPT gives exact values for the quasi-linar moments, it ddes show properties of 

being an asymptotic (semi-convergent) series and may not be very useful to apply to the 

late time study of underdenseregions (voids). We study the evolution of non-Gaussianity in 

N-body shnulations after shell crossing using topological indicators' such as genus and perco­

lation curves and find both to be very sensitive indicator's of non-Gaussianity. The smallness 

of the filling factor for clustered objects in N-body si111ulations indicates that high density 

regions are more likely to be prola~e/oblate since these occupy less space and percolate 

more easily. We use shape sensitive sta.tistics to determine whether pancake or filament-like 

structures are favoured in N-body simulations. Our results unalnbiguously demonstrate that 

overdense systelns are more likely to be filament-like thus lending quantitative support to 

visual impressions (Klypin & Shandarin 1993). 

Acknowledgnlents: Sever<\l of the idea.s outlined in my talk were results of past and present 

collaborations with B.S. Sathyapraka:sh, Sergei Shandarin, Alexei Starobinsky and Dipak 

Munshi to whom I express my gratitude for numerous discussions land clarifications. My 

travel to Russia was supported by the Integrated Long term programlne of collaboration i 

between India and Russia (ILTP) initiated by the department of Science and Technology 
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Figure 1. A two dimensional realisation of the Zel'dovich approximation with random (Gaussian) initial conditions demon­

strates the formation of a percolating network of caustics. Reproduced, with permission, from (Sahni & Coles 1995). 

Figure 2. Probability density fWletion (PDF) for the lognormal distribution (solid line) and the Zel'dovich approximation 

(dashed line) is shown for three diITerent smoothing lengths: R. = 18, 12,6h-1 Mpc., correspo,nding to (1 = 0.11,0.26,0.55. 

Filled regions correspond t,o the results of N-body simulations of a standard COM mudel. Repr~duced, with permission, from 

(Kofman et a}. 1994). 

Figure 3. Percolation cu~:ves are plotted as fWlctions of the density contrast. The Huck solid/dashed line corresponds to 

the filling factor of the lal'gest cluster/void (ie. the ratio of the volume in the largest clusteI1/void to the total volume in 
I 

clusters/voids). The thin solid/da.:;hed lines show t,he fillins factor of the remallling clusters/voids. The vertical solid/dashed 

lines correspond to the crit.ica.l density contrast marking percolation for clusters/voids. The scale of nonlinearity kN£ (measured 

in units of the fWldamental mode) increases from top to bottom. 

Figure 4. Percolat,ion (left panels) and genus cw'ves (right panels) are plotted as fWlctions of the filing factor (FF) for N-body 

simulations of scale invariant. spect.ra wit,h index (a) n = 0 and (b) n = -2. The panels illustrating percolation have solid/dashed 

lines showhig the FF in Ule largest cluster/void as a function of the total FF.,The panels illustrating genus have solid/dashed 

Hnes showing the genus curve for overdense/underdense regions plotted against the total FF. The vertical solid/dashed lines 

cOlTespond to the filling factor at pel'colation for clusters/voids. Reproduced, with permission, from (Sahni et al. 1996). 

Figure 5. Structure fWlctions averaged over random (but high density) points are shown as flmctions of the window radius R 

(measured in units of the grid size). Curves are for the epochs kNL = 32,16, 8 and 4 (in units of the fWldamental mode) with 

heavier lines corresponding to later epochs. Reproduced, with permission, fwm (Sathyaprakash et a1. 1996). 

http:spect.ra
http:0.11,0.26,0.55
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