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Abstract 

A search for gravitational waves frorn the rnillisecond pulsar PSR 0437-471 

has been initiated using the bar detector NIOBE which is located at the 

University of Western Australia. This search involves a very long coherent 

integration of the bar output which may stretch over a few years. We present 

a detailed report on the data analysis algorithm~ called phase plane 1'otation, 

which will be used in this search. A discussion of the actual implementation 

of the algorithm is presented. 

Key words: gravitational waves: rnilli-second pulsars: resonant bar 

detectors. 
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I. INTRODUCTION 


Pulsars \vith 1l01l-axisY1nmetric defornlatiolls will radiate a part of their rotational kinetic 

energy in gravitational waves. If the signal phase is known, either fro1n electro1nagnetic 

observations in the J ~ase of a kno\vn pulsar or as a paranletrised model in the case of a 

survey for unknown ones, a coherent integration of the detector output can be enlployecl 

to enhance the signal to noise ratio. An integration involving electromagnetic observations 

as input is called a targeted search. A survey for the detection of unknown pulsars. called 

an all sky - all frequency search, uses a I110del of the signal w"hich is parametrisecl by the 

frequency, frequency.derivatives and angular position of the pulsar. 

An all sky-all frequency search for pulsars appears, at present, to be a daunting task 

computationally (Brady et al. 1997) even for isolated pulsars, let alone pulsars in binaries. 

On the other hand, a targeted search for signals from known pulsars would be computation­

ally possible. Such a search can handle binary pulsars as well as isolated ones and can even 

handle pulsar glitches. However, estimates of the gravitational wave strain h expected from 

known pulsars lie around 10-25 or less. To detect such a signal \vith the current sensitivities 

of detectors, or even \vith more advanced ones in the future, a coherent integration stretching 

over a year or more would be required. 

A series of such attempts, using succesively more sensitive resonant mass detectors, have 

already been performed by the group at Tokyo (Tsubono 1991; O\va 1986; Owa et al. 1988). 

This experiment sought a quadrupolar signal from the Crab Pulsar at twice its rotational 

frequency. Special purpose resonant mass antennae were built with a lo\v resonant frequency 

of I"V 60 Hz. The resonant frequency was electrostatically tuned to track the pulsar frequency 

as it drifted due to doppler shifts. The integration period was 1000 hrs for the Crab IIII"V 

experiment, the third one in the series. 

The normally dominant mode of gravitational w"ave radiation from a pulsar would be 

quadrupolar, at twice its rotational frequency. This was the reason behind the choice of the 

resonant frequency in the Tokyo experiment. However, there should be radiation at other 
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hannonics also in generaL By a fortuitous coincidence, the fourth Inultiple of the rotational 

frequency of the Inillisecond pulsar PSR 0437-471 (Johnston et al. 1993: Sandhu et al. 1997) 

happens to lie 'within the bandwidth of one of the resonant lllodes of )JIOBE~ the resonant 

bar gravitational wave detector at the University of \Vestern Australia. PSR 0437-471 has 

a rotational period of 5.75 nlbec and lies at a distance of rv 178 pc (the dispersion l11easured 

derived distance is 140 pc). It fornlS a binary with a white dwarf. the orbital period being 

5.74 days. The spin do\vn ltllninosity of the pulsar is rv 10:J4 ergs/sec. 

A fonnalisnl for wave generation that is appropriate for slowly lnoving but strong field 

sources, such as pulsars, was given by Ipser (Ipser 1971). Using' this fOflnalisnl, an upper 

bound to the r.Ill.S. gravitational wave strain h can be obtained by assun1ing that the spin 

down of a pulsar is entirely due to gravitational wave radiation. In the case of PSR 0437­

471, if the radiation is assumed to be entirely at the fourth multiple alone, \ve get h rv 

10-26 (Dhurandhar et aL 1996 (henceforth referred to as paper I)). \Vith an enhancement 

in sensitivity (Blair et al. 1995) of the detector, planned for the near future, it would take 

about 3 years of coherent integration to detect a signal with the above r.m.s amplitude. 

Even if the true situation ,vere less favorable to detection, important lessons in data 

analysis can be learned from actually ilnplenlenting such a long coherent integration. Such 

experiences may help more sensitive searches of the future, such as ones using the very long 

baseline laser interferometric detectors that are no,v under construction. 

An algorithnl for such a coherent integration, which we call phase plane rotation (PPR), 

'vas introduced by Dhurandhar, Blair and Costa in paper 1. Though this algorithm is a 

variant of the well known technique of lnatched filtering, it has the advantage that it is 

,veIl adapted to the already existing data aquisition facilities of bar detectors and needs no 

modifications in the hardware. 

In this paper we report on the actual initiation of a coherent integration, using PPR, of 

the data from NIOBE. Important results from this very long integration, which may stretch 

over a few years, will be communicated in later works. \Ve investigate the algorithnl itself 

in greater detail and find that there are two parameters governing PPR whose effect was 
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ignored in the earlier analysis. One of the paralueters is the inclination angle bebveen the 

rotation axis of the pulsar and the line of sight to it. The other is the direction of the pulsar 

spin vector projected on the plane of the sky. Doth these paralneters are d~tennined poorly 

by radio observations and, hence, the phase obtained from radio is not cOlnplete. \Ve also 

discuss practical issues involved in the irnplenlenation of this algoritlun. 

'Ve begin with a review of PPR in Section II. Some notation and typical nunlbers are also 

introduced in this section. The behaviour of noise under phase plane rotation is investigated 

in Section III. In Section IV, we describe the signal 'vave form. The effect of polarization 

phase on the signal to noise ratio (S:"JR) is investigated in Section V', Details of an actual 

implementation of the algorithnl are described in Section VI. \Ve conclude with Section \r11. 

II. A BRIEF REVIEW OF THE PHASE PLANE ROTATION SCHEME 

The resonant bar detector NIOBE is a two mode system consisting of a primary mass, 

which is a 2.75 m long Niobium bar with an effective mass of 700 Kg, and a smaller secondary 

mass attached to it. The quantity 'which is measured is the longitudinal motion of the 

secondary mass using an electro-mechanical transducer. 

The normal modes of the detector that are relevant to gravitational wave detection have 

frequencies denoted by f+ and f- with f+ ~ 700.1 Hz and f- ~ 694.5 Hz. The fourth 

multiple of the rotational frequency of PSR 0437-471 is at 694.75 Hz which lies close to 

f -, Henceforth, we ,yill be concerned with this mode only, vVe denote the frequency of the 

fourth multiple by J~, where fp = 694.75 Hz. 

The output of the transducer is amplified and processed through a lock-in amplifier. If 

the input to the lock-in be x(t) then there are two outputs _\""(t) and Y(t), 

X(t) = 1: dt'KL(t - t')x(t) cos(u.,lreft + 91) , (1) 

Y(t) = - 1: dt'KL(t - t')x(t) sin(u.,lreft + 91) , (2) 

'where, KL(X) is the transfer function of a lo,y pass filter (KL(X) = 0 for x < 0), Wref = 21rfref 

is the angular frequency of the reference signal used in the lock-in and 91 is the phase of the 

4 



reference signal at sonle fiducial instant. 'The negative sign in the case of 1"(t) is used for 

consistency with the anal~~sis of paper 1. 

In a comoving frame, the signal from PSR OJ37-471 would be nearly lllonocluoinatic 

apart from a small spin down (P I"V 10-20 sec/sec). But at the detector this InonochrOlnatic 

signal is spread over a bandwidth of I"V 0.1 Hz due to doppler shifts produced by the Illotion 

of the pulsar in its binary orbit and the rotational and orbital lllotion of the Earth. 

Thus, the signal 8(t) in the detector output would be a narrow band signal which can be 

represented as, 

8(t) = ~4(t)cos(O(t)) . (3) 

The lock-in outputs corresponding to s(t) would be, 

X(t) = A(t) cos [B(t) - Wreft - ¢d , (4) 

Y(t) = ~4(t) sin [8(t) - Wreft - ¢d . (5) 

The value of fref is kept near f-. The action of the lock-in, therefore, is to heterodyne the 

detector output and produce the two quadrature components of a phase modulated signal. 

The instantaneous output of the lock-in can be thought of as a vector CX", Y'") in some 

phase plane and the vector (J t ~X"(t')dt', Jt Y(t')dt') as the path traced out in this phase plane 

by the lock-in output. The phase plane rotation scheme consists of making the follo\ving 

instantaneous transformation on (~\'", Y), 

X'(t) = .x"(t) cos [BR(t)] + }T(t) sin [BR(t)] , (6) 

Y'(t) = -~X"(t) sin [BR(t)] + Y(t) cos [OR(t)] (7) 

where, 

(8) 

This is a rotational transformation which can be thought of as either rotating the phase 

plane by BR(t) or the vector (~X". }') by -BR(t). It is understood here that the rotation is 



by an angle 8 H( t) upto SOIllE' unknown but constant offset present in the gravitational vvave 

signaL 

From Eqs. (4)~ (5) and Eqs. (6)~ (7), it follows that in the rotating plane (X', Y"), the 

signal vector "rill point in the saIne direction at all tin1es. On the other hand, the noise vector 

will have a random orientation. Thus, the displacenlent of the signal path will grow at a 

faster rate than that of the noise and a detection can be made by computing the probability 

that the observed final displacenlent could have arisen due to noise alone. The detection 

statistic, therefore, is the length of the final displacen1ent of the output path from the origin. 

\Ve show in Appendix A that the signal to noise ratio (S;.JR) achieved by PPR is almost 

the same as that obtained using Inatched filtering on the detector output .:r(t). If the signal 

is assumed to be approximately monochromatic, the signal to noise ratio (S;.JR) that can be 

achieved by matched filtering over an integration period T can be expressed as, 

SlVR '::::!. JTA , (9)JSn(fs) 

where Sn(f) is the two sided strain noise po,ver spectral density, fs the signal frequency and 

A its r.m.s. amplitude. 

If all the spin-down luminosity of PSR 0437-471 is in gravitational radiation at the 

frequency f p , then A """ 10-26 (in terms of the strain produced by the wave (see paper I)). 

An SlV R = 1.6 (which implies detection at an 80% confidence level) would then be obtained, 

1010at the present sensitivity of the antenna, for T """ sec. For the planned enhancen1ent 

in sensitivity (Blair et al. 1995), the integration time would fall to T """ 108 sec. The above 

estimates assume the noise to be stationary. In practice, this is only approximately true and 

the actual integration time required may be somevvhat higher. 

III. THE BEHAVIOUR OF NOISE IN PHASE PLANE ROTATION 

The noise in the detector output consist of two components ,,,ith very different auto-

correlation times. In a simple model of the detector (Pallatino & Pizzella 1991), the Brow­

nian motion of the fundamental mode- and the back action noise of the transducer are 
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filtered through the bar transfer function to elnerge as narrow band noise with a large auto­

correlation tilue. To this the aluplifier adds wide band noise which is ahllost white, and 

hence. has a short auto-correlation tinle. \Ve denote the corresponding noise conlponents 

in the outputs of the lock-in by ~J(nb (Y'"nb) for the narrow band and ~J(wb (Y-lt'b) for the "ride 

band noise. 

The narrow band noise _J(nb is centered around the nlode frequency f- and can be rep­

resented as. 

(10) 

Y"nb can also be represented similarly. It is easy to show, using this representation and 

Eqs. (6) and (7), that in the rotating plane, the vector (~J(nb(t). }rnb(t)) is rotated by an angle 

21rf-t - ()(t). 

Thus, if the rotational period of the phase plane, l/(f- - f~), is much slllaller than 

the auto-correlation time of the narrow band component, the path of this component in the 

rotating plane would be a circular motion around a randomly moving centre. The wide band 

component should, on the other hand, execute a random walk similar to its behaviour in 

the non-rotating plane. Thus, the overall effect is to produce a circularly ':smeared'~ random 

walk. 

\Ve illustrate this in Fig 1. This figure shows the path followed by 15 min of real data 

in the rotating plane~ where the rotational transformation used corresponds to a 1110nochro­

matic signal with a frequency fs such that fs - f- = 0.2 Hz. This is the least offset in 

frequency that the pulsar signal is expected to have from f- (see paper I). In this figure the 

solid line represents the path followed by wide band noise alone while the path followed by 

the total noise is shown by dots. The circular smearing effect due to the nan'O\\~ band noise 

is evident. \Ve have separated out the two noise components by lo\v pass filtering the data 

with an arbitrary cut off frequency. Thus, the wide band component sho\vn in the figure 

should be understood as only an approximation to the actual one. 

In Fig 2, we sho\l/ the saIne data as in Fig 1 but \vith a monochromatic signal having the 
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SaIne phase as used in the rotational transforInation, apart fron1 a constant offset. added to 

it prior to transforInation. This shows how, under PPR" the path followed by the output 

acquires a systen1atic deviation in the directior of the signal vector. 

IV. THE SIGNAL 

In the following we will use the celestial coordinate systen1 based on the equator and 

equinox of date to give the angular positions of the detector as well as the pulsar. 

In the transverse traceless (TT) gauge \vith the .:;-axis along the direction of wave prop­

agation (wave frarne), a gravitational "vave signal is represented by two cOInponents h+ (t) 

and h x (t). Let the X axis in the \vave frame be oriented along the projection of the pulsar's 

spin axis on the sky plane. The components h+ and hx can be expressed (Thorne 1987) in 

this choice of axes as, 

h+(t) == ho(1 + cos2 i) cos[Bs(t)] , (11 ) 

hx (t) == 2ho cos i sin[Bs(t)] , (12) 

where ho depends on the distance to the pulsar and the structure of the deviations froln 

axisymmetry in the pulsar, i is the angle at which the rotation axis of the pulsar is inclined 

to the line of sight and Bs(t) is the phase of the pulsar signal at the site of the detector. 

'Vhen i == 0, the radiation is circularly polarized and it is linearly polarized \vhen i == 7r /2. 

In the case of PSR 0437-471, Bs(t) can be obtained directly on the basis of radio pulse timing 

observations. A sequence of pulse arrival times yield the orbital parameters of the binary 

which can then be used to predict the signal phase. 

The fundamental mode of the bar (the one which is relevant here, namely, f _) can be 

nl0deled as a damped multiple oscillator driven by the incident gravitational radiation. The 

driving force F(t) is given by (Dhurandhar & Tinto 1988), 

(13) 

where, F+ and Fx are the antenna beam patterns given below. 
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The response of the bar ~(t) (displacement measured by transducer) can be obtained in 

the Fourier domain as, 

(14)((w) ex:: (w~ 

where r is the integration time of the transfer function associated \vith the mode. For the 

mode .f_, r 50 sec. I"V 

The functions F+ and Fx can be expressed as, 

(15) 

(16) 

where, F~ and F~ are the antenna patterns for a specific choice of the \vave X -y' axes 

orientation, namely, X axis pointing towards the celestial South pole and Y axis tovvards 

the \Vest. 'lj; is the angle between this X axis and that of the preferred \vave frame in vvhich 

Eqs. (11) and Eq. (12) are obtained. 

Let (0:, ,8) be the coordinates of the detector and ((), ¢) be that for the source. Then, F~ 

and F~ are expressed as, 

(17) 

(18) 

where, 

nl = cos 0: cos,B cos "'/ - sin ,8 sin ")' , (19) 

n2 = cos a sin ,3 cos I + cos,3 sin I , (20) 

n3 = - sin 0: cos "'/ ~ (21) 

Note that since ,8 is time dependent, both F+ and Fx are time dependent functions. 

\Ve show in Appendix B that, because of the short integration time r in Eq. (14), the 

phase of the response «t) has a nearly constant offset from the phase of the force F(t). \Ve 

denote this phase offset by <Pb. \Ve can, therefore, express «t) as, 
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~(t) = As(t) cos(()(t) + <I>b) ~ (22) 

,vhere, 

(23) 

()(t) = ()s(t) + <I>p(t; Q.p) , (24) 

<I> p(t; p, V) = tan-1 [tan (2V + tall-1;t) p] , (25) 

2cosi 
(26)p = 1 + cos2 i .. 

The above expressions are obtained under the approximation ()s «()s. In the case of 

PSR 0437-471, iis 10-6 Hz/sec while Os ~ fp and, hence, the approximation is valid. Therv 

constant k comes from the bar transfer function. The term <I> p(t; p, 'tjJ) is called polarization 

phase (Cutler 1997). Unlike ()s, it is known only partially since the parameters p and 'ljJ are 

difficult to deduce from radio observations. 

In Fig. 3, we plot the polarization phase of PSR 0437-471 for several values of pat 1jJ = O. 

.As can be seen from the figure, polarization phase varies over a wide range and cannot be 

neglected in any detection scheme, like matched filtering or PPR, which integrates the signal 

coherently. 

v. THE EFFECT OF p AND 'if; ON SIGNAL TO NOISE RATIO 

..A.s mentioned earlier, the values of p and 'ljJ are not fixed by radio observations. In the 

following, we denote the values of p and 1jJ used to perform a rotational transformation by 

pand 0. The values of these parameters in the signal wave form will be denoted by Ps and 

In the case of a mismatch between the signal and transformation parameter values, the 

transformed signal path will wander in the phase plane and the detect ability of the signal 

will suffer. Thus, in general, integrations with different values of p and 0must be used in 

order to reduce the amount of mismatch for any signal. This is analogous to the bank of 

templates required in the case of coalescil!g binary signals. 
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\Vhat criterion should be adopted in order to fix the bank of integration parameters? 

Consider the following facts. The lifetime of this experiment, though long, would still be 

limited bec?use of practical reasons. Now, the shortest integratio"1 period required for a 

given signal depends on the values of its parameters. \Vhen the signal and transformation 

parameters match exactly, the displacement of the signal path is fl' dt As(t), and it can be 

seen from Eq. 23 that A.s(t) depends on Ps and 1Ps. It is easily shown that if the signal has 

Ps = 1, its integration period (when p= 1 and ;j) = Vs) is the shortest among all other values 

of Ps, Vs. This is independent of the value of 1Ps when Ps = 1. \Ve denote this minimum 

period by Tmin. 

If it \vere possible to obtain Tmin a priori, one could fix the lifetime of the experiment. 

For instance, it can be kept at, say, 2Tmin so that more unfavourable signal parameter rv 

values can also be detected. However, since the overall amplitude of the signal ho (see 

Eq. (23)) is unknown, the absolute value of Tmin cannot be obtained. However, though the 

absolute value of Tmin is unknown, it is quite legitimate to adopt a criterion based on relative 

comparision with Tmin. \Ve, therefore, demand that the bank of transformation parameters 

be chosen in such a way that the integration period required for a signal be not more than 

twice that which is required when Ps = 1 and p= 1, ;j) = tPs. 

It is possible that for some values of Ps and 1/Js, a signal may pass undetected in the 

limited lifetime of the experiment, even if an integration with exactly matching parameters 

were used. The size of such a region of "undetectability" in parameter space will depend 

on the value of ho. In the case of PSR 0437-471, radio observations as well as the present 

evolutionary model for the binary system (Bailes 1997) suggest that Ps l. Thus, the signalrv 

parameters may not be unfavourable in this case. 

Having adopted the above criterion, we proceed to fix the bank of integration parameters 

as follows. The SNR obtained in an integration period T is proportional to L/ /T where, L 

is the displacement of the signal path from the origin in that period. Now, since all terms 

occurring in the polarization phase have a periodicity of 24 hours, we need to estimate 

the reduction in SNR over an integration· period of 24 hours only. Therefore, we need the 

11 



displacelnent of the signal path from the origin over an integration period of 24 hours. \Ve 

denote this quantity by L(p,;(;; Ps, Vs), 

) 2] 1/2 
( foT' 

dt As(t) sin[<I>p(t; p., Vs) - <I> p(t; .0, D)j , (27) 

where T' =24 hours. 

The maximum value of L(p,;(;; Ps, Vs) is obtained ",,-hen p = Ps, (j) = Vs and Ps = 1. \Ve 

denote this value by Lmax. As mentioned earlier, the integration period in this case is Tmin. 

Now let, 

.-. i. !) _ L(p, (j); Ps, Vs)
€CP,1fJ: Ps,1fJs - L . (28) 

max 

From the dependence of SNR on Land T, it is easily seen that when there is a mismatch 

between signal and transformation parameters, the time required to achieve the same SNR 

would be Tmin/€(P, (f); Ps, Vs)2. Hence, if we require the integration period of a signal to not 

exceed 2Tmin in the case of a mismatch, we should have at least one integration with p and 

(j) such that €(p, $; Ps, Vs) 2:: 0.71. 

\Ve have plotted, in Fig. 4, the contours of €(p, (j); Ps, Vs) as a function ,of p and (j) for 

a pulsar inclination angle i = 30° (corresponding to Ps = 0.9897) and 'ljJs = 20°. \Ve see 

that in this case the €(p, (j); Ps, Vs) surface is quite fiat (though there does exist a 'weak local 

maximum at p=Ps and ;;; = 'l/Js). Hence in this case, it is sufficient to use p= 1 and (j) = 0 

for the integration. 

\Ve find that the €(p, (jj; Ps, Vs) surface is likewise fiat for Ps ~ 0.91 or less and for all 

values of 1f;s. This range of Ps actually corresponds to a wide range of inclination angle since, 

for Ps = 0.91, the inclination angle i ~ 50°. Beyond this value, an integration with p = 1 

and ;(; = 0 proves insufficient but so does an integration matching the signal parameters. 

Thus, we conclude that, according to our criterion (i) signals with i 2:: 50° cannot be 

detected, (ii) for signals with i ::; 50°, it is sufficient to use a single transformation, namely, 
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P= 1, W = O. It should be noted that E(p,;jj; Ps, w8 ) depends on the angular positions and 


. orientation of NIOBE and PSR 0437-471. Our conclusions above are, therefore, specific to 


this case. 

VI. IMPLEMENTATION OF THE ALGORITHM AND RESULTS 

The algorithm is implemented within a ?\IATLAB environment with SOIne modules writ­

ten in FORTRAN. The integration is performed off-line on recorded data at intervals of, 

usually, a week. The data consists of 15 minutes segments with each of the lock-in outputs 

X and Y recorded separately. The two quadratures are sampled with a frequency of 10 Hz 

with a 15 bit quantization of the amplitude. 

The pulsar phase Bs(t) is obtained by making piecewise polynomial fits over intervals of 

one day. The polynomial coefficients are obtained using the program TE?vlPO (Taylor & 

vVeisberg 1989). The pulsar phase is generated as a function of Universal time (UTI) while 

the data is time-stamped using Coordinated Universal time (UTC). \Ve convert the UTC 

time instants to UTI using the solution C04 provided by the International Earth Rotation 

Service (IERS wvv'w site). 

C04 tabulates the difference DUTe = UTl- UTe at intervals of a day. The sub-diurnal 

variations in DUTe can be accounted for in our case by a simple linear interpolation. How­

ever, we use the more accurate program I~TERP which codes Ray's model [7]. The UTC 

time stamps are obtained by synchronizing the laboratory clock with GPS. The accuracy 

in the UTI time stamp is ,...... 10-5 sec and it is "-' 10-7 sec for the UTC time stamp. The 

angular position of the detector site, with respect to the equator and equinox of date, is 

obtained using the subroutine TERRA provided in the package :.'-JO\l.AS (Kaplan). 

The software transforms the data using Eqs. (6) and (7), and the displacement vector of 

the output path is provided at 15 minute intervals. Before processing any segment of the 

data, its quality is checked with regard to unusually large fluctuations. In case the noise 

temperature of the data segments, as computed using the Zero Order Prediction (ZaP) (Pal­
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latino & PizzeIIa 1991) algorithm, exceeds a preset threshold, that segment is rejected. 

vVhenever the detector is stopped and restarted, the lock-in reference signal phase is 

recorded. Also, the reference frequency is periodicaIly checked and reset if a drift is ob­

served. The phase at such times is also recorded. The mode frequency f- and other pa­

rameters entering 11(~w) (see Appendix B) can drift, though by very A smaIl amounts, and 

they are periodicaIIy checked and recorded. All such information is taken into account in 

the integration routines. 

The error between the phase ()R(t), used for the rotational transformation, and the actual 

phase that the signal may have wiII be dominated by the mismatch between the signal and 

transformation parameters p, 1f;. However, in case the mismatch between them happens to 

be smaIl, other sources of error may also become significant. Their effect should, therefore, 

be estimated. 

vVe give here a list of possible sources of error in the phase apart from that due to 

parameter mismatch. 

(i) 	Uncertainty in the pulsar phase <I>s(t) obtained from electromagnetic observations: The 

phase <I>s(t) is obtained using the program TE)VIPO. Since the integration is done on 

data which has already been recorded, we do not need a prediction for the phase but 

a past record. This is expected to have an average instantaneous accuracy of I'V 10
, 

in contrast to the accuracy of the predicted phase which worsens with time (Bailes 

1997). 

(ii) 	Error in the angular position of the source and the angular position and orientation of 

the bar: This source of error can, in principle, affect both <I>s{t) and <I>p(t). The bar's 

angular position has been obtained using the Global Positioning System (GPS) and is 

accurate to within a few arc seconds. The angular position and proper motion of the 

source are kno\vn to an extremely high accuracy (Sandhu et al. 1997). The effect of 

this source of error on both <I>s{t) and <I> p(t) is negligible. 

(iii) 	Drifts in the physical parameters of t~e detector leading to a drift in ¢b : For instance, 
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the Illode frequency f- can change due to changes in the input povver of the microwave 

transducer. The effect of such drifts is expected to be negligible and, moreover, they 

can be measured and necessary corrections made. 

(iv) 	Phase noise in the lock-in reference signal: The quoted parameters for the instrument 

used to generate the reference frequency. a HP3325A wave form synthesizer, make this 

an extremely snlall error. 

(v) Drift in reference frequency: Again a negligible source of error. 

(vi) 	Accuracy in timing: errors in putting accurate time stamps for the data samples will 

induce errors in <P s, <pp(t) and frejt used in the rotational transformation phase B/l(t). 

As mentioned above, we synchronize our laboratory clock with UTC (coordinated U ni­

versal time) as transferred by GPS. UTC is based on International Atomic time with 

suitable semi-annual corrections that are added to keep it synchronized to UTI (Uni­

versal time) (Seidelmann 1992). The values of DUTC in C04 are listed at intervals 

of one day while the change in DUTC over that interval is 2.0 msec. If this drift f'V 

\vithin a day is not taken into account, it can lead to a significant loss in SNR in our 

case. However, using the program INTERP, mentioned above, our UTI time stamp 

should have an accuracy of f'V 10 Jisec at all epochs. 

(vii) 	Numerical errors in the integration: \;Ve use double precision arithmetic with a pre­

cision of 15 decimal places which is more than sufficient to eliminate numerical errors 

In our case. 

1

At the lo\vest order, the total error due to all the sources listed above would be just be a sum 

of all the individual errors. Thus, a fair estimate of the total instantaneous phase error due 

0to the sources listed above is f'V or less. As shown in Appendix C, this error is not serious 

if it is treated as a random error. However, some of the errors above would be systematic 

in nature and their effect must be considered more carefully. 
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One serious source of error could be error in the frequency of the lock-in reference signal. 

In the case of ~IOnE, the lock-in reference signal is externally generated by an HP3325A 

wave fonn synthesizer. As of now the frequency accuracy of this instnullent (±5 x 10-6 of 

selected value) is inadequate for our purpose. However, this is a hardware problelll which 

can be easily overCOllle by going over to a luuch lnore accurate illstruillellt. This problelll is 

under consideration at present. 

VII. CONCLUSION 

\Ve have written ntunerical codes for implelnenting the Phase Plane Rotation algo­

rithm (PPR) which was introduced in paper 1. \Ve have investigated the theory of this 

algorithm in more detail and made the earlier analysis more complete by incorporating and 

investigating the effect of polarization phase on the detection of the signal. 

It was shown that polarization phase, which arises from the different amplitude lllodula­

tions of h+ and hx, depends on the parameter p and 'l/J whose values are not well determined 

by radio observations, unlike the phase of the pulsar radio pulse itself. Ho'wever, we found 

that for the case of PSR. 0437-4715 and ~I()nE, the data needs to be transfonned and inte­

grated for only one value of p and that 'l/J does not affect the integration seriously. It should 

be investigated whether this is only true for the particular case of ~IOBE and PSR 0437-4715 

or it is true in general. 

A number of practical issues were identified which are potentially important in the very 

long coherent integration that is going to be initiated. A.n important source of error could 

be the error in the frequency of the wave form synthesizer which is used as the reference 

source for the lock-in amplifier. \Ve studied the problem of converting the time stamps of 

the data from UTe to UTI and realized that inaccuracies in the modeling of Earth rotation 

parameters should be looked at in more detail. 

Before the output of the Phase Plane Rotation scheme can be used to place upper bounds 

on the gravitational wave amplitude from PSR 0437-4715, it is necessary to study in detail 
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the effects of non-stationarity and non-gaussianity of the noise on the behaviour of the 

detection statistic. This is also now relevant for data analysis using interferometric data. 

YVork in this direction is in progress. 

ACKNOWLEDGEMENTS 

The implementation of the algorithm depends crucially on the signal phase as predicted 

using radio observations. \Ve thank Dr. :\fatthew Bailes for providing us \vith the relevant 

data and program and devoting considerable effort in adapting the data to our needs. During 

the completion of this work SD:\/1 was a research fellow of the Council of Scientific and 

Industrial Research of India. SD:\f thanks the LIGO project for hospitality while the paper 

was being completed. SD:\1 thanks the DIST, Australia for supporting his visit to the physics 

department, U\VA, Australia. 

17 




REFERENCES 

[lJ 	Bailes Nt, 1997, Private communication 

[2] Blair D. G. et aI., 1995, Phys. Rev. Lett., 74, 1908 

[3J Brady P. R., Creighton T., Cutler C. &: Schutz B .. 1998. Phvs. Rev .. D 57 2101 
I ,., .' '. ~~_~ 

[4J Cutler C., xxx.lanl.gov e-print archive, gr-qc/9703068 , 


[5J Dhurandhar S. V., Blair D. G. &: Costa :\1. E., 1996, ~~trOD.--Atsrophys..,.311, 1Q4.3. 


[6J Dhurandhar S. V. & Tinto iv1.,1988, :\1~RAS,234,-663 


[7J IERS \\"'Ww site, http://hpiers.obspmJr. 


[8J Ipser J. R., 1971, ApJ, 16, 175. 


[9] 	Johnston S. et aI., 1993, Nature, 361, 613 

[10] 	Kaplan G. H., NOVAS: Naval Observatory Vector Astrometry Subroutines, U. S. ~aval 

Observatory, http://maia.usno.navy.miI. 

[11] 	Owa S., 1986, Doctoral Dissertation, Dept. of Phy., Tokyo University 

[12] 	Owa S. et aI., 1988, in :\1ichelson P. F. et al., eds, Proc. of the International symposium 

on experimental gravitational physics (Gangzhou, China), \Vorld Scientific, Singapore 

[13] 	Pallotino G. \T., Pizzella G, 1991, in Blair D. G., ed, The detection of gravitational 

waves, Cambridge University Press, p. 243 

[14] 	Sandhu J. S. et aI., 1997, A.pJ, 478, L95 

[15] 	In The Explanatory Supplement to the Astronomical Almanac, 1992, Seidelmann P. 

K., ed, (U.S. Naval Obs., U.S. Govt. Printing Office) 

[16] 	Taylor J. H. &: \Veisberg J. 2'v1., 1989, .t\pl+~34. 

[17J 	Thome K. S., 1987, in Hawking .S. '·\V. ~ Israel \V., eds, SOD, Years of Gravitation. 

18 

http://maia.usno.navy.miI
http://hpiers.obspmJr
http:xxx.lanl.gov


Canlbridge University Press 

[18] Tsubono K., 1991, in Blair D. G.. ed, The detection of gravitational waves, Cambridge 

University Press, p. 226 

10 



APPENDIX A: THE SIGNAL TO NOISE RATIO FOR PHASE PLANE 


ROTATION 


The detection statistic in PPR is the length of the final displacement of the output path 

from the origin. \Ve denote it by LT , \vhere T is the integration period, 

)2 (T ) 2] 1/2
LT = [(10TdtX'(t) + 10 V'et) . (AI) 

X'(t) and Y'(t) are obtained from the lock-in outputs ~\'(t) and Y(t) using Eqs. (6) and (7). 

Using these equations, we can express LT as, 

LT = loT dtX'(t) + i loT dtyl(t) , 

1

=Ifo 
T 

dt (X(t) + Wet»~ exp(-iBR(t))I. (A2) 

Now, substituting for X(t) and Y(t) using Eqns. (1) and (2), we get 

'loT00 .LT = dt'x(t')e-tWrert dtKL(t - t') exp( -iO(t) + iwrert) , 
-00 0 -1: dtlx(t')e-iw,.,I' 1:-1

' dx KL(X) exp [-iBex + t') + i""ref(x + tl)JI ' 

1 1T-t''" 00 
dt'x(t')e-iO(t') dx KL(x)exp [-iiJ(t')x + iwrer.r] . (A3) 

-00 -t' 

Since the signal is narrow band, keeping only the first term in the Taylor series of O(t) above 

is a good approximation. 

Let the low pass filter KL(X) have a decay time of 7 sec. Thus, if t' < -7 sec, the 

integral over .r in Eq. (A3) would be close to zero. 'Vhile if t' ~ T, the integral is anyway 

zero because of the causal nature of KL(X). The integral would have a non-negligible value 

only if the upper limit is restricted to t < T - T. Thus, 

[T-r 1T-t'
LT = l-r dt' x(t')e-iO(t') -t' dx KL(X) exp [-iB(t')x + iWrer~T] . (A4) 

:.J'OW, the integral over x is approximately the Fourier transform of ]{L (.r) evaluated at the 

frequency B(t')-Wref' And ifB(t) is approximately a constant, as it would be for a sufficiently 

narrow band signal, this term would be. an overall constant and. thus: not affect the S:.J'R. 
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Thus" 

(A5) 

\vhere K is a constant. The remaining term is simply the correlation of x(t) with the signal 

waveform, maximised over an initial unknown phase. Knowledge of the signal amplitude is 

not as important as that of the phase for detection. ~ote that there is no tiIlle of arrival 

involved here but instead there is an unkno\vn initial phase. Thus, the S:.J"R for PPR 

should be approximately the same as that of a correlation with a template wave form or, 

equivalently, a matched filter. 

APPENDIX B: PHASE MODULATION DUE TO THE TRANSFER FUNCTION 

OF THE DETECTOR 

The detector has a finite response time to a force acting on it. Hence, if the force has 

a time varying frequency, an extra phase modulation may be imposed on the detector's 

response. This effect was estimated in paper I by assuming that the frequency of the force 

chap.ged linearly. However, a Fourier transform of the force was taken and, thus, the linear 

drift was implicitly assumed to be present for all time which is not true in reality. 

\Ve present here an alternative argument which is based entirely in the time domain. 

The transfer function of the detector for the mode f _ can be expressed as, 

(Bl) 

assuming any constant phase offset to be zero and the overall amplitude to be unity, without 

loss of generalization. The decay time 7" = ,&-1 of Kb( x) is 50 sec (paper I). I"V 

The response ~(t) of the detector to the force F(t), \vhich can be expressed uSIng 

Eqs. (11), (12) and (13) as, 

F(t) = ..4s(t)c?s(fJs (t) + <pp(t)) , (B2) 
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is given by, 

~(t) =1: dt' Kb( t - t')A(t') cos [0. (t') + <J> p(t')] . (B3) 

The phase Bs(t) arises from doppler shifts and hence can be expressed as Bs(t) =wpt+wpd(t), 

where wp is the signal's centre frequency and d(t) is a collection of all the doppler terms. 

Taking into account the fact that t' cannot exceed t, we can express ~(t) as, 

~(t) = 10"" dx A.(t....: x)e-8x sinw_x cos [wp(t - x) + wpd(t - x) + <J>p(t - x)] , 

~ ~ coswpt 10"" dx A.(t - x )e-ilx cos Awx sin g(t - x) + 

~ sinwpt 10"" dx A.(t - x)e-·8x cosAwx cos g(t - x) + 

~ coswpt 10"" dx A.(t - x)e-ilx sin Awx cos g(t - x) ­

~ sinwpt 10"" dx A.(t - x )e-ilx sinAwx sing(t - x) , (B4) 

where Llw = w_ - wp, get) = wpd(t) - <pp(t) and terms with w_ + wp inside the integrand 

have been neglected. 

Proceeding further with the algebra, we get 

10
00 

~(t) = -1 coswpt dx As(t - x)e-!3x sin(Llwx + get - x)) + 
2 0 

00 

-1 sinwpt 1 dx As(t - x)e-!3x cos(Llwx + get - x)) , 
2 0 

=hIJf(t) + fi(t)cos [wpt - tan-
1 ~:i!i] , (B5) 

where, 

10
00 

fl(t) = dx AsCt - x)e-·Bx sin(Llwx + get - x)) , (B6) 

10
00 

f2(t) = dx As(t - x)e-·Bx cos(Llwx + get - x)) . (B7) 

Thus, the response is an amplitude and phase modulated signal with the same centre fre­

quency of fp as before. 

Now, recall that ,0-1 50 sec. Over such an interval, the functions A(t) and get)tV 

can be taken to be approximately constant (<Pp(t) 10-4 rad/sec .or less and wpd(t)tV tV 

7 x 10-3 rad/sec or less). Therefore, fl(t) .and f2(t) are approximately, 
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h (t) ~ As(t) [COS g(t) fo"" dx e-8x sin 6.wx + sin g(t) fo"" dxe-ilx COS6.WX] , (138) 

Bxh(t) ~ As( t) [cos g(t) fo"" dx e- cos 6.wx - sin g(t) fo"" dx e-ilx sin 6.wx] (139) 

Hence, the phase modulation term in Eq. (B5) becomes, 

tan- l I2(t) ~ g(t) + 17(~W) , (1310)
II (t) 

f/>Odx e-·8x sin ~wx 
T}(~w) = tan-1 0 . (BII)

fo::>Odx e-·8x cos ~wx 

Thus, we see that in the limit of small ,8, the phase of the response ~(t) is altered by only 

T}( ~w) which is a constant if the the mode frequency I_is kept constant. 

APPENDIX C: EFFECT OF RANDOM PHASE ERRORS ON SNR IN PPR 

If the phase error ~() = ()s(t) - ()R(t) is a random error, where ()s(t) denotes the actual 

phase of the signal in the lock-in output, then its effect on the total integrated length of 

the signal can be estimated as follows. Let ~()(t) be a zero mean, Gaussian and stationary 

random process with a variance O"~ and an auto-correlation time scale 7. The total integrated 

length in the rotating plane, can be expressed, following the treatment given in Appendix A, 

as 

2N 
L2 = L AjeiA8(tj) (Cl) 

j=l 

where tj = j ~ denotes the jth time sample, ~ being the sampling interval, and Aj is the 

amplitude As(t) at t = tj. 

Thus, the relative error ,8 between the actual squared length above and the maximum 

length obtainable, E Aj, would be, 

(C2) 

For Itj -tkl « 7, the difference ~()(tj) - ~()(tk) can be assumed to be close to zero while for 

It j - tkl » 7, the random variables ~()(tj) and ~()(tk) would be statistically independent. 
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No,,,, assume that r is much smaller than the integration time T. Then the number of terms 

with It j - tkl » r would be large and will dominate the sum as compared to terms for which 

Itj - tk/ f'V r. Thus, loosely speaking, w(~ can split the numerator in Eq. (C2) as follows, 

Ej AJ + 2 (Ej Ej<k<p AjAk + Ej Ek>p AjAk COS{Xjk»)
€ 1 - .---~-_______..:;...f'V (C3) 

- (EjAj)2 , 

"vhere, p,6,. rand, since ,6,.B(tj ) and ,6,.B(tk) are statistically independent if they are far f'V 

apart, Xjk = ,6,.B(tj ) - ,6,.B(tk) is a zero mean Gaussian random variable, distributed inde­

pendently of j and k, with a variance 20'~. 

Therefore, the average value of € is, 

(C4) 

Note that if r 0 (the case of ,6,.B(t) being white noise), then (€) would have been larger. f'V 

The ensemble average of cos X is easily calculated in terms of the characteristic function of 

the Gaussian distribution. For, (€) < 0.2, we find that 0'6 S 0.03 radians. \Vith this relative 

error in the squared lengths, the error in the lengths themselves would be S 10%. Our 

estimate of the error in phase, in Section VI, is well below the allowed phase error above. 
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FIGURES 


FIG. 1. The path of 15 Illinutes of real data frOll1 NIOBE after beiug transforrned according 
, , ,\ . ..:)' ' 

to Eqs~ (6) and (7). The solid line shows that path followed by wide band noise alone. The dots 

show the path followed by the totailloise. The circular ';srnearing'~ of the randorn walk is evident. 

The X and Y quadratures are expressed in the volts equivalent of the bar displaceInent ~. 

FIG. 2. The path of 15 rninutes of real data when a signal wave forrn has been added to it 

prior to the rotational transforrnation. The noise in this figure is the sarne as in Fig. 1. The phase 

used for the rotational transforrn differs froll1 that of the signal by a constant offset of 45°. Thus, 

the signal path grows along the 45° line and the systernatic deviatiou of the total path along that 

direction is evident. The signal added is monochrornatic with jp - j _ = 0.2 Hz and has an r.In.S 

amplitude of 0.05 volts. For comparison, we show~ with dots, the path followed by the noise alone. 

FIG. 3. The polarization phase <pp(t; p,'tP), for 'tP = 0 and several values of p, as a function of 

sidereal time. This figure is for an arbitrary epoch and spans a period of 24 hours. The solid line is 

for p = 1 (corresponding to an inclination angle i = 0), the dashed for p = 0.80 (i = 60°) and the 

dot-dashed for p = 0.34 (i = 80°). The angular positions used correspond to that of PSR 0437-471 

and NIOBE. As the value of p decreases, <Pp is confined more and more to either 0 or 211". This 

is expected since: the signal becornes linearly polarized in this limit and the polarization phase 

should not matter. 

FIG. 4. The contours of f(p,;j;; Ps, 'tPs) for a signal inclination angle i = 30° and'tPs = 20°. On 

the horizontal axis we have shown the inclination angle corresponding to p. It is evident that an 

integration with p = 1 and ;j; = 0 is good enough to detect this signal. The best integration is, 

of course, the one with the same parameter values as the signal. However, the maximurn at that 

point is very weak and not visible in this figure. 
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