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Abstract
A theory of superluminal moti;)n is proposed in the context of a Robertson-Walker
cosﬁnology, based on a pre-relativistic approach to electromagnetism. Cosmic space itself
is supposed to have physical substance. This substance, the ether, manifests by its
permeability, which determines the speed of light. Massive particles cannot exceed this
speed, but there is no bound on the speed of light itself. Locally, in Minkowski frames,
the ether determines the constants of nature, which get so functions of cosmic time.
Scaling laws for mass, charge, and the vacuum speed of light in Minkowski space are
derived.

The dynamics of point particles, electromagnetic waves, and spinor fields in the
ether is defined, and the cosmic time dependence of energy, frequency, and wave length

is studied. It is pointed out how the ether influences red-shifts.




1. Introduction

The Gallilean and the special principle of relativity are associated with spaces that are
isotropic, homogeneous, and essentially void. Minkowski space simply means the void,
the vacuum, in which events are labeled by co-ordinate axes in space and time. In
cosmology, however, space is generated by the galactic grid, this is the essence 6f
cosmic space, and this grid provides a distinguished frame of reference. We may define
an obseﬁrer at rest with respect to the galactic background, if he sees the galaxies around
him uniformly receding. This uniform galactic recession is easiest described by a

Robertson-Walker (RW) geometry with the line element
ds’ = —c’di? +a’(x)o ;dx'dx’. Here o ; denotes a metric of constant curvature on the

3-space, and the expansion factor a(t)defines the length unit at a given instant of cosmic
time t . Observers at rest, like galaxies, have constant space co-ordinates. Their mutual
recession is a mere consequence of the e*pansion of the 3-space, determined by a(t).

Unlike in Minkowski space, in a RW cosmology with a generic expansion factor
there do not exist global symmetry transformations which mix .space and time co-
ordinates. Rest frames of geodesically moving observers can only infinitesimally be
defined and linked to each other by the introduction of locally geodesic co-ordinates. In
such infinitesimal neighborhoods uniformly moving co-ordinate frames are still
connected by Lorentz boosts.

Not only that the cosmic grid determines an absolute space, it also defines an
absolute cosmic time. Any co-ordinate transformation involving time will change the
form of the RW line element, and then the time separation‘of infinitesimally neighboring
events would not any more be the differential dv. Observers moving in the galactic
frame of reference will see an anisotropic galactic background. Accordingly, rest as

defined above and uniform motion are physically distinguishable states, and this is the




reason that there are no global space-time mixing symmetry transformations relating.
uniformly moving observers.

~In Minkowski space the vacuum speed of light must be regarded as the upper
bound on the speed of signal transfer, unless one is willing to give up our traditional
conception of causality [1-3]. If, for an observer in Minkowski space, emiséion and
absorption events are separated by intervals dx, di >0, and if dc/dt>c, then it is
always possible to choose a Lorentz boost so that in the new frame dt’ < 0. This means
that for an observer in the new frame (¢’,x") the time order of cause and effect is inverted
(absorption prior to emission), or, if one prefers, that cause and effect are interchanged
(what appears to be emission in the fusf frame, is absorption in the second, and vice
versa). This certainly violates our conception of causality, namely, that every effect has a
cause, that this cause precedes the effect, and that the decision on what is cause and
effect is unambiguous and observer independent [4].

In this article we present a theory of superluminal motion without giving up this
traditional causality principle. We assume that- cosmic space as generated by the
expanding galactic grid is not a mere geometric construct, but has itself substance. This
substance, the ether, manifests by its permeability. Electromagnetic waves p?opagate
through, or better, by means of the ether. Their speed is determined like in a dielect;ic

medium by a permeability tensor which, with the usual appeal to cosmic homogeneity
and isotropy, takes the form ds* = —c’h® ‘a4 p? (x)o ydx'dx’ , with two scale factors

h®(t)and b(t). In this article we do not make any assumptions on the micro-structure of
the ether.

There are, however, two important differences compared to electrodynamics in a
dielectric medium. The speed of light, a function of cosmic time, is not bounded from

above in the cosmic evolution. Secondly, the ether does not only affect electromagnetic
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waves but also massive particles. Though particles cannot exceed the speed of light, they
can come arbitrarily close to it. In fact, nothing can surpass the speed of light, buf there is
no universal bound on the speed of light itself. “Superluminal” does not mean here
“faster than light”, but rather that there is no uniform limit on the si)eed of signal transfer
in the cosmic evolution. There 'is no cosmic vacuum speed of light, since there is no
vacuum, this is a geometric idealization, as is Minkowski space.

All that refers to the dynamics of particles and waves in cosmic time, in the
context of the expanding galactic grid. One must also ask how the ether effects local

physical processes, which happen at a given instant t, of cosmic time. We can then scale

the factors a(t,), b(t,),and h®(z,) into the constants of nature, which get so functions

of cosmic time, but they are true constants in the local Hamiltonians. If we introduce

locally geodesic co-ordinates, we fully recover Minkowski space, Lorentz invariance, ‘

causality, and relativity, with constants of nature depending on the cosmic time
parameter, which is unrelated to the local system time in the Hamiltonian. The possibility
of unbounded, superluminal signal transfer emerges only on a cosmic level, there where
one needs it in an infinite universe.

In Sec. 2 we d;ﬁne the propagation of electromagnetic waves in tﬁe ether,
assuming that the determinant of the permeability tensor and of the RW metric coincide.
(This technical condition is removed in Sec. 6.) We derive the field equations, at first
manifestly covariant, and then in three-dimensional form, and discuss the eikonal
equation and the refraction index of the ether. We‘lderive the wave equation for the vector

i
potentials, the analogue to the Lorentz condition, iand the elef:tromagneﬁc field energy in
the ether. Finally an explicit example for all that in an open universe is given.

In Sec. 3 we define the dynamics of classical point particles in the cosmic ether

by extending the eikonal equation to a Hamilton-Jacobi 'equation, and give some

examples of particle motion for special choices of the scale factors in the metric and the
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permeability tensor. In Sec. 4 we couple the Dirac equation to the permeability tensor;

~ and study the propagation.of spinor fields in the ether. At hand of the examples of Sec. 3

we discuss phase and group velocity, as well as the semiclassical limit. In particular we
study the evolution of wave length, frequency, and energy in cosmic time, and how the
ether manifests in absorption spectra. At the end of Sec. 4 we gxplain how the ether
determines the depcndénce of the constants of nature on cosmic time, and we derive
scaling laws for mass and vacuum speed of light in local Minkowski frames.

In Sec. 5 the coupling of scalar particles to the permeability tensor is defined, as a
preparation to Sec. 6. Spinors are actually more straightforward to couple to the
permeability tensor then scalar particles, éince the Dirac Lagrangian is linear in the field
derivatives. In Sec. 6 we again review the electromagnetic field, without the determinant
condition of. Sec. 2 on the pérmeability tensor. Gauge symmetry in the ether is defined, a
gauge invariant coupling of spinor fields to the electromagnetic potentials is introduced,
and a cosmic scaling law for electric charge is derived. In the Conclusion, Sec. 7, we

summarize the principles and consequences of classical and wave mechanics in the ether.

2. Electromagnetism and ether
In this Section we discuss electrodynamics in the ether, the hypothetical material

substance of space [S], which macroscopically manifests by a symmetric permeability
tensor gfv . Quite analogously to a dielectric medium, the following formalism is based

on two symmetric tensor fields, the space-time metric g, (inverse g""), and the

B"uv

permeability tensor g:v (inverse g° *). Action and “Lagrangian for the free

electromagnetic potentials we define as
S=2 [LJ=gdudt, L= ~}F, Frg" g™, @1
c
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and 17, = A, —A . Weassume in this Scetion that " =g, i, c., the determinants of

-

permeability lensor and space-lime metric coincide. (In the next Scclipns we will drop
this constraint, but it makes things simpler here.) Covariant differentiation with respecet to
the spuce-time metric g, we denote by a scmicolon, and  with respeel to the
permeability tensor g"l'v by a double semico‘lon ;). We raisc and‘lower indiccs
exclusviv‘ely by means of the space-time metric g, .

The interaction with a current is delined as 1

s =) [ 4, 7" ddr | 2.2)
c
If we introduce the tensor [6,7]

"= glf"'uiigﬂ"v?l’w I

v ? !

we may write the Lagrange cquations as

) .,
ox" B

Iy 24
= ,
.,‘

c
From the potential representation of /5, we immediately obtain the Thomogencous

[1 }lV:v =

Maxwell cquations

"“—1"‘"8 Aufly 17 = 0

/_g afdy : !

It is very instructive to write the ficld equations in 3-d form. To avoid technical

(2.5)

/]
nv

complications we assume that the flanks of g, and g” vanish, g" =g ;=0 (Greck

Y

indices run from 0 to 3, Latinones from | (o 3), and that gy, and g, arc defined via

+
v
.

the line elements

e gy Ll de! | (2.6)

. ds? =—~ctdt? + de'dx" ; d.s',z, = —C ,
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respectively, (v and y"" denole the inverse, y and y”  the determinants of the 3~
‘.n 2 - . . LRl
lensors 7, and y"  and g =-c*h" (t,x).) Because of the determinant condition
¢" =g we havey =y "h"*. We define the 3-vectors of electric and magnetic ficld
o ‘ |
strengths 12, B and displacements D,, 11" us
EI = c—lF/‘(); [)l = C[IW, Bl = ZY e "”“1"”“ 11/ =’{_Y I/281.'1:1111""‘ ’ (27)
and inversely, 10 =y"¢, BE, 1" =y ™ 1] Charge densily and 3-current are

defined as p= /" and j% = /% The continuity equation, j". =0, obtained from

(2.4), reads as

\/_- o (\/——p)i- =0, | (2.8)

The double stroke (]|) denotes covariant differentiation with respect to the 3-metric y J e

The homogencous equations (2.5) are equivalent to

The inhomogencous Maxwell equations read as

] n 1 ] 0 \/’—Y—I)I" 1 (3)m i
Dy=p, 6"y == o) == jo", (2.10)

/ W
By =0, MLWI

A
[‘rom (2.7) we obtain the relations between the ficld strengths and displacc'mcnls as

D" = C”I"E” , “H[l/ - l}/t’ { (2'1 1)

. . 2
with the permeability tensors £™ = "™ = " "‘ "

Note that in deriving (2,9)-(2.11) we used the detenminant condition g = g" ., The whole
formalism developed so [ar is of course just that of clectrodynamics in an anisotropic

diclectric medium, cf,, c. g., Rels.[6-8].


http:2.9}.(2.11

To relate the permeability tensors in (2.11) with the refraction index and the

»

| s‘pced of light, we start with the eikonal equation |
g™y W, =0, | L o 12)

So the differential cquation for rays is

~ et vy Jel'dy! =0, C@.13)

and the speed of light v, (¢') in direction ¢' (y je'e’ = 1) we obtain accordingly as

v e =ch"( tele! Y =S 2.14
(( ) (Y(/ ) ”((3/) ( )

~n(e') is the index of refraction in dircction e’

Remark: 1€ we assume that h” depends only on cosmic time  , and that y , and ¥, are
|

|
f

3-mctrics of constant curvature,
— 2 ~ 1] __'l 2 ~ | 2 ]5)
Yy=d (T)Y(/,YU"’('C)Y”, 2.
wilh }7” a metric of constant curvature independent of cosmic time, then we have
n=>b/(h"a) as refraction index. If we define £" =:£8" , the familiar formula n=/gp
1s recovered, since € = p , cf. (2.11).

Next we derive the wave equation for the veetor potentiul A, . Note that in (2.4)
we may replace /1", by 11", because of the determinant condition. (The double
semicolon denoles covariant differentiation with respect to gy, ). Likewise, in Eq. (2.5)
the space-time metric can be replaced by the perincability tensor, and the Lorentz
condition we muy write uy

/Y -
8 AL =0, - (2.10)
Commuting covariant g""v -derivatives, and applying (2.10), we oblain from (2.4) the

wave equation

e
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“h 1 v -~
" (Ao ~ Ri A )= == "2 (2.17)

Here Rf,L denotes the Ricci tensor of metric g/, with sign conventions as in Ref. [6].

The energy-momentum tensor we define as

T,":=-F,H" +{8.F H®, : - (2.18)

which is the usual definition of electromagnetic energy in a dielectric medium, cf., e. g.,

Ref. [9]. With the 3-vectors defined in (2.7) the energy density reads as
T,° =$(E,D* + B*H,), (2.19)
“its positivity follows from (2.11). Likewise, we may write in (2.1)

L=}(ED' -HB). (2.20)

Using the field equations (2.4) with H*, = H*_ , we readily derive

i 1 .0t
I A (221)
c
Because g’ =g, we may write
T\‘I P,u = 7:’ ",,}1 + Axu\l 7; g ’ A‘HV := FB:V - r:v ’ (2'22)

where T denote the Christoffel 3-indices for the tensors g's’. Inserting here (2.21)

for 7"

v o an?

we obtain a differential conservation law with respect to the space-time
metric. (For the explicit time evolution of electromagnetic energy see the following

example.) Note that T, is not symmetric, only T, %gl is.
We conclude this Section with an explicit example, electromagnetic waves freely

propagating in a perfectly isotropic and homogeneous cosmic ether, in the context of an

open Robertson-Walker universe with line elements (2.6) and constantly curved 3-space

metric$ (2.15). We assume that #” is a function of cosmic time only, and that the

3-space is open and negatively curved. We use the Poincaré half-space representation of



hyperbolic geometry; ¥ j in (2.15) is then defined by the line element
ds® = R4 @12 +Idz|2) in the half-space H° : (z,1),z €C,t > 0 , cf. Ref. [10]. (H* has
constant sectional curvature —1/ R? )- The line elements (2.6) then read as
ds® = —c*di® +a ()R (d:2 +|dz|2), | (2.23)
dst = ~c*h" (1)de? + b2 (R (e + |l ) (2.24)
and the determinant condition is a* = 51" .

We have to solve Egs. (2.4) with j* =0, under the Lorentz condition (2.16) and

the Coulomb gauge A4, = 0. Using the separation ansatz A4, =¢(t )ﬁn(x), x' =(z,0),

we may write
! Huh = (P(T )b“ (‘t ﬁ "”")',‘ " (/}'l,nl - ATm." 4 H"o = c'2 ,10_2b—2(p ’(‘t )’f “ 12" ’ (225)

(Y™ denotes the inverse of v, ). The p =0 component of Eq. (2.4) is then equivalent

H

to the Lorentz condition (2.16). The p =m components give for ;1, (x)

oY 7™ v"(4,, - 4, A
\[{i_ [\EY Yaxk( ba .»)]=i;z_Aki,‘,,’ (2.26)

with a real separation parameter s. This is solved by the vector fields

A =@/R)¥*1,00) or 4, =(t/R)*(0,1,0).For ¢ we obtain

bd(bd

c’s? _. C -
F; h_”;(p) + ¢=0, o= exp[+zs—k- Ih”b 'dt]. 2.27)

R2
The indicated solutions (p(t)j,,(t) of (2.4) satisfy the Lorentz condition, and constitute a

complete set of plane waves propagating along the f-axis. Because H® is a

homogeneous space, we obtain a complete set of transversal plane waves propagating in
any other direction by applying symmetry transformations of H’ to the vector fields 2,, ,

cf. Ref. [10]. For reasons of technical simplicity, and without loss of generality, we focus

10




in this article on waves and particles propagating along the t-axis of H*. If we calculate-
with the plane waves (p('c);i,, (1) the energy density 7,° in (2.19), we obtain the time
dependence T,°.fy ~h”(t)b™'(1). This is the same time behavior as of the frequency
o =|s|cR'A"b™" in (2.27), and suggests for the photon energy ‘tlye Einsteig relation
E(t) = ho(t), with & independent of cosmic time; we will return to that point in (4.17).
Also note that the phase of the spectral elementary waves is linear in the spectral variable

s. Like in vacuum electrodynamics there is no dispersion inl wave trains composed (by a

Gaussian average over s) of plane waves propagating in the same direction.

11




.. 3. Classical particles in the ether
From the eikonal equation (2.12) it is clear how to define the mechanics of classical particles
in the ether, namely by the Hamilton-Jacobi equation

g"™s, S, =-mc. 3.1

This corresponds to the Lagrange function

L,(s)= —mcz,[—gfvic"fc" , (3.2)

with the action S =1 IL‘,ds. Note that in the action the space-time metric does not enter at
all.
In this Section we discuss geodesic motion in the context of the line elements (2.23),

(2.24). We drop from now on the determinant condition g® =g which we assumed

throughout Sec. 2.

Like in the discussion of electromagnetic waves at the end of Sec. 2, we study
geodesic motion along the f-axis (z=0) of H’. This is technically simple, and does not mean
any restriction, since H’ is homogeneous. From the Lagrange equations we have
immediately two integrals of motion along the t-axis,

hP i (s) bR} ([(s) /1) =5, bPRilt=v, (3.3)
with v a real integration constant, and € =1 for particles and € =0 for rays. We introduce
the cyclic variable 7 =log(t/ R), and write T:= At, A:=c/R.

As solutions of (3.3) (e =1) we obtain

di =vh®' (b +v?) " di , ds= Rhb(? +v?) " di. (.4)
We specify now the functions b(t) and #”(t) as power laws,
b(z) = B(AT)?, h”(x) = H" (A1), (3.5)

12




with positive constants B, H”, and real exponents B,A . Defining v:=v/ B, we have -

~1/2

di [dt = H"B-'Of*-”(fm +02) ,

-1/2 .

ds/R=H!t*P (@ +v?) dt.

Example I: B =0, A arbitrary (but A ¢ —1). We have as solution of (3.6)

HB \; 1 1+A
At ,
B .\“4.\72 1+K( ) }

with a positive integration constant x .

t/R=Kexp[

Example II: § =0, A =-1. The solution of (3.6) is
t/R=x(At), 8:= H*BV(1+9%)™.

ExampleIll : A =-1, B arbitrary (B #0),

B
t/R=xexp[ {{ —,IF f’”+\72].
Bvp 1

Example IV: B =(1+A)/2, A arbitrary ( A #-1),

5 t
(/R =x E‘“*”” + TN 52 ] ,8:=2H BN(1+1)™.

We will discuss these examples extensively in the following sections.

(3.6)

3.7

(3.8)

(3.9

(3.10)

(3.11)

Next we turn to the asymptotics of Eq. (3.6). We ask whether the particle can reach

the boundary at infinity (¢ = or 1 =0) of the 3-space H’ for T — «, cf. Ref. [4] for the

physical implications of that in a multiply connected 3-space. A short inspection gives: If

B<O0, then A—P+120 must be satisfied in order to reach infinity. If B >0, then

A —2B +12 0 is needed to reach infinity. In particular, if A =0, we must have p <1/2 to

reach infinity.

13
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Remark: We may introduce a new time variable T via At = exp(T/2), so that the origin of
cosmic time, T =0, ismovedto 7 = —c0. The line element (2.24), (3.5) of the permeability

tensor then reads
ds? = -+ R*H"" exp[(1+M)T]dT? + B exp(BT)R* ™ (dz2 +|dz|’). (.12)

In the preceding examples we have only to replace T by exp(7/2). Note that in this
Section we did not make, up to now, any use of the space-time metric (2.23). So we may

define, without referring to this co-ordinate transformation and (2.23), a space-time metric as
ds? = ~R*dT* + exp@T)R** (@r* +|adf’ ), (3.13)

with some constant o . The choice of Examples I-III is illuminated"by (3.12), but the really
nice thing is that T is without beginning and end. Throughout this article we use T as
cosmic time, assuming a universe with a finite past.

We define the generalized 4-momentum as
p.i=mcx*(s)g,, , (3.14)

x*:=(t,2,t),and E =-p, as energy. From (3.3) and (3.4) we obtain

me’h” —mc’h”w/l+v2b'2 , (3.15)

Jl " c"y"x x'

2 p2,
mb R —mcR (3.16)
h”t ‘[l Ly Yy g xxt
with x" =dx' /dv, t'=dt/dv,so that E*g® ® + p?g®™ = —m?c?. In the global cosmic

evolution energy is positive definite but not conserved, because of the explicit time
dependence of the Lagrangian (3.2) via the scale factors b(r) and Ah®(t) in the
permeability tensor. Energy and momentum as defined in (3.14) emerge, however, as the

usual conserved interaction parameters in local Minkowski frames, cf. the end of Sec. 4. The

14
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vector p, also appears in the phases of quantum mechanical elementary waves in the
semiclassical approximation, cf. (4.16)-(4.18), so that E(tr) is proportional to their

frequency.
For a particle moving with velocity v/, y jv'v/:= v’ in the direction of a unit vector

e', we have by definition x' =|vle’. Accordingly. cf. (2.14),

B _ri_1j 2
‘y,jx X _

hc?

B i bl
21y ]

et v P

i

(3.17)

with v_ the speed of light in the direction of v. If we substitute (3.17) into (3.15), we see
that no massive particle can exceed the speed of light, butv, itself need not be bounded.

Explicitly we have with (2.23) and (3.4),

V|=aRt™dr / dv = ch® 2 — (3.18)

bp?+v?

For v — o we recover the speed of light |v_|.

15




4. Dirac equation coupled to the permeability tensor, and some cosmic scaling laws
In Egs (3.1), (3.2) we defined classical particle motion in the ether. By analogy it is

straightforward now to couple spinors to the permeability tensor. We just replace the metric

g, in the Dirac Lagrangian by g,
L=iflwy vy -1 (19 )y v+ |, 4.1)
(re=mc/h)and S=c” j L./-gdxdt . This is essentially also what we have done in the

case of the electromagnetic field in Sec. 2, namely to replace g,, by g:v in the Lagrangian.

V! inEq. (4.1) denotes covariant spinor differentiation with respect to the metric g:"v , and

Bv,, Bn

Yy ® 4y Py =2g

5w Note, however, that the volume element in the action is that of

the space-time metric g,,, and we do not assume the determinant condition, g® =g, of
Sec. 2.

The action we may also write as
s=c'| L*-g®dxdt 4.2)

with L%:= Lx , and a scalar field x:=/g/ g” . Euler variation of (4.2) quickly leads to the

Lagrange equations
K
y vy +-}T('i'-y Py 4y =0, (4.3)

_ — s X .~
(Viw)r ™ + 1w ~E - =0. 4.4)

We sketch here very shortly the spectral theory of Eq. (4.3) in the context of the line
element (2.24), a very similar spectral problem we have dealt with in Ref. [11]. We indicate

here only the modifications to be carried out in some of the formulas there. In the Appendix

16 i
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of Ref. [11] we have to replace g,, by g:v. More explicitly, ip the Christoffel indices in-
Eq. (A4) of Ref. [11] we have to replace a(t) by b(t), c by ch”(z), and Ty, =h" /h” . Eq.
(A7) reads as y,=h%,, and (All) as by =1/a; =h". In the formulas for the spinor
connection (A12) and (A13) we have likewise to replace a(t) by b(‘t}) » Yo by ¥,h", and
¢ by ch® . The ¥ , are Dirac matrices in Minkowski space defined in (A6) of Ref. [11].

We may then write Eq. (4.3) explicitly as

L o0, ®.0 1 ~(3§+1n&] Lo il =0, @s)
peralras ol vyarey Ry R Ll

which replaces Eq. (2.2) of Ref.[11]. In deriving Eq. (4.5) we assume that x (1) depends
only on cosmic time. x' =(z,?).
Using the separaﬁon ansatz (3.1) of Ref. [11], we obtain
[D;D; —szczR'z](p(‘r) =0, (4.6)
-where s is the real spectral variable (separation parameter) and ¢@(t) determines the time

dependence of the spectral elementary waves, in particular their frequencies. The operators

\

D} are defined as

D::%{%H(.;.g%z)mn}, @
K

which replaces Eq. (3.3) of Ref. [11]. For x =1, #® =1, and a(t) =b(t), formulas (4.5)-

(4.7) reduce to those of Ref. [11]. If we introduce in Eq. (4.6) a new dependent variable,

!

g =x(1)b2h* "k 2, we obtain

16 1A 1R%5 lb’ 3 p?’ 5 2, stcih?’
BT Rty Ry e el h +lch” |y =0. (4.8
[Zb 27" 2R b 4bl 4 p i+ Rb? |* (4.8)

17




Note that ¥ does not any more appear in this equation, it enters only as a scale factor in

¢(1). and does not affect its phase. This is because the Lagrangian is linear in the spinor

derivatives. In fact, we may scale k into the wave field, writing L’ (y) = Ly ), y =x"3y,
in the action (4.2).

In the following we discuss the quantum mechanical analogtie to Examples I-IV of

Sec. 3. We specify b and 4® as in (3.5), and write again T = At, and M:= H®Rs. Then Eq.

(4.8) reads as
d*y/dt? + [—%(B AP - A—2) T MBI + MATP 4 sLHE BT D) ]x =0. (4.9)
Example I: (B =0, # —1). As fundamental solutions of Eq. (4.9) we obtain

x =7 expffFidin + 178 ] (4.10)

A= \/1(/[2 +s2H? B, with frequency o = AAT*.
Example II: (B =0,A =-1).

x=1"", @.11)
with 4 as in (4.10), and frequency ® = AAT ™.

Example III: (A = -1, B # 0). Two independent solutions are

MO = £V MO (1§|B|“f"’), B=|dH"B™, d:=1-iMB~"; (4.12)
HPD are the usual Hankel functions. If B <0 and T — o, we have asymptotically

x ™ ~ const. “P"2 explriBlp| "' P ] : (4.13)

and thus ® ~ BAT ",
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Remark: (Particle creation) For B<0 and T—>0, we have in this Example
W 2P 40, iV i e, a mixture of positive and negative frequency modes
exp(¥iM logf) with © ~ AMZ ™.

Example IV: B=(1+A1)/2 , A = -1.

X =W, @200+ 2)7E), (4.14)

W,

1

< are Whittaker functions with 6= 1 EL 2i(1+2) " s HP B2 A ] If1+A>0, we

obtain, for T - o,

y = const.T MW exp T El +0) M + 18 H? B2 M logt ] ,  (4.15)

and thus © =~ AME* +LsPAH® B2 M'E™ .
. We identify the integration constant v in (3.3) with the spectral parametef s via
v = hs(Rmc)™". (4.16)
(v is an integration constant, and should not be mjxed up with frequency.) Then we have in
all these cases asymptotic (or, in Examples I and II, exact) equivalence of the‘ classical
energy (3.15) with the quantum mechani(?al ho .

If m=0 in Egs. (4.3) and (4.8), we obtain without specification of 4” and & the

fundamental solutions
x=b/H® expEFisA [nblae ] : 4.17)

because of the conformal coupling of the massless wave equation. By analogy we define

then the energy of massless particles by means of the Einstein relation, E = hw , with
@ =|sJAA°b™". Note that the phase in Eq. (4.17) coincides with that of electromagnetic

‘waves, cf. (2.27).
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.. Up to now we studied only the time dependenée of the spectral elementary waves.
The spatial part of the separation problem of the Dirac equation in hyperbolic space H® was
discussed in detail in Sec. 1II of Ref. [11]. Considering plane waves propagating along the
t-axis of H*, we found that the spatial part of the phase is slog(¢z/ R), the same as we
obtained for the electromagnetic field. cf. (2.26). For the wave vector we therefore have
k, = s/t (along the r-axis), for photons and particles alike. If we identify v in Eq. (3.16)

with s according to (4.16). we obtain p, = hk, . For the wave length we obtain, with the 3-

space metric as defined in (2.23),
X=|k|" =aRlq". ' (4.18)

=X =ch®ab™, cf.

With ® as in (4.17) we have so for the speed of light in the ether |vc

also (2.14) and (3.18).

To obtain the group velocity of the elementary waves, we differentiate the phase with
respect to s, and equate then the (t,)-differential to zero. The phase velocity is likewise
calculated in this way, but without prior s-differentiation. We discuss that shortly for the

previous Examples I-IV.

Example I, cf. (4.10): The phase is A(1+1)™'¢"* +slog(t/ R), and therefore

IV l _a )c|s|H”2'f: .
g

- ~ 2 ~
= . o V| = X0 = car)|d VA + S HT B 2. (4.19)
B* M + s H" B |
The group velocity [v xl coincides with the classical particle speed (3.18) via the

identification (4.16). For the product of group and phase velocity we have Iv x”v P,,l = |v".|2 ,

with the speed of light |v_|=caH”B™'t*. The formulas obtained here for the velocities also

hold true for A = -1, cf. Example II, (4.11).
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Example 111, cf. (4.13): For B <0 and T — o we have asymptotically
Vol v ] ~ vl = cay BB, (420)
and likewise, via (4.16), asymptotic equivalence with the classical particle speed (3.18),

which approaches the speed of light.

Example IV, cf. (4.15):
Ivsl ~ca(t )MH"ZB'2 M7t IVMI ~ca(t)|d” ME*. (4.21)
lv xl is again asymptotically equivalent to the classical particle speed, and

Ivg'"2 |vphllf2 —~ |v¢I = ca(T)HﬁB—lf(l_un )
Examples I-IV deal with global cosmic evolution, relating the behavior of free

particles to the cosmic expansion and the scale factors in the permeability tensor. If we study

local interactions based on energy-momentum conservation, we will of course assume a(t),
b(t) and A®(t) in (2.23) and (2.24) at a given instant t, of cosmic time. Then these factors
can be scalea into the constants of naturc “ch get so functions of cosmic time. If we
replace in Eq. (4.8) b(t), h’(x) by b(t,), 2*(t,), we obtain as a pair of fundamental

solutions

Y = exp[iFim(t -—‘to)] , @:= VR s + mER? (4.22)
with K = Ra(t,),
C=ch’(ty)a(r )b (z,), (4.23)
il R =(m/mblah"" . (4.24)
R we could of course put equal to one, measuring length in units of Rin the 3-space of

curvature —1/ R*. In (4.24) we obtain only a scaling law for the ratio m/ 4 ; the scaling of

m we read off from the Hamilton-Jacobi equation (3.1) and the line element (2.24). We
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. consider again particle motion along the t-axis of H*. Ata given instant T, of cosmic time
we may then write Eq. (3.1) as
~¢8: +2R71S) = -me?, (4.25)
with |
7 = mbla k" - (426)
Therefore % = A in (4.24), which means that # is independent of cosmic time.

For energy and momentum as defined in (3.15) and (3.16) we recover with (4.23)

-1/2
and (4.26) the familiar local expressions E =rﬁ€2(l—]v|2 /?:'2) and

Ip = Avli- I /22 )

The most important prediction of this theory is, that the photon frequency does not
scale inversely proportional to its wave length. The wave length scales, as in traditional RW
cosmology, with the expansion factor, X ~ a(t). The scaling of frequency , however, is
completely determined by the scale factors in the permeability tensor, ® ~#”?(t)b7' (), cf.
(4.17). At the end of Sec. 2 and in (4.16) we argued that the Einstein relation E(®)=ho(t)
remains valid in the cosmic evolution with the Planck constant independent of cosmic time.
So the photon energy scales as E ~h®(1)b7'(r). (In traditional RW cosmology we have
instead E ~a~'(t).) Accordingly, red-shifts of absorption spectra should differ from those
obtained by comparing diffraction patterns, since I do not see any reason to assume the

relation 4”6~ = a™" among the scale factors.
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5. Scalar particles in the ether

We define here the interaction of scalar fields with the permeability tensor gﬁv. The same
coupling mechanism will be used in the next Section, when we discuss the electromagnetic
field in thé ether without the determinant condition g” = g of Sec. 2.

In Sec. 4 we found that the solutions of the Dirac equation scale with k™2,

K:= ,/g/g" , cf. Eq. (4.8). In particular x does not enter the phase of the spectral
_elementary waves. Likewise, we found the usual conformal scaling in the massless case, cf.

(4.17). These properties we also want to retain for scalar fields. We replace at first in the
Lagrangian L, = —%(g"”\y WV gy ) the tensor g"* by g""“-" , as we did in (4.1) with

the Dirac Lagrangian (#:=mc/ ). But to ensure the mentioned scaling properties, we have
to add some further terms, and the scalar Lagrangian corresponding to Eq. (4.1) is

B"nv

L=-1g""y ¥, -1 [7‘1 +GR, +ix K x, -3, )g"_"‘” ]wif. .1
Rfv is the Ricci tensor of metric gfv , as in Eq. (2.17); it ensures the conformal scaling. The

x —terms are needed for the k ™2 —scaling of the wave fields. (The double semicolon

denotes covariant differentiation with respect to g,fv .) In fact, we may define now, cf. Eq.

4.2), L* = Ix, y =x"*y, so that

S=%J‘L\/:dedt=-}J‘L’\/:—gdedr; (5.2)

L =4[ 0, + Gt RG], | (53)
(R®:= R2, g™ ) which explains the choice of the Lagrangian (5.1). Instead of imposing the

determinant condition g" =g of Sec. 2, we simply scale x into the wave fields. This

ensures the right semiclassical limit, cf. also Sec. 6.
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The field equation reads as
@ +x 7w, )8 = PR Gk, — R0 )e" ™ v =0, (59

To compare with the Dirac equation, we shortly indicate the spectral resolution of this wave

equation in the context of the line elements (2.23) and (2.24). Note that the space-time
“metric (2.23) enters only via x in (5.4); x(t)=a’/(b’h"). The curvature scalar of metric

(2.24) reads as

1 1 1(b B bR
1R? + ( J (5.5)

= | =t ———r].
b’R*  pP?\b b bA°

Applying the d’ Alembertian of metric gfv to x (1), we obtain

' B v . A AW
K & -1 [ ( b h )K
= —+|3————|. 5.6
K ch [K b h®)x (56)

We consider a plane wave propagating along the t-axis of H®, and perform the

variable separation y =@(t)t"* in Eq. (5.4), cf. Ref [12]. If we define
@) =1 ()b 2h*"*c 7 'we arrive at a differential e;luation for x(t) which is identical

to (4.8), but with the imaginary mass term ichb™'h®m dropped. Accordingly, all the
considerations of Sec. 4, from Eq. (4.8) onwards, apply with minor modifications. Solution

(4.12) gets elementary with & =1/2, and in Eq. (4.14) the real part of & has to be dropped

which, however, does not affect the phase in (4.15).

24




6. Electromagnetism revisited .

In this Section we consider electrodynamics in the ether without the determinant condition

gi’ = g on the permeability tensor, which we assumed in Sec. 2 (but dropped already in

Secs. 3-5). The solutions of the field equations should scale with x ™2, x =/g/g®, as is
the case with spinor and scalar fields, cf. Secs. 4 and 5. This scaling agsures that‘ the phase of
the wave fields does not depend on the space-time metric, which enters in the action via the
volume element, cf. (4.1) and (5.2). This is necessary since both eikonal (2.12) and
Hamilton-Jacobi equation (3.1) are independent of the space-time metric, and we want the
right semiclassical limit. To achieve thisAscaling, we modify the Lagrangian (2.1), (2.2) Aof

the electromagnetic field,

L=-1G K" +14,j*, (6.1)

. 1{x, K, —— S )
Guv'= Fuv +E(?u—Av - x Ap) , K* -=gB ngB Giv- 6.2)

Defining L°:=Lx, A,:=x"4,, and j":=x"j*, we may write, cf. (5.2),

S=1[1"{-g"dxdr, with

L=-LF A" +14j*, (6.3)
F,=4,,-4,,=x"G,, H"=g""g" i, (6.4)

(The double semicolon denotes covariant differentiation with respect to gfv ). From (6.3)

we immediately derive the field equations
A, =1, (6.5)

and from the potential representation (6.4) follow the homogeneous equations

(—g™)Veghomr f;m =0. 6.6)
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- Expressed in G,, and K™ tensors, we may write the field equations as
K% +3x7e G KM =450, 6.7)
(-g") e (G p,y +1x &, Gy )=0. (6.8)
Eqgs. (6.5)-(6.8) are entirely written in terms of the permeability tensor gfv , the space-time
metric enters only via its determinant g in the scalar field x . From (6.5) and (6.6) it is clear
that we may impose the Lorentz condition g° " Zm =0, or, equivalently,
g"" (4, +1x 'k ,4,)=0, (6.9)
. . . -1/2 . .
reflecting the gauge invariance 4, - A, +x "¢ , of (6.7) and (6.8) with an arbitrary

scalar @ . By means of this gauge condition we write Eq. (6.7) as a wave equation for the

vector potential, cf. (2.17),

_'V K.V IK';;V IK,K,V 1 .
gB"[A*“"“*“‘*w".z‘-"vkv'w*(i i J]“z”gi’r (610

(Note that we raise and lower indices of tensors always with the space-time metric, never
with the permeability tensor.) R2 denotes the Ricci tensor of metric gfv as in (2.17) and
5.1).

In the case that j* =0, we may impose on the solutions of the field equations (6.7),

(6.8) in addition to the Lorentz gauge (6.9) the covariant Coulomb condition
g "k 4, =0, (6.11)

Using the gauge conditions (6.9) and (6.11) (differentiated), we write Eq. (6.7) (j* =0) as

H™, +x7%  H™ + M™ 4, =0, (6.12)
ay s 1KaKp 1K, e pg K as
M"V:=g8 M gB aﬂ(z :2 B __5 ” ﬂ)+gﬂ it gB‘vB :..D ’ (613)
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* to thé Lagrangian (3.2) the interaction term ex "4, %" . We have then for the current of a

point charge

| - . 1,

7 () =ex [ds(-2) "8 (x(s) - x)e(s) =x "~ . (6.16)
This means a variation of charge in cosmic time,

?-_—CK 172 =ea3/2b—3/2hﬂ'“2 . (6.17)
which complements the scaling laws (4.23) and (4.26).

The considerations on electromagnetic energy in (2.18)-(2.22) can easily be adapted

to the case k , # 0. Instead of (2.18) we start with the tensor

Mim —F ™ + 18P F (6.18)

P

From Eq. (6.5) we have T,* ' =c™'F,, j*,and

-l =-Il“3a a B
7r) =x"Ch 2T, (6.19)
with A%, asin (2.22). We define the energy-momentum tensor as
T, *:=x"'T,* =—G K" +18"G,, K™, (6.20)
so that
T," =1G,j° +4&,T.". (6.21)

That T * is indeed the right choice for the energy-momentum tensor gets clear if we use 3-d
formalism. We only indicate here the very minor modifications that formulas .(2.7)-(2.10)
undergo if we drop the determinant condition. In (2.7) we have to replace F,, and H"
by G,, and K", respectively. The definition of charge density and 3-current remains
unaltered. In the continuity equation (2.8) and the Maxwell equations (2.9) and (2.10) the

only modification is to replace \/; by ,/Ky in the terms containing the time derivative, i.e.,
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http:replace.JY
http:2.7)-(2.10
http:2.18)-(2.22

y 3y )/dv s replaced by (cy)8((xy)"?*))/dt. The material equations (2.11)
remain unaltered. The energy density 7, ° as defined now in (6.20) relates to field étrengths
and displacement vectors as in (2.19), and formula (2.20) holds true for the free part of the

Lagrangian (6.1).

7. Conclusion
The cosmology developed here is based on two symmetric tensor fields, a space-time
metric, and a symmetric permeability tensor representing the world ether. This permeability

tensor we assume as homogeneous and isotropic. It is determined by two scale factors

h?(t) and b(r), both functions of cosmic time like the expansion factor a(t) in the
Robertson-Walker metric.

Electromagnetic fields are coupled to the permeability tensor like in a dielectric
medium, cf. Sec. 2, apart from some technical modifications described in Sec. 6. Classical
mechanics in the ether is defined by replacing in the Hamilton-Jacobi equation .the space-
time metric by the permeability tensor, cf. Sec. 3. The pro;)agation of spinor fields in the
ether is likewise defined by this substitution in the Dirac Lagrangian, cf. Sec. 4.

We studied the evolution of free particles and wave fields in the ether, and obtained
explicit formulas for the variation of thgir wave length, frequency, velocity, and energy in
cosmic time. The speed of light is a function of the three cosmic scale factors, and need not
’t.)e, as a function of cosmic time, bounded from above. Massive particles may come
karbitrarily <;lose to the speed of light, but cannot really reach it. (However, at two different
}nstants of cosmic time the particle spé‘ed may well exceed the speed of light; if

c(t))> c( 2) we may have v,(1,) > c(t,), of course.)
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- We do not suggest evolution equations for the space-time metric, nor for the
permeability tensor. What we do in this article is to try various choices for the three scale
factors and to see what makes the ditferénce in the resulting particle dynamics in an open
universe, cf. Examples I-IV in Secs. 3 and 4.

The fact that the speed of light is unbounded in cosmic ﬁné does not result in an
unbounded speed of signal transfer in local Minkowski ﬁaxi;es. Whenever we consider some
local physical process we can neglect the cosmic time variation, and take the space-time
metric as well as the permeability tensor during the whole process at a given instant of
cosmic time. Then the three cosmic scale factors can be scaled into the constants of nature in
the Hamiltonian of the local S)"stem, cf. Sec. 4. In the Minkowskian limit cosmic time
paramet;izes the constants of nature, and must be distinguished from the local system time
that labels the evolution of the Hamiltonian system. So, locally, the special relativistic
vacuum dynamics in Minkowski space is recovered, with constants of nature depending on
the cosmic time parameter. The concept of local Minkowski frames and relativistic
mechanics works because we can accommodate, formally, the effects of the ether in the
constants of nature. But Minkowski space is only an abstractioh based on a purely geometric
space-time view.

This theory is unrelated to the ideas of Eddington, Milne, and Dirac on the variation
of the constants of nature; in particular it is not a scaling theory for ‘large ratios’, cf. Ref.
[13]. The variatior; of the constants is a consequence of the cosmic ether.

Because the speed of light itself is varying in cosmic time, the energy of photons
does not scale inversely to their wave lehg{h, cf. Sec. 4. So the prediction is that red shifts of
absorption spectra will differ from those based on wave length measurements by diffraction,

via grating spectrographs, for example.
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