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Abstract 

Apart frorD topological pecularities, vorticity may lead to the occurrence of 
closed timelike curves. A sufficient condition for such occurrence is deduced. The 
paper then goes on to generalise a recently presented sinoaularity theorem for open 
universes t.o include vorticity. A comparison with a special form of the Hawking­
Penr08e theorem on singularities is made and the relation between time like geode­
tic incompleteness and curvature singularity in case of open universes is examined. 
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1. Introduction 

Quite a number of theorems on the s:.ngularity in cosmological models 
exist in the literature. These are concerned both with the definition of sin­
gularity as well as the condition leading to its occurrence. The intuitive 
definition of singularity is an unacceptable behaviour of physical variables 
like their blow-up or abrupt discontinuity involving some breakdown of con­
servative principles. Of course such peculiarities would be reflected in the 
geometry of spacetime. However, it has been argued that such "singulari­
ties" may be removed out of sight by introducing coordinate systems whose 
domains do not include the singular regions. To take care ofsuch situations a 
definition of singularity has emerged identifying singular solutions as those in 
which some null or timelike geodesic is incomplete. \Vith this definition one 
may take a formulation of Hawking and Penrose as a standard singularity 
theorem. It states [1] 

Spacetime is not timelike and null geodetically complete if (1) RapkokP ;?: 
o for every non-space like vector kO; Rap being the Ricci tensor. (2) Every 
non-space like geodesic contains a point at which k[oR.81d')'[pkp ]k7 kl =1= 0 
where kO is the tangent vector to the geodesic. (3) There are no closed time 
like curves. (4) Ther exists at least one closed trapped surface. 

With the field equations of general relativity, the first condi~ion reduces 
to the strong energy condition (along with an attractive gravitation) whereas 
any violation of condition (3) would mean a breakdown of causality. Both 
these are fundamental elements of physics. Not so however are the other two. 
Indeed it seems difficult to reconcile the presence of the rather awkward and 
complicated condition (2) in the statement of a fundamental theorem. Re­
garding condition (4) any realistic physical model of the universe should have 
a variety of structures some of which will eventually undergo gravitational 
collapse leading to the formation of trapped surfaces. To eliminate trapped 
surfaces is to effectively leave aside the consideration of models having any 
semblance to reality. 

In this background came the solution of Senovilla [2] The solution is free of 
any curvature or physical singularity. Of the four conditions of the Hawking 
Penrose theorem, only the condition regarding the trapped surface did not 
hold good in SenovilIa tg solution. In SenoviIla's solution, the cosmic matter is 
a perfect fluid without rotation and if one works out the kinematic variables 



with reference to the velocity vector of matter, it turns out that the space 
time averages of all the kinernatic scalars (that appear in the Raychaudhuri 
equation) as also the energy densi ty vanish. 

In at-very thorough investigation, Chinea eta al [3] examined all non­
space like geodesics in the Senovilla solution and came to the conclusion that 
they l'lcre all complete. (A contrary result was given by Joshi r4] that the 
Senovilla space time is non-space like geodetically incomplete but this seems 
to be \\'Tong). 

In a recent note [5), it was shown that the vanishing of the spacetime 
averages of the Raychaudhuri scalars taken over the entire space time is a 
general property of all nonsingular non-rotating solutions with the topology 
Jt1 x R. However, the vanishing of the space and time avaragffi separately 
as observed in Senovilla's solution is not a general property. 

In the prffient paper, we examine the relation between "rotation" and the 
occurrence of closed timelike curvffi. This allows us to extend our theorem 
about the vanishing of space time avarages of scalars to rotating models as 
well provided there is no closed timelike curve. However, in the general case 
where the matter is not a perfect fluid, we use the timelike eigenvector of 
the Ricci tensor for constnicting the kinematic variables and a singularity is 
identified with the blowin'g up of scalars built from the Ricci tensor and its 
covariant derivatives. 

2. Vorticity and closed timelike curves 

Quite generally we can write the metric in the fonn 

(1) 

where the indices i, k run from 1 to 3 corresponding in general to space like 
coordinates and the index 0 refers to timeIike coordinatffi. The domain of 
all the four coordinates extends from -ooto + 00. \Ve adopt the convention 
900 > O. IDe signature condition for the metric (1) requires 

90igok IdetI9ik - -- < 0 (2)
900 



For a closed tinlelike curve with affine parameter A, ~o must have some zeros 
and at these points the timelike condition of the curve requires 

dxidxk 

(3)9ik dA d)' > 0 


The inequalities (2) and (3) are consistent only if 


90t =1= 0 (4) 

The relation (3) indicates that the three spaces spanned by the coordi­
nates Xi must contain timelike lines and (4) shows that the unit timelike 
vectors va tangential to the xO-lines are not hypersurface orthogonal. \Ve 

athen define the vorticity vector w corresponding to vQ : 


1 

W

a - TJafhlV v- '2 fi 'Y;6 (5) 

So far we have made no specifications about the vector Va - one may 
be tempted to identify it with the velocity vector of matter that may be 
considered to be present in the space time. However, as we are not going 
to introduce any assumption about the nature of the energy stress tensor 
TPv, such identification is not always possible. However va does represent a 
possible velocity field for material particles and hence the appropriateness of 
the term "vortici ty" . 

To some\vhat simplify our analysis without sacrificing generality, we as­
sume the metric to be of the form 

(: ~:: ~ ~ ) (6)o 0 922 0 
o 0 0 933 

and 900,901 not dependent on x3
• Then the only non-va.nishing component 

of wa is w3 given by 

w3 = 1 V,2 (7) 
,2 J(v2 - g11/goo)922933 

where we have written v for 901/g00. Writing dr = 01922f)cfx2 for the proper 

distanee for the coordinate difference d;c2 and w = v'1933lw3 for the magnitude 



of the vorticity, we get froIIl (7). 

dx2 
WdT = ~ V,2 . (8) 

2 /(v2 
- 911/.900) 

In the region where there no timelike interval in the three space XO = 
constant, 9u 1900 is negative. Timelike inten"a~s occur only when 911 becomes 
positive. Hence integrating over an entirely space like region, 

wdr < ~ / dv < ~lnv. 
/ 2 v 2 

Hence Jwdr can at most have a logarithmic divergence. Should it have a 
stronger divergence the above inequality will break down showing that 911 has 
turned positive. Thus a sufficient condition for occurrence of timelike lines 
in the 3-space is a stronger-than-Iogarithmic divergence of the last integral 
Jwdr or in other words as r ~ OO,w vanishes at least faster than 1/r. 
As wdr may be looked upon as the relative velocity between particles at 
a distance dr apart, one might have expected that closed timelike curves 
bringing in acausality would occur for Jwdr exceeding unity, the velocity 
of light; for according to norentz transformation, ordering of events become 
acausal for such velocities. However, a comparison with situations in the 

. published literature shows that such is not the case. 
Thus with the COdel metric, in the form [61, 

ds2 = 4a2[dt2 - dr2 - dy2 + (sinh4r - sinh2r)dcjJ2 + 2V2sinh2rd</>dt] 

the vorticity w = 72 in the direction of the coordinate y. However, closed 

timelike lines ocuur for r > In(l + v'2) is v'2In(l + v'2) ~ 1.24 and thus 
exceeds unity. 

In case of the metric given by Som and Raychaudhuri [71 

2ds2 = dt2 - e2(A2-a )r2 dr2+ (a2r4 - r2)dtjJ2 + 2ar2d4>dt 

the vorticity has magnitude e-(A2-a2)r2.o and the proper distance .;g;:;.dr is 
2 

e(A2-o2)r dr. Consequently Jo wdr = ar. The closed tiruelike curves occur for 
r> lla, i.e., wherE( the inte~k'"wdr > l. 

An example ofDon-occu~~of closed time like curves even though there 
is vorticity is provided by the Maitra metric [8] 
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with 
2 2Jl = -~x2r(1 + X )1/2 - 11 + ~ - ~ln~[(l + X )1/2 + 1]

4 . 8 4 2 

2m = ~[(1 + X )1/2 - 1 -ln~[(1 + X2)1/2 + 1] 

m =2rla 

Here w -+ 1/r as r -+ 00, thus there is a logarithmic divergence of the 
integral Jwdr and consistent with our discus~ion there is no closed timelike 
line, only the circular tP lines tend to become null as r -+ 00. 

Thus in the absence of topological pecularities as in case of strings or 
wormholes, closed timelike lines can occur only if vorticity is present. But the 
mere presence of vorticity may not bring in closed time like curves. IT closed 
time like curves do not occur we can always have an everywhere hypersurface 
orthogonal timelike vector field. Thus in the metric (1) if there are no time­
like line, the three spaces XO = constant are everywhere space like and the 
orthogonal to these sp~ have the covariant components Va = (vk, 0,0,0), 
the factor vk nonnalises .the vector to be of unit magnitude. 

As the' occurrence of closed time1ike curves is an intrinsic property of 
space time, not dependent on the choice of the coordinate system,; hypersur­
face orthogonal timelike vector fields can always be found if closed timelike 
curves do not occur and conversely if there is any everywhere hypersurface 
orthogonal timelike convergence, then there is no closed timelike curve. Fur­
ther if there is any timelike vector whatever for which the vorticity diverges, 
these would indicate the presence of closed timelike fields in the space time. 

3. The singularty theorem. 

\Ve prove the following theorem: The space time average of all scalars 
appearing in the Raychaudhuri equation vanishes if 

(a) the· universe is open in all directions, Le., it has topology Rl x R. 
This condition means that the ratio of the volume of any three dimen­

sional subspace to that of the entire space time vanishes - i.e., 

J J f Vl3g ldzidxk dxl 

--~~=----o (9)
Iff {iicJfx ­
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\vhere the indices i, k.l are al1 different and may refer to space or time co­

ordinate and Jl!9I is the appropriate coefficient to give the volume for the 

three dimensional element. 


(b) the universe is non-singular in the sense that scalars built from the 

rucci tensor and its covariant derivatives remain bounded everywhere. 


(c) There are no closed timelike curves. 
This condition replaces the non-rotating condition used in [5J and is some­

what weaker than that. 

(d) the strong energy condition is obeyed. 

This Uleans that Rp"vPv" ~ 0 everywhere for any unit timelike vector vP, 

Here the kinematic scalars are built up with the timelike eigenvector of 


the rucci tensor and the space time averages of any entity X is defined as 

f +xO J+Xl J+X2 J+X3 X figld4x 
[ 

-xo -Xl -X2 -X3 V1.'111 J ( ) 
X = J+XO J+XI J+X2 J+X3 fild4x lim Xo'%l ,%2,%3 ....... 00 10 

-xo -Xl -X2 -%3 V ,9 I 

Obviously, < X > is meaningful only if the limit exists. 

The Raychaudhuri equation with vP , the unit timelike eigenvector of the 


Ricci tensor, is 


1 n2 2 (T. 1 T) Q {3 • Q (J' w 
2 

3'17 + 2n + K. o.{J - '2/1Q{J lJ v = -V;Q - + 23" (11) 

As in [5J 7 we take the average of each tenn in (11) to get 

~ < 02 > +2 < n 2 > +K. < (TQfJ-~gQfJT)vQ1J{J >= - < tj~ > _ < iJ > +2 < w 
2 

>
3 2 3t"" 

(12) 
\Ve repeat the argument in [5] to show that the first two terms on the 

right in (12) vanish. The third tenn is new. The absence of closed timelike 
curves requires that ~2 vanishes faster than l/r2 as r goes to spatial infinity. 
Hence in the expression for < w2 > the integral in the numerator will have 
a weaker divergence compared to the integral in the denominator and hence 
< w2 >= O. This proves our theorem. 

4. A critical discussion of the conditions assumed 

The openness of space time as assumed above maybe made somewhat 
more specific. The first term on the right of equation (12) involves an integral 
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over a four dimensional divergence which is converted into an integral over a 
three dimensional hypersurface so that it reduces to the form (sec ref [5]) 

J Itii lld1:i l 

JFud4x 


The three space volume element dEi has a counterpart in the denominator 
integral. Hence the vanishing of the above requires merely the infinity of 
the space dimension in the direction of ii. Similarly, as is clear from [5J, 
the vanishing of < iJ > requires only the openness in the direction of the 

2coordinate t. As far as the vanishing of < w > is concerned, the crucial 
point is that the direction corresponding to the coordinate x 2 should be open. 
This direction is orthogonal to the vorticity vector and the spatial velocity 
whose curl is related to the vorticity. Thus finally the openness assumed for 
all directions is suffiecient but more than necessary for the validity of our 
theorem. 

Obviously, the theorem will not hold good if the universe be spatially 
closed or time incomplete. A positive definite quantity can have a zero aver­
age over a finite domain only trhially. 

For the Senovilla theorem, besides the space time average, the space and 
time averages vanish sepatately. A foliation of the space time is possible in 
this case as the fluid is non-rotating. In any case this result seems to be 
peculiar to the Seno,illa solution and not a general characteristic of non­
singular solutions as the follovling examples show. 

Consider a star occupying a bounded region of space and in equilibrium. 
The space and space-time averages vanish but the time average at points in 
the region occupied by the star do not vanish. 

As a second example, one may take the case of ~1aitra rotating universe 
[8]. Although the matter is rotating, there is a hyper-surface orthogonal 
timelike killing vector and thus the space time allows a folliation into space 
sections. It turns out that the space and spacelike averages of the Raychaud­
huri scalars vanish but not the time average. 

Our proof is based on consideration of integrals over space time and spe­
cially their behaviour at infinity. It thus overlooks any local singularity that 
may be present without affecting the values of the infinite integrals. Conse­
quently the converse of the theorem stated as "IT the space time averages of 
the scalars appearing in Raychaudhuri equation vanish, the spacetime is nOD­

singular." is not true...4.. simple example is to show this is the Schwarzschild 
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metric with a 6- function in the distribution. Apparently such localised 
singularities are taken care of by the condition of non-existence of a closed 
trapped surface in the Hawking Penrose formulation. (Recall the conjecture 
about the absence of naked singularities.) 

One may look upon the big bang as a singularity over all space but lo­
calized in time. The scalars blow up, nevertheless their space time averages 
vanish in case of spatially open universes. However, the universe terminates 
at the singularity unlike the case of singularities localized in space. As is well 
known, if acceleration and vorticity are absent then an expanding spacetime 
(open or closed) has a collapse singularity (where the expansion blows up) in 
the finite past. Thus non-singular space times can occur only if acceleration 
and/or vorticity is present. The pr~nt theorem is specially relevant in such 
cases. 

We have identified singularities of space-time with curvature singularities 
and in the next section we shall consider the case of geodetic incompleteness. 

5. Geodetic completeness for open models 

Chinea et al [3] have shown that the Senovilla universe is non-space like 
geodetically complete by examining separately all possible geodesics. Here 
we propse a procedure by which one can conclude the geodetic completeness 
for open models in general . 

.Assume for the moment that there is a congruence of time incomplete 
geodesics. Taking the time coordinate along these geodesics, we have as 
usual the metric, 

ds2 = 900dt2 + 290idtdxi + 9ikdxid,xk 

The incompleteness requires that J J900dt should converge for either t -+ 
-ex:: or +00, so that at the particular terminal point goo -+ 0 faster than 
1/t2. First suppose that the convergence is nonna! so that gOi = 0, and then 
Raychaudhuri equation will read: 

1 -2 -=.2 1 fJ-;
'38 + 2&- + K(TnJi - 2'gn.flT )VaV· =-9 

where the overhead bars signify that the kinematic sc~ ar-e calculated 
with respect to the vector VO = ~60- \Ve now have, with strong energy 
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condition, 

--;: 1-"2
-() > -8
-3 

Consequently we obtain by the well known procedure, (if {j :f: 0, T"" :# 0) 

9 -+ 00 at t -+ -00 and so .fi39i vanishes at t -+ -00. This simultaneous 
vanishing of 900 and 39 means that 9 itself vanishes, violating the signature 
requirement and indicating the occurrence of a ClLY"Vature singularity. 

The above argument does not hold good if the geodesic congruence be not 
normal, as the Raychaudhuri equation will then have an additional term on 
the right due to vorticity. However, when 900 --+ 0, v in equation (7) blows 
up. A divergent iiJ then indicates the presence of closed timelike curves. 
The divergence of w is also apparent from the Raychaudhuri equation - as 
900 -+ 0 va -+ 00 and consequently, if at that time (T"" - ~TgJW) do not 
vanish, the infinity on the left hand side has to be balanced by an infinite w. 
Hence we have the theorem: In an open singularity free universe, a timelike 
geodesic congruence can be incomplete only if the spacetime be completely 
empty or there are closed timelike curves. 

It should be noted th.at this leaves aside the case of an isolated incomplete 
timelike geodesic. Howevet such a thing can occur only if it is associated with 
a symmetry (eg, if there be a timelike imcomplete geodesic along a rotational 
symmetry axis) or with a singular behaviour. 

6. Concluding remarks 

It is interesting to compare our approach with that of Hawking and Pen­
rose. Both assume the strong energy condition and absence of closed timelike 
curves. However closed trapped surfaces do not find any place in our dis­
cussion and for that we miss any localised singularity that may be present. 
The so-called generality condition of Hawking and Penrose is simply absent 
in our case. Our theorem is restricted to open universes while the Hawking­
Penrose theorem is more general but the case of closed universes admit many 
comparatively simple singularity theorems. 

A remarkable result has been our conclusion that for open universes, 
the non-space like geodetic incompleteness is more or less identified with 
curvature singularity. 

On the whole our theorem seems to have two merits in its favour .. it 
is remarkably easy to prove compared to the cas~ of Hawking. and Penrose. 
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Further the result seems to be rnore physically transparent. 

The author's thanks are due to the members of the Relativity and Cos­
mology Center, Jadavpur University for helpful discussions. The author has 
benefitted from an interesting correspondence with Prof. J. M. M. Senovilla. 
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