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Abstract 

In a parallel computing system, we work with a network of a large number of processors 

wherein the performance characteristics each processor may have are different. This leads 

to a situation that when there is equal load on all the processors, some complete the job 

before the others. To make the optimum use of the available computing facilities and 

optimise on time, it is necessary to balance the load on the processors according to their 

characteristics like speed etc. Here we present an algorithm to optimise on 'time' when 

different processors have different speeds and the load is quantised in integral multiples 

of a given unit of load. The algorithm distributes the load in such a manner that all the 

processors work optimally and the processing time is minimal. The optimal clistribution of 

the load is achieved by employing the well known bisection technique for finding the roots 

of an equation. We discuss this algorithm in the context of our application for filtering 

the coalescing binary gravitational wave signals. Numerical results are finally discussed 

for the 64 transputer machine (PARAM). 
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1. Introduction: In a parallel environ~ent, we work with a network of a large 

number of processors. In the network available to us, we worked with a cluster of 64 

processors and the processors were transputers T800 from INMOS Ltd. In general, the 

transputers have different processing speeds. Our particular cluster consisted of 4 types of 

transputers as follows: T800 25 MHz with 3cycles for accessing external memory, T800 

25 MHz with 4 cycles and T800 20 MHz with 3 and 4 cycles. Running an application 

software in minimum possible time which would help in an on-line data analysis is our 

main concern. We observed that due to the above described differen~es in the performance 

characteristics of transputers, even though equal work load is placed on all the transputers, 

some complete their task before the others. To make the optimum use of the available 

computing facilities and also to optimise on time, it thus became necessary that we come 

upon an algorithm which distributes the work load in such a way that as far as possible 

no processor is left idle and all of them finish the task almost at the same time. The 

algorithm basically puts more load on the faster processors and less on the slower ones. 

More specifically the load balancing algorithm described in this paper distributes the load 

on the processors in proportion to their speed. Since the load is quantised (discrete), to 

obtain an optimal distribution of the work load on the processors is a non-trivial task as .~ 

we cannot have the load in exact proportion to the speed of the transputer. 

Our application involves the filtering of gravitational wave signals from coalescing 

binary stars. A binary system consists of two stars which spiral together emitting 

gravitational waves and eventually coalescing. with a burst of waves [1]. This is one of 

the most promising s~urces of gravitational waves for broad band detectors [2]. The signal 

depends on several parameters such as the masses of the stars, the phase, the time of 

arrival etc. A bank of filters is constructed which scans the astrophysically relevant range 

of parameters. The matched filtering technique is employed to filter out the signal from 

the noise [3, 4, 5]. This technique consists of correlating a data segment with every filter in 

the bank so that the correlation statistic exceeds a certain preset threshold. This scheme 

has been amply discussed in the literature. See [6] and references cited therein. 

In a parallel network the scheme involves distributing the filters corresponding to 
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different values of the parameters on different processors. The tasks of computing Icorrelations with several filters are independent of each other and the problem therefore 

is highly parallelizable. This parallel algorithm has been given in [7] which consists of 
1 

distributing filters in equal numbers on each transputer[8]. The computation time involved l 

in computing a given correlation is the same for every filter in the bank since all the filters j
are of equal length. This scheme produces the result in the shortest possible time if all the 

transputers have the same speed. However, if the transputers have different speeds, the 

faster among them will be left idle while the slower ones are still processing, thus resulting 
i 
1 
1 

in a non-optimal situation. Hence the idea is to distribute the load (the number of filters) 

in such a manner that the task is performed in the least possible time by the netw·ork. 

If the load had not been quantised then the solution is trivially given by distributing the 

load in proportion to the speed of each transputer. Since only entire filters can be put on 

each transputer, the load on each transputer comes in integral multiples of a basic load 

(the load is quantised) and then the problem of distributing the load becomes involved. 

In s~ction 2, we first analyse and then describe the algorithm. In section 3 we describe 

our application in brief and then discuss the results obtained on the 64-node machine called 

PARAM available to us at the Centre for the Development of Advanced computing (C­

DAC), Pune, INDIA. 

2. The Load Balancing Algorithm 

A. The Mathematical Analysis 


We define the parameters used in the analysis as follows: 


• N is the total number of transputers used which is in powers of 2. 

• SP(i)=Speed of the i'th transputer where speed refers to the reciprocal of the time 

taken to process one filter or the number of filters processed in 1 second; 

• F _TR(i) is the number of filters on the i'th transputer; 

• T(i) is the time required by the i'th transputer to process it's work load which is 

F _TR(i) filters; 

• N _ TOT is the total number of filters to be distributed on N transputers; 
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The speed array and N_ TOT are given. The aim is to find a distribution F - TR(i) 

such that the max T(i), where 1 $ i $ N, is the least. We have the following relations 

between the quantities defined above: 

The time taken by the i'th transputer is given by the load on it divided by the speed 

of the i'th transputer. This gives the relation, 

F - TR(i) = T(') (2.1)
SP(i) 1 

We also have the constraint that the total number of filters should add up to ~_TOT. 

Thus 
N 

EF_TR(i) = N_TOT 	 (2.2) 
i=l 

Actually the load on each transputer should be in exact proportion to it's speed. This 

condition optimises the time since no transputer will remain idle. But owing to the 

quantised nature of the load, this cannot always be done. In the ideal case, 

F _TR(i) = aSP(i) 	 (2.3) 

where a is a constant. From equation (2.2) we get, 

N_TOT 
a = 	N = amin(say) (2.4) 

L:SP(i) 
i=l 

We call this value of a as amin since this is the minimum time needed to process);'_TOT 

filters with a total speed of ~SP(i) which is the speed of the entire network. In a reaEstic 

situation wherein the load comes in multiples of a given load, equation(2.3) is not i::. ger:eral 

satisfied. In the general case equation (2.3) is modified to 

F _TR(i) = [aSP(i)] 	 (2.5) 

where [a] denotes the integer part of a i.e. the largest integer $ a. Therefore ii we now 

choose a = amin in equation(2.5) then ~F_TR(i) will not add up to N _ TOT b1.:t '\yill in 

general be less than it. To get the total number of filters at least as much as N _ TOT or 
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,I 
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more, a value of a > amin will have to be chosen. The aim is to choose that value of a 

which is the lowest and also satisfies the following condition: 
;1 

N 

LF_TR(i) ~ N_TOT 
i=l 

Equation (2.5) then determines the distribution of the filters. In general, the total number 

of filters will add up to a number greater than N _ TOT. However, if the exact number 

N - TOT is required then a few filters may be removed arbitrarily from the distribution 

to satisfy this constraint. This will not in any way reduce the maximum time taken by 

the network to process the load. In our particular application, we'let the extra number of 

filters remain since these can be used to make the filter bank finer or increase the range 

of parameters, without paying any extra cost in time. This can be explained as follows: If 

the total number of filters to be distributed are N _ TOT and after applying this algorithm 

we get the sum of the filters to be N_F which is more than N_TOT, it means that the 

computation time will remain the same for both N_F and N _ TOT number of filters. In 

our particular application, we can use this fact to our advantage. 

In the following, we prove that such a value of a exists and can be found by elementary 

means. Let, 

N_I(i; a) = [aSP(i)] (2.6a) 

N 

N_F(a) = LN_I(i,a) (2.6b) 
i=l 

For a given a, N_I(i,a) is the number of filters on transputer i and N_F(a) the total 

number of filters. We immediately have the inequalities, 

N_I(i;a)::; aSP(i) (2.7a) 

N 

N_F(a) ::; a L SP(i) (2.7b) 
i=l 

Clearly from equation (2.4) 

(2.8) 
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We now get bounds on the optimal value of a. There is already a lower bound amino We 

now display an upper bound. From equation (2.6 a) we have the following relation: 

(aSP(i) - 1) < N _lei; a) :5 a.SP(i) (2.9) 

Summing 


a~SP(i) - N < ~N_I(i; a) :5 a~SP(i) 


From equation (2.4) we have 

(2.10) 

The first inequality produces an upper bound for a. If we choose an a such that 

a
-(N_TOT) - N > N_TOT (2.11 ) 
amin 


then automatically N _ F(a) > N_TOT. Solving for a we obtain 


(2.12) 

The optimum value of a willlie in the closed-open interval [amin, a max). The closed-open 

. interval for a is the direct consequence of the fact that the function f(x)=[x], where [ ] 

denotes the integer part of x is an upper semi-continuous function i.e. 

lim f (x) = f (xo) 
X-Xo+ 

lim f (x) ::J f (xo) if Xo is an integer
X-Xo­

(Since if Xo is an integer f( xo) = Xo but f(Xo - e) = Xo - 1 for e < 1) i.e. f is continuous from 

above but not from below. We observe that although a can be made to vary continuously, 

N_F(a) is a discontinuous function and varies in steps i.e. N_F(a) is a step function of 

a, with the following properties: 

(i) N_ F(a) is an increasing function of a. 

(ii) The steps are of size at most N (the number of transputers). This is clear from 

the definition. 
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(iii) N_F(a) retains a particular constant value over a closed open interval. 

These simple properties of N _F(a) enables us to find easily the optimum moe of 

a(say) aopt, by employing the well-known bisection routine which always converges to a 

root. [Figure (i) depicts the function N_F(a) as it appears in our application of Si.oanal 

Analysis.] Given a, value of N_TOT, the optimum value of a say aopt is found as foItows: 

Consider that value of N_F(a) which satisfies the inequality N_F(a) > N_TOT bu't is the 

least among such N _F(a). This value of N _F(a) will correspond to an closed open interval 

say, [aI, a2) then the optimal value of a is the least in this interval i.e. aopt = al. Clearly 

aopt is the optimal value because if we consider an a < aopt, a will lie in the preceding 

int"erval say [ao, aI), which will correspond to a lower value of N _F(a) and which 'WT:TI be 

strictly less than N_TOT. 

B. The Algorithm 

We give below the steps in the algorithm. The steps are also displayed in the :B.ow 

chart in figure(2). This is just the bisection method used to obtain aopt. 

Step 1. Compute amin and a max • Set 

N_TOT 
amin = SUM 

where 
N 

SUM = L:SP(i) 
i=1 

and 
N 

a max = amin(1 + N_TOT) 

Step 2. Set amin = Al and a max = A2 

Step 3. Find A3 which is the mid-point of the interval defined by Al and A2. 

A3 = Al +A2 
2 

If N _F(A3) < N_TOT 'then Al ~ A3, otherwise A2 ~ A3. 
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Step 4. Continue this process of bisection till the difference between the two limits 

becomes less than a preassigned number f. This process must converge after n steps where 

( Qmax - Qmin) 
n '" 1og2 ---- ­

f 

The value of A3 afier n steps is Qopt. 


Step 5. Find the, distribution of filters corresponding to this value of Qopt 


N_F(i; Qopt) = [QoptSP(i)] 

Step 6. N_F(Qopt) is generally a little more than N_TOT. Remove N -F(oopt) - K_ TOT 

filters arbitrarily if necessary to obtain the distribution F _TR(i). 

Although the final solution is not unique, the time is optimal. ,We tested this 

program for different values of 0max and for different speed profiles and it gave the o?timal 

distribution of filters. The bisection routine converges to the correct value 'of Oopt within 

a few iterations. 
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3.The Numerical Experiment 

A.Application Ito gravitational wave signals from coalescing binaries 

~ 

The above algorithm is applied to the problem of signal detection in the context 

of gravitational w~ve signals from coalescing binary stars. After Einstein predicted 

gravitational waves fro~ his General theory of Relativity in 1916, it is only now with the 

advance in technology that it has become possible to detect these weak waves. Inclirect 

evidence exists for the waves, in that, the decay of the orbit of the binary pulsar PSR 

1913+16 is exactly as predicted by the General theory of Relativity[9]. The!:' direct 

detection on Earth however needs large scale interferometers, prototypes of wh:ch exist 

and several full scale ones are under way around the globe( The LIGO, VIRGO projects 

[10], [11]). 

Coalescing binary systems are one of the most· promising sources for the detection of 

gravitational waves for these broadband detectors. A compact coalescing binary consists 

of two stars, typically neutron stars or blackholes, which orbit around each other bound by 

their mutual gravitational attraction. The General Theory of Relativity predicts that such 

a system should radiate energy in the form of gravitational waves. They lose ene:-gy thus 

and spiral towards each other until they coalesce. The nature of the gravitatior:al ,,"aves 

, emitted by the system has a very characteristic waveform-the so called 'chirp' \\+aveform. 

The important point here is that the waveform can be predicted with a good accuracy. 

The signal is however, buried in the noise. The matched filtering technique is a powerful 

tool for detecting known signals in noisy data. The idea is to construct a templa~e \vhich 

looks something like the ,signal (it looks exactly like the signal in case of white noise) and 

correlate it with the data containing the signal. The correlation then displays a peak \\·hich 

can be taken as an evidence of detection if the correlation peak exceeds a certain. preset 

threshold determined from the distribution of the noise and the event rate. 

Athough the technique is easily generalized to coloured noise, here for simplicity we 

consider only white noise. Then the filters and the signal are identical. The \\·ave form 

from such a system of total mass M and reduced mass J.L located at a distance r is given 
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by: 

h+(t) == h(t) = Nha(t)- t cos (271") J(t') dt' + ~) , (3.1) 

where the quantities appearing above are defined ;as follows: 

• ta and .p are respectively, the time-of-arrival and the phase of the signal when the 

instantaneous gra~itational wavefrequency of the signal reaches some fiducial frequency, 

say fa which is the lowest frequency in the bandwidth of the detector and is taken to be 

100 Hz. 

• aCt) is the time-dependent normalised distance between the stars (normalised to c(t~) = 
1 ),. 

t-t)la(t)= ( 1- T (3.2) 

• f( t) is the instantaneous gravitational wavefrequency given by 

(3.3) 


• ~ is the time taken for the two stars to theoretically coalesce starting from a €in::e ,,·hen 

the instantaneous frequency is fa, 

M ] -5/3 [ fa ] -8/3 
(3.4)~ = 3.00 [ M0 100 Hz sec.. 

• M = (p.3 M2 )1/5 is called the mass parameter; the Newtonian waveform depe:x:.Cs only 

on this parameter instead of the two individual masses of the stars. 

• The constant Nh is given by, 

~ ] -1 [ t ]" -2 [ ] -1Nh = 2.57 x 10-23 a r (3.5)
[ 3 sec 100 Hz 100 Mpc 

Even though the waveforms of coalescing binaries are known, the experimenter v.-:'q not 

know before hand what the values of the parameters are. The method followed co::..i.:::s of 

constructing a bank of filters which scans the astrophysically relevant range of para=.eters 

and correlating a data segment with each of these filters. 

The Newtonian signal depends on the following three parameters: 
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1. the mass parameter which is a certain combination of the masses of the two stars 

in the binary or equivalently the coalescence time ewhich is the time taken for the two 

stars to coalesce starting from a certain fixed frequency; 

2. the phase ¢ of the signal;.. 

3. the time at which the signal arrives ta. 

The statistic is the cross correlation function which is crucial in the construction of a 

lattice of filters. The filters are constructed for a discrete set of the values of the parameters 

while the actual signal could have any values for these parameters. In general, the values 

of the parameters of the signal differ from those of every filter in the set. However, if the 

lattice consists of a large number of closely spaced filters then the cross correlation between 

the signal and some filter(i) will be significant and will cross the threshold if the amplitude 

of the signal is sufficiently high. The time of arrival is determined when the correlation 

peaks. This leaves just the parameters eand ¢. In general, one would have had to consider 

a 2 dimensional lattice of filters in (e, ¢) space. However, this is not necessary. The simple 

dependence of the signal on the phase makes it possible to construct a 2 dimensional basis 

in ¢ space. A waveform q(t, e, ¢) with an arbitrary phase ¢ can be written as a linear 

combination of two waveforms, one with phase equal to 0 and the other with phase equal 

to ~. It is thus sufficient to construct a lattice of filters, two for each value of the mass 

parameter corresponding to the two independent values of the. phase. The sampling is 

carried out at at least twice the frequency of the highest frequency of the signal and it is 

important to note that all the filters have equal length and thus req~ire ide~tical number 

of operations for their processing. Typically the masses of the stars can range from a 

fraction of the sun's mass to 10 solar masses. In the eparameter this corresponds to 0.1 

secs to a few secs. The phase ranges from 0 to 211". The filters are uniformly distributed 

in the espace and typically the number of filters is about 500 to 1000. We also pad the 

filters with zeros[4] to at least 75%. This means the filter is at least four times larger than 

the waveform. The correlation statistic is normalized to unity and the threshold is taken 

about 25% below this value. The threshold is normally chosen 7 u where u is the standard 

deviation of the noise assumed to be Gaussian. See [6,7] for details. 
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B. The Numerical Results 

The Procedure: We used a cluster of 64 transputers to run our program. We had 

two master programs and one slave program. A copy of the slave program was sent to each 

of the 64 transputers while the two master copies sat on the root transputer. The master1 

program collects the results and checks the correlation value with that of the threshold 

while the master2 sends the data to all the workers. First the set of filters is generated 

with the appropriate values of parameters on each transputer( according to the number of 

filters on each transputer). The Fourier transform of the filters is taken and kept ready. 

Meanwhile, the program master2 finds the Fourier transform of the data segment. This 

data is then sent to all the slaves and the clock starts counting the processing tin:e. The 

clock is stopped when the slaves send back the results. The parameters given as input to 

the program are as follows: 

• ei = 4.00 (Mi = 0.841M0 ) Here Mi is the initial mass parameter and ei is the 

time left till coalescence starting from the time when the the frequency of the gravitational 

wave fa and related to the mass parameter by eex M-5/3. M0 is the mass of the Sun 

"'-I 2 x 1033 gms. 

• ef = 0.16 which corresponds to M = 5.62M0 . 

• ~e = O.02secs. This is the spacing between the two filters in the espace. 

• Threshold= 0.755 (The maximum value of the correlation has been normused to 

unity) 

• Np = 32768, (the number of data points for a 16 second data train sam;>led at 

2KHz) 

• N _ TOT=' 384 (The total number of filters to be distributed) 

1. The time taken by each transputer for processing a fixed work load (to fud the 

correlation of the data train with 6 filters each) was recorded along with the node ida 

The speed array has been tabulated below: 
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Table 1 
Node id Time SP(i) 

1-27 25 (6/25)=0.24 
28-35 20 (6/20)=0.30 
36-47 25 (6/25)=0.24 

\ 48-51 17 (6/17)=0.35 
52-64 25 (6/25)=0.24 

The cluster consisted of transputers with three different speeds. 

2. The above calculated speed array was given to the program which calculated the 

following distribution of filters per node id. The basic unit of load here is tVi;O filters 

corresponding to the two values of phase. Hence only even number of filters appear on 

each node id. Hence N_ TOT= 384/2= 192. 

The input values for the bisection routine were as follows: 

amin = 11.7851 

a max = 15.7134 

aopt = 12.5006 

The total number of the distributed filters corresponding to this value of tlopt IS 

N_F(aopt) =196. 

Nodeid Number of filters 

1-47 6 
48-51 8 
52-64 6 

3. The comparison of computation times is as follows (here the computation tiII!e refers 

to the maximum time taken by a transputer to process the load on it): 

Load Placed Time (sees) 

With equal load placed on all transputers (N_TOT = 192) 25 
With load as per the load balancing algorithm (N _F = 196) 25 
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We would like to add that in the second case, the filters being processed totally are 

196 while in the first case the total number of filters is 192. Thus the average time for 

processing one filter has reduced after load balancing. 

Conclusion: We observe that the load balancing allows us to use the network more 

efficiently and pr~cess more load in the given amount of time alloted to the net"work. We 

have demonstrated this fact in our application. If the load for the transputer cO:lSists of 

more quanta then better efficiencies can be obtained since then it would be possible to 

distribute the load more 'evenly', meaning thereby that the time taken by each trc.nsputer 

to process the load would be more or less equal. For example, if we put 10 units of load on 

the slowest 52 transputers, 12 units on the transputers 28-35 and 15 units on 48-51 ~ the 

time taken by the network would be ideal and no processor would remain idle. 

We also note that the kernel of the algorithm can be applied to other problen:.s ,yhich 

have different sets of quanta of load but the speeds of the processors are the same. It 

is basically the ratio of the load per processor divided by the speed which is the crucial 

variable in the algorithm. 
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Figure Captions 

Figure (1). The figure shows the plot of N_F(a) verses a. N_F(a) is a step function 


and increases in a discontinuous manner with a. In the figure N _F takes the values 140, 


144, 196, 204, 208 over the intervals [11.000, 11.334), [11.334, 12.5006), [12.5006, 13.3339), 


[13.3339,14.1673) respectively. For a = 12.50 , the sum N_F suddenly jumps to 196 which 


is the correct total in this numerical experiment. We wanted to distribute 192 filters. We 


make use of the extra 4 filters here to make our bank of filters finer or to increase the range 


of the parameters. 


Figure (2). The figure shows the flowchart of the procedure described in section 2 (B). 
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Figure 2. 

read N. SP(l}. N _'lOT 

SUJI-ESP(N} 

tI..-N_'I'Or/SUJl-AJ tI_- tI.Jl+N/N_'I'Or}=A2 

Print tI.. and tI_ 

AI-A2-Al 

YES 

A3=(AI+A2)/2 end NJ'-(A3)(SUN) 

For J=2.N 

F _TR(1)=A3·SP(1) 

YES 

AI=A3 
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