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Abstract 

A theory of superluminal motion is proposed in the context of a Robertson-Walker 

cosmology, based on a pre-relativistic approach to electromagnetism. Cosmic space itself 

is supposed to have physical substance. This substance, the ether, manifests by its 

permeability, which determines the speed of light. Massive particles cannot exceed this 

speed, but there is no bound on the speed of light itself. Locally, in Minkowski frames, 

the ether determines the constants of nature, which get so functions of cosmic time. 

Scaling laws for mass, charge, and the vacuum speed of light in Minkowski space are 

derived. 

The dynamics of point particles, electromagnetic waves, and spinor fields in the 

ether is defined, and the cosmic time dependence of energy, frequency, and wave length 

is studied. It is pointed out how the ether influences red·shifts. 
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.. 	 1. Imroduction 

The Gallilean and the special principle of relativity are associated with spaces that are 

isotropic, homogeneous, and essentially void. ~1inkowski space simply means the void, 

the vacuum, in which events are labeled by co-ordinate axes in space and time. In 

cosmology, however, space is generated by the galactic grid, this is the essence of 

cosmic space, and this grid provides a distinguished frame of reference. We may define 

an observer at rest with respect to the galactic bnckground. if he sees the galaxies around 

him uniformly receding. This uniform galactic recession is easiest described by a 

Robertson-Walker (RW) geometry with the line element 

ds2 =_c2cit 2 + a2 (t )a ijdx i
(}xi . Here 0' ij denotes a metric of constant curvature on the 

3-space, and the expansion factor a(t) defines the length unit at a given instant of cosmic 


time t . Observers at rest, like galaxies, have constant space co-ordinates. Their mutual 


recession is a mere consequence of the expansion of the 3-space, determined by a(t ) . 


Unlike in Minkowski space, in a R W cosmology with a generic expansion factor 


there do not exist global symmetry transformations which mix space and time co­

ordinates. Rest frames of geod~sically moving observers can only infinitesitnally be 


defined and linked to each other by the introduction of locally geodesic co-ordinates. In 


such infinitesimal neighborhoods uniformly moving co-ordinate frames are still 


connected by Lorentz boosts. 


Not only that the cosmic grid determines an absolute space, it also defines an 


absolute cosmic time. Any co-ordinate transformation involving time will change the 


fonn of the R W line element, and then the time separation of infinitesimally neighboring 


events would not any more be the differential dt. Observers moving in the galactic 


frame of reference will see an anisotropic galactic background. Accordingly, rest as 


I 
defined above and uniform motion are physically distinguishable states, and this is the , 
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reason that there are no global space-time mixing symmetry transfonnations re1atinl­

uniformly moving observers. 

In Minkowski space the vacuum speed of light must be regarded as the upper 

bound on the speed of signal transfer, unless one is willing to give up our traditional 

conception of causality [1-3]. If, for an observer in Minkowski space, emiSsion and 

absorption events are separated by intervals dx, dl > 0, and if dx I dt > c, then it is 

always possible to choose a Lorentz boost so that in the new frame dt' < O. This means 

that for an observer in the new frame (I' ,x') the time order of cause and effect is inverted 

(absorption prior to emission), or, if one prefers, that cause and effect are interchanged 

(what appears to be emission in the frrst frame, is absorption in the second, and vice 

versa). This certainly violates our conception of causality, namely, that every effect has a 

cause, that this cause precedes the effect, and that the decision on what is cause and 

effect is unambiguous and observer independent [4]. 

In this article we present a theory of superluminal motion without giving up this 

traditional causality principle. We assume that- cosmic space as generated by the 

expanding galactic grid is not a mere geometric construct, but has itself substance. This 

substance, the ether, manifests by its permeability. Electromagnetic waves propagate 

through, or better, by means of the ether. Their speed is determined like in a dielectric 

medium by a permeability tensor which, with the usual appeal to cosmic homogeneity 

2h
B2and isotropy, takes the form ds 2 =_c tit 2 +b1('()a Ijdx1dx1 , with two scale factors 

hB (t) and b(t). In this article we do not make any assumptions on the micro-structure of 

the ether. 

There are, however, two important differences compared to electrodynamics in a 

dielectric medium. The speed of light, a function of cosmic time, is not bounded from 

above in the cosmic evolution. Secondly, the eth~r does not only affect electromagnetic 
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wav~s but also massive particles. Though particies cannot exceed the speed of light, they 

can conle arbitrarily close ,to it. In fact, nothing c~ surpass the speed of light, but there is 

no uni versal bound on the speed of light itself. "Superluminal" does not mean here 

"faster than light", but rather that there is no uniform limit on the speed of signal transfer 

in the cosnlic evolution. There is no cosmic vacuum speed of light, since there is no 

vacuunl, this is a geometric idealization, as is Minkowski space. 

All that refers to the dynrunics of particles and waves in cosmic time, in the 

context of the expanding galactic grid. One must also ask how the ether effects local 

physical processes, which happen at a given instant 't 0 ofcosmic time. We can then scale 

the factors a('t 0)' b('t 0)' and h' ('t 0) into the constants ofnature, which get so functions 

of cosmic time, but they are true constants in the local Hamiltonians. If we introduce 

locally geodesic co-ordinates, we fully recover Minkowski space, Lorentz invariance, 

causality, and relativity, with constants of nature depending on the cosmic time 

parameter, which is unrelated to the local system time in the Hamiltonian. The possibility 

of unbounded, superluminal signal transfer emerges only on a cosmic level, there where 

one needs it in an infinite universe. 

In Sec. 2 we define the propagation of electromagnetic waves in the ether, 

assuming that the determinant of the permeability tensor ·and of the RW metric ,coincide. 

(This technical condition is removed in Sec. 6.) We derive the field equations, at first 

manifestly covariant, and then in three-dimensional form, and discuss the eikonal 

equation and the refraction index of the ether. We derive the wave equation for the vector 
! 
I 
I 

potentials, the analogue to the Lorentz condition, 'and the ~lectromagnetic field energy in 
I .. 

the ether. Finally an explicit example for all that in an open universe is given. 

In Sec. 3 we define the dynamics of classical point particles in the cosmic ether 

by extending the eikonal equation to a Hamilton-Jacobi equation, and give some 

examples of particle motion for special choices of the scale factors in the metric and the 
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permeability tensor. In Sec. 4 we couple the Dirac equation to the permeability tensor, 

and study the propagation, ofspinor fields in the ether. At hand of the examples of Sec. 3 

we discuss phase and group velocity, as well as the semiclassical limit In particular we 

study the evolution of wave length, frequency, and energy in cosmic time, and how the 

ether manifests in absorption spectra. At the end of Sec. 4 we explain how the ether 

determines the dependence of the constants of nature on ~mic time, and we derive 

scaling laws for mass and vacuum speed of light in local Minkowski frames. 

In Sec. 5 the coupling of scalar particles to the permeability tensor is defined, as a 

preparation to Sec. 6. Spinors are actually more straightforward to couple to the 

permeability tensOr then scalar particles, since the Dirac Lagrangian is linear in the field 

derivatives. In Sec. 6 we again review the electromagnetic field, without the determinant 

condition of. Sec. 2 on the permeability tensor. Gauge symmetry in the ether is defined, a 

gauge invariant coupling of spinor fields to the electromagnetic potentials is introduced, 

and a cosmic scaling law for electric charge is derived. In the Conclusion, Sec. 7, we 

summarize the principles and consequences ofclassical and wave mechanics in the ether. 

2. Electromagnetism and ether 

In this Section we discuss electrodynamics in the ether, the hypothetical material 

substance of space [5], which macroscopically manifests by a symmetric permeability 

tensor g:v .Quite analogously to a dielectric medium, the f?llowing formalism is based 

on two symmetric tensor fields, the space-time metric gJ&Y (inverse gPV), and the 

permeability tensor g:¥ (inverse gB-1J&¥ ). Action and r Lagrangian for the free 

electromagnetic potentials we define as 
• 

(2.1) 

s 



llnd li;l\I ~.~ if",'1 - A,l,\,' Wc assutllc ill lhis Scctioll that .S!"::: g, i. c., thc dctcrminants of 

pCl'Illcubility tcnsor Hl1U spuce-tilnc IllctriC coinciue. (In lhe next SecHol1s wc will urop 

this constraint, but it makes things simpler here.) Covnri:llil differciltiation with rcspccl to 

the SpllccMtilllC IIIclric gllv we dcnote by a semicolon, ,tilt! with respect to the 

I 

pcnneability tcnsor g::v by a double SCll1icolon (;;). We raise and lowcr indices 

exc1usiv~ly by means of the space-tinle metric g,IV' 

The illlel'uctioll with n cuncnt is dclincd as 

Sill' "'.~ JA" j" dxdt . (2.2) 
c 

If we introduce the tensor [6,7] 

(2.3) 

we Illuy write the Lagmnge cquations us 

l/~tv
:v (2.4) 

Fro111 thc potential rcprcscntation or 1~lv we inlll1eliiatciy obtain the 'hOlllogcncous 

Maxwell cquatiol1s 

_1_ A111'y I; - 0 (2.5).J-g E ul';y - . 

1L is vcry instructive to write the Jield cquations ill 3-d J()rlll. To Hvoid technical 

COll1plicutions we aSSUll1C that the flanks of g,lV and g::v vanish, g!,!o =gll/o =0 (Greek 

indiccs rUIl frol11 0 to 3, Latin oncs fh>Jll 1 lo 3), and that g,~v anu g'~\1 arc defined via 

the line elernents 

.. (2.0) 
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respectively. (y ii nnd y"-'ii denote the inverse, y and y IJ the delenninllllls of the ~ 

tcnsors y III" Hnd y :'~I/' aiHJ g(~:) = _c:21l,,2 (t ,x).) Bccausc or the determinant cOlldilioll 

Igil ::: g we havey ::::: y II hll2 Wc dcfine the 3-vectors of cJcctric and InagncLic nefll 

nlNtl't!ngthM E" Hilt! uispluct!lllculH 1);, }}I U9 

1 -1/.., lJ' = -/1°1 111 =.1y -1/2r.'IIIII F // =l.1 y 112£ 11"111 (2.7)1!,I =c t/o ' C, 2 • 1/1/1' I 2 hili ' 

defined us p:: ./' alld j(1)k ~ jk • Thc continuity eqllation, .i'I:fI' ~ 0, oblained fronl 

(2.4), rcmls ns 

(2.8) 

The double stroke (II) denotes covariant differentiation with respect to the 3-nletric Y II 

The hOlllOgCJ)COlis cquatiolls (2.5) nrc cqui valcnt lo 

(2,9) 

The illhOillogencolls Maxwell equations reall as 

(2.] 0) 

Froln (2.7) we obtain the relations between the field strengths and displacClTIents as 
I 

(2.11 ) 

'III/wilh the pCflllcnbilily tcnsors (;"111 ::: JL :::::: hJr2y 111 '11111 • 

! 

No(c 111111 ill derivillg (2.9}.(2.11) We lINcd lilt' dCkllllllllllll conditiuli }{:-: gil j Tlte whole! 

fonlluli:-;Ill developed so l~lr is of course just L1wt of clcc1rodYl1aJllics in an anisotropic 

dielectric mediulll, cf., c. g., Rcfs.[G-8.1. 

I 

http:2.9}.(2.11


To relate the pcnucnhility tellsor:; ill (2.11) wilh HIC I'clhlcLion index unu the 

speed of light, we start with the eikonal equation 

"lrl,I\\11 \11 =0 . (2.12)
6 .,1 ,V 

So lhe differential equation for rays is 

(2.13) 

nlld the speed or light v,,(e i ) ill dircc(joJ1 el (y !je'e l =J) we obtain nccordiJ~gly as 

(2.14) 

n(e l
) is the jndex of relhtction in direction e'. 

I 

Remark.' If we assume that /1" depcnds onJy on coslnic time t , ano that YI) '1110 Y~ arc 
i 
I 

3-lllctriCS of constant curvature, 

2 ~ II', 2 ,.
YII =(1 (tIl fl' YtI = ) (tYt II' (2.15) 

with YI) U Illclric of COllstunt curvalurc indcpendcllt or cosmic Hille, thell we have 

11 :::: b / (h lJ a) as refraction index. If we define E ::' =:£0 ::' , the fanli1iar formula 11 = ~ 

is recovered, since E = ~ ,cf. (2.11). 

Next wc derive the wavc CllUUUUll luI' tIle vectur l'utellliul A,l' Nule HUll ill (2.4) 

we Inuy replace ll"~v by II'I\~;V bccullse of the determinant condition. (The double 

scmicolon denotes covariant differentiation with respcct to ~/:v). Likewise, ~n Eg. (2.5) 

the space-time J11clric can be replaced by the pcnlleabilily tCIl~or, and the Lorcntz 

I' I I
COlIl Iilull we limy Wl'Ilc ll~ 

(2.10) 

COll1111uting covariant g,~lv -dcrivutives, Hnd applying (2.1 (), we obtain froJn (2.4) the 

wave equatiull 



(2.17) .. 

Here R:J... denotes the Ricci ten,sor of nletric gl~\ with sign conventions as in Ref. [6]. 

The energy-momentum tensor we define as 

T II. =_F H Ita + 1- 8 II F Hap
v' va 4 vap , (2.18) 

which is the usual definition of electrolllagnetic energy in a dielectric medium, cf., e. g., 

Ref. [9]. With the 3-vectors defined in (2.7) the energy density reads as 

(2.19) 

··its positivity follows from (2.11). Likewise, we may \vrite in (2.1) 

(2.20) 

Using the field equations (2.4) with HII~v = HI1~.v' we readily derive . ,. 

Il - 1 F -11T - va}' (2.21)V "'1 ... C 

Because gB = g , we may write 

T JI - T J.I. AI( T. JI AI( ._ rBtC rIC 
v at - v ;~JI + L\ flV IC L\ pv' - JlV - pV' (2.22)t 

where r(!~ denote the Christoffel 3-indices for the tensors g~!). Inserting here (2.21) 

for T., Jl~:Jl' we obtain a differential conservation law with respect to the space-time 

metric. (For the explicit time evolution of electromagnetic energy see the following 

example.) Note that TVJ1 is not symmetric, only r:, a g:/J is. 

We conclude this Section with an explicit example, electromagnetic waves freely 

propagating in a perfectly isotropic and homogeneous cosmic ether, in the context of an 

open Robertson-Walker universe with line elements (2.6) and constantly curved 3-~pace 

metricS (2.15). We assume that hH is a function of cosmic time only, and that the 

3-space is open and negatively curved. We use the Poincare half-space representation of 
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hypetbolic geometry; i ij In (2.15) is then defined by the line element 

constant sectional' curvature -11 R2). The line elements (2.6) then read as 

(2.23) 

(2.24) 

and the determinant condition is oJ =b)h ll 
. 

We have to solve Eqs. (2.4) with j~1 = 0, under the Lorentz condition (2.16) and 

A , 

the Coulomb gauge Ao =0. Using the separation ansatz An = <p(t )A,,(x) , X =(Z,/) , 

we may write 

UlfAAH ob ()b-4( ~aIffA/"'(A" A") H oO = -2} n-2b-2 '( ~ . = <p t t J1 Y 11,", - m." , C 1 cp tn If' (2.25) 

(i Iff" denotes the inverse of YIff" ). The Jl = 0 component of Eq. (2.4) is then equivalent 

to the Lorentz condition (2.16). The Jl =m components give for A,(x) 

(2.26) 

with a real separation parameter s. This is solved by the vector fields 

An = (I I R)iS (1,0,0) or A" = (/ / R)i., (0,1,0) . For <p we obtain 

2 
b d (b d ) c S2 0 [_. C JhBb-1d ]-- --.-en +--cn = cn =exp +IS- t . (2.27)hB dt hB dt "f' R2 'Y ''Y R 

The indicated solutions cp(t )..4" (t) of (2.4) satisfy the Lorentz condition, and constitute a 

complete set of plane waves propagating along the I-axis. Because H3 is a 

homogeneous space, we obtain a complete set of transversal plane waves propagating in 

any other direction by applying symmetry transformations of H3 to the vector fields A" , 

cf. Ref. [10]. For reasons of technical simplicity, and without loss of generality, we focus 
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in this article on \vaves and particles propagating along the I-axis of H3 . If we calculate... 

with the plane waves <p('t)AII(I) the energy density 1'0 0 in (2.19), we obtain the time 

dependence To 0 .fY - h8 (t )b -I (t ). This is the same time behavior as of the frequency 

0) = IslcR-1hRb-I in (2.27), and suggests for the photon energy the Einstein relation 

E(t) = tlCO (t) , ''lith 1i independent ofcosmic time; we will return to that point in (4.17). 

Also note that the phase of the spectral elementary waves is linear in the spectral variable 

s. Like in vacuum electrodynamics there is no dispersion irt wave trains composed (by a 

Gaussian average over s) ofplane waves propagating in the same direction. 

II 



3. Classical particles in tbe ether 

From the eikonal equation. (2.12) it is clear how to define the mechanics of classical particles 

in the ether, namely by the Hamilton-Jacobi equation 

(3.1) 

This corresponds to the Lagrange function 

(3.2) 

with the action S = ~ JL,ds. Note that in the action the space ..time metric does not enter at 

all. 

In this Section we discuss geodesic motion in the context of the line elements (2.23), 

(2.24). We drop from now on the determinant condition gB = g which we assumed 

throughout Sec. 2. 

Like in the discussion of electromagnetic waves at the end of Sec. 2, we study 

geodesic motion along the I-axis (z=O) of H3 . This is technically simple, and does not mean 

any restriction, since H3 is homogeneous. From the Lagrange equations we have 

immediately two integrals ofmotion along the (-axis, 

(3.3) 

with v a real integration constant, and E = 1 for particles and E = 0 for rays. We introduce 

the cyclic variable ; =log(t / R), and writei: =At , A: =c I R . 

As solutions of (3.3) (E =1) we obtain 

(3.4) 

We specify now the functions b(t) and hB (t) as power laws, 

(3.5) 
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with positive constants B, HB ,and real exponents J),A. Defining v:= v / B, we have 

(3.6) 

(3.7) 

Example I: J3 =0, A arbitrary (but A :;:. -1). We have as solution of (3.6) 

(3.8) 

with a positive integration constant K • 

Example II: J3 =0, A =-1. The solution of (3.6) is 

(3.9) 

Example III : A = -1, J3 arbitrary (J3 :;:. 0 ), 

B 
[
_H 1 .J"2P "2]tlR=Kexp -,,-~ t +v . (3.] 0) 
BvJ3 t 

Example IV: J3 =(1 + A) 12, A arbitrary ( A:;:' -1 ), 

(3.11 ) 

We will discuss these examples extensively in the following sections. 

Next we turn to the asymptotics of Eq. (3.6). We ask whether the particle can reach 

the boundary at infinity (t = ex) or I = O} of the 3-space H3 
' for t ~ ex> , cf. Ref. [4] for the 

physical implications of that in a multiply connected 3-space. A short inspection gives: If 

13 SO, then A - 13 + 1~ 0 must be satisfied in order to reach infinity. If 13 > 0, then 

A- 213 + 1~ 0 is needed to reach infinity. In particular, if A =0, we must have J3 S 1/2 to 

reach infinity. 
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Remark: We may introduce a new time variable T via At =exp(T 12), so that the origin of 

cosnlic tinle, t = 0, is moved to T = -00. The line element (2.24), (3.5) of the permeability 

tensor then reads 

(3.12) 

In the preceding exan1ples \ve have only to replace i by exp(T 12). Note that in this 

Section \ve did not 111ake, up to now, any use of the space-time metric (2.23). So we may 

define, without referring to this co-ordinate transformation and (2.23), a space-time metric as 

(3.13) 

with some constant a . The choice of Examples I-III is illuminated "by (3.12), but the really 

nice thing is that T is without beginning and end. Thoughout this article we use 't as 

cosmic time, assuming a universe with a finite past. 

We define the generalized 4-momentum as 


._ 'Ji() B
P... ·- mcx s gpv, (3.14) 

xJi:= (t ,z,t), and E =-Po as energy. From (3.3) and (3.4) we obtain 

(3.15) 

(3.16) 

evolution energy is positive definite but not conserved, because of the explicit time 

dependence of the Lagrangian (3.2) via the scale factors b(t) and hB ('t) in the 

permeability tensor. Energy and momentum as defined in (3.14) emerge, however, as the 

usual conserved interaction parameters in local Minkowski frames, cf. the end of Sec. 4. The 
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vector Pv also appears in the phases of quantum mechanical elementary waves in ,the 

semiclassical approximation, cf. (4.16)-(4.18), so that E(T) is proportional to their 

frequency. 

For a particle moving with velocity Vi, Yij Vi vi: =IV\2 , in the direction of a unit ~ector 

e , we have by definition X,i = Ivle; .Accordingly ~ cf. (2.14), 

(3.17) 

with v c the speed of light in the direction of v. If we substitute (3.17) into (3.15), we see 

that no massive particle can exceed the speed of light, but v c itself need not be bounded. 

Explicitly we have with (2.23) and (3.4), 

Ivl = aRr'dt Idt = ch B a .J v (3.18) 
b b2 +V2 

For v ~ 00 we recover the speed of light Iv c I. 

,.... ~ 
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4. Dirac equation coupled to the permeability tensor, and some cosmic scaling laws 

In Eqs (3.1), (3.2) we defined classical particle motion in the ether. By analogy it is 

straightforward now to couple spinors to the permeability tensor. We just replace the metric 

gpv in the Dirac Lagrangian by g:v' 

(4.1) 

(m:= me Iii) and S = c- I JLJ-gdxdt . This is essentially also what we have done in the 

case of the electromagnetic field in Sec. 2, namely to replace gpv by g:v in the Lagrangian. 

v: in Eq. (4.1) denotes covariant spinor differentiation with respect to the metric g:v, and 

YBPy BY +1 Bvy Bp =2gB
-
'pV 

• Note, however, that the volume element in the action is that of 

the space-time metric gpv' and we do not assume the determinant condition, gB = g, of 

Sec. 2. 

The action we may also write as 

(4.2) 

with LB: = LlC , and a scalar, field lC:= ~g I gB . Euler variation of (4.2) quickly leads to the 

Lagrange equations 

(4.3) 

(V!'I' )y Bel +t\fI'Y Ba lC,cl - "''I' =O. (4.4) 
lC 

We sketch here very shortly the spectral theory ofEq. (4.3) in the context of the line 

element (2.24), a very similar spectral problem we have dealt with in Ref. [11]. We indicate 

here o~ly the modifications to be camed out in some of the formulas there. In the Appendix 
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of Ref. [11] we have to replace gpy by g:v' More explicitly, in the Christoffel indiceS' in 

Eq. (A4) of Ref. [II] we have to replace a{-r) by b{t), c by ch R(t), and r~o = ,;B I hB . Eq. 

(A7) reads as Yo =hBfo' and (All) as b: =1/ag = hB
• In the formulas for the spinot 

connection (AI2) and (AI3) we have likewise to replace a(t) by b(t), Yo by y0l1 8 
, and 

c by chB 
• The f,. are Dirac matrices in Minkowski space defined in (A6) of Ref. [11]. 

We may then write Eq. (4.3) explicitly as 

__I_y_ ~+~y-3 ~__ ~ b +..!.K __ +m] =0l_y_ (.) 1 y""" 111 (4.5) 
[ c2hBOOt Rb I ax; c2hB 0 2 b 2 K Rb 3 'f ' 

which replaces Eq. (2.2) of Ref.[1 1]. In deriving Eq. (4.5) we assume that K{-r) depends 

only on cosmic time. x' = (z,t). 

Using the separation ansatz (3.1) ofRef. [11], we obtain 

(4.6) 

where s is the real spectral variable (separation parameter) and q>(t) determines the time 

dependence of the spectral elementary waves, in particular their frequencies. The operators 

D± b [. d .(36 1K) h8 ]A:= - 1-+' --+-- ±mc (4.7) 
T hB de 2 b 2 K ' 

which'replaces Eq. (3.3) of Ref. [II]. For K =1, hB =1, and a(t)=b(t), formulas (4.5)­

(4.7) reduce to those of Ref. [11]. If we introduce in Eq. (4.6) a new dependent variable, 

17 
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Note that K does not any more appear in this equation, it enters only as a scale factor in 

<pet L and does not affec~ its phase. This is because the Lagrangian is linear in the spinor 

derivatives. In fact, we may scale 1C into the wave field, writing LB ('II) =L(~), W=1C 112'11 , 

in the action (4.2). 

In the following we discuss the quantum mechanical analogue to Examples I-IV of 

Sec. 3. We specify band hB as in (3.5), and write again i = A't , and M:= HB Rm. Then Eq. 

(4.8) reads as 

d 2X/Jot 2 + rHP -A.XP - A. - 2)i -2+iMpi~-1 + M2i 21 + S2 HB2 B-2i2(~-P)]x = o. (4.9) 

Example I: (~= O,).,:¢ -I). As fundamental solutions ofEq. (4.9) we obtain 

x= i -),/2 exp~;AI)., +Ir' i ),+1 ] , (4.10) 

A:=~ il2 +S2 HB2 B-2 , with frequency ro = AAi).. 

Example II: (~ = O,A = -I). 

X =i llniA 
, (4.11) 

with A as in (4.10), and frequency ro = AAi-1 
• 

Example III: (A = -I, P :¢ 0). Two independent solutions are 

2X(1),(2) = i 112 m).(1) (BIPI-1 i-P), B:= I~HBB-1, a:= t - iMp -1; (4.12) 

H~2),(I) are the usual Hankel functions. If P< 0 and i --+ ex> , we have asymptotically 

X(I},(2) -- const.i(I+P}l2 exp~iBfPI-li-p], (4.13) 

and thus (i) - BAi-p
- I

. 
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Remark: (Particle creation.) For p<0 and i ~ 0, we have in this Example 

PciX(I) ~cliIl2+P<i +c2i 
Il2- ,- i. e., a mixture of positive and negative frequency modes 

exp(+iM logi) with to - AMi -I • ., 
Example IV: ~ =(1 +A) 12 t A * -1. 

l1 = i-1./2Wtci ,1I4 (±2iM(1 + A)-li l+ ), (4.14) 

W • .;.". are Whittakerfunctions with a:= t ~=- 2;(1 + A)-I S2 HBl B-2Ai-I]. If 1+ A> O. we 

obtain, for i ~ 00 , 

X" const.i-)./2·(I+lV4exp~ ;[1 +Arl Mil+l + tslHB2 B-1&r')ogi]. (4.15) 

and thus (J) ~ AMi 1. +ts2AHB2 B-2ii-Ii -I • 

. We identify the integration constant v in (3.3) with the spectral parameter s via 

v =hs(RmC)-l . (4.16) 

(v is an integration constant, and should not be mJxed up With frequency.) Then we have in 

all these cases asymptotic (or, in Examples I and II, exact) equivalence of the classical 

energy (3.15) with the quantum mechanical no> . 

If m =0 in Eqs. (4.3) and (4.8), we obtain without specification of hB and b the 

fundamental solutions 

(4.17) 

because of the conformal coupling of the massless wave equation. By analogy we define 

then the energy of massless particles by means of the Einstein relation, E =hro, with 

<0 =I~AhBb-l . Note that the phase in Eq. (4.17) coincides with that of electromagnetic 

waves, cf. (2.27). 
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'" Up to now we studied only the time dependence of the spectral elementary waves. 

The spatial part of the separation problem of the Dirac equation in hyperbolic space H3 was 

discussed in detail in Sec. III of Ref. [11]. Considering plane waves propagating along the 

I-axis of H3
, we found that the spatial part of the phase is s log(t / R), the same as we 

obtained for the eIectron1agnetic field. cf. (2.26). For the wave vector we therefore have 

k, =s / I (along the l-axjs)~ for photons and particles alike. If we identify v in Eq. (3.16) 

with s according to (4.] 6)~ we obtain PI = lik, . For the wave length we obtain, with the 3­

space metric as defined in (2.23), 

(4.18) 

With Ol as in (4.17) \ve have so for the speed of light in the ether Ivcl =AOl =ch8 ab- I 
, cf. 

also (2.14) and (3.18), 

To obtain the group velocity of the elementary waves, we differentiate the phase with 

respect to s, and equate then the (t ,I) -differential to zero. The phase velocity is likewise 

calculated in this way, but without prior s-differentiation. We discuss that shortly for the 

previous Examples I-IV. 

4Example I, cf. (4.10): The phase is A(1 + A)-li l + +slog(1 / R), and therefore 

The group velocity Iv g I coincides with the classical particle speed (3.18) via the 

l2identification (4.16). For the product of group and phase velocity we have Iv..flv",,1 =Ive , 

with the speed of light Ivcl =caH8 B-1i 1 . The formulas obtained here for the velocities also 

hold true for A =~1 , cf. Example II, (4.11). 
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Example III, cf. (4.13): For p < 0 and i -+ <Xl we have asymptotically 

(4.20) 

and likewise, via (4.16), asymptotic equivalence with the classical particle speed (3.18), 

which approaches the speed of light. 

Example IV, cf. (4.1S)~ 

(4.21 ) 

Iv.1 is again asymptotically equivalent to the classical particle speed, and 

112 f 1112 	 ' AV g V ph -Iv"I = ca(t )BBB-It (1.-1)/2 • 
t I 

Examples I-IV deal with global cosmic evolution, relating the behavior of free 

particles to the cosmic expansion and the scale factors in the permeability tensor. If we study 

local interactions based on energy-momentum conservation, we will ofcourse assume a(1: ) , 

b('t) and hB(t) in (2.23) and (2.24) at a given instant to of cosmic time. Then these factors 

can be scaled into the constants of nature ' '~ch get so functions of cosmic time. If we 

replace in Eq. (4.8) bet), hB(t) by b(to), nR(t o), we obtain as a pair of fundamental 

solutions 

(4.22) 

with R=Ra(,; 0) , 

c=chB (t o)a(t o)b-' (t oJ, (4.23) 

(4.24) 

il We could of course put equal to one, measuring length in units of Rin the 3-space of 

curvature -1 / il2 
• In (4.24) we obtain only a scaling law for the ratio m / Ii; the scaling of 

m 	 we read off from the Hamilton-Jacobi equation (3.1) and the line element (2.24). We 
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. consider again particle motion along the I-axis of H3. At a ~iven instant t 0 of cosmic time 


we may then write Eq. (3.1) as 


--2S2 + t 2R--2s2 -2-2
-C.t I =-m c , (4.25) 


with 


- b2 -2hn-1 
m=m a . ( 4.26) 

Therefore h= Ii in (4.24), which means that Ii is independent of cosmic tinle. 

For energy and momentum as defined in (3.15) and (3.16) we recover with (4.23) 

and (4.26) the familiar local expressions 

it 2/ 2 )1/2Ipll = mlvl~ -Ivl c • 

The most important prediction of this theory is, that the photon frequency does not 

scale inversely proportional to its wave length. The wave length scales, as in traditional R W 

cosmology, with the expansion factor, A, - a(t). The scaling of frequency, however, is 

completely determined by the scale factors in the permeability tensor, ro -- hB (t )b-I (t), cf. 

(4.17). At the end of Sec. 2 and in (4.16) we argued that the Einstein relation E(t) = lico(t) 

remains valid in the cosmic evolution with the Planck constant independent of cosmic time. 

So the photon energy scales as E ..... hB (t )b-I (t). (In traditional RW cosmology we have 

instead E ..... a-I (t).) Accordingly, red ..shifts of absorption spectra should differ from those 

obtained by comparing diffraction patterns, since I do not see any reason to assume the 

relation hnb-I = a -I among the scale factors . 

• 
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5. Scalar particles in the ether 

We define here the interaction of scalar fields with the permeability tensor g:v' The same 

coupling mechanism will be used in the next Section, when we discuss the electromagnetic 

field in the ether without the determinant condition gB =g .of Sec. 2. 

In Sec. 4 we found that the solutions of the Dirac equation scale with K -112 , 

K:=~glgB, cf. 'Eq. (4.8), In particular K does not enter the phase of the spectral 

elementary waves. Likewise, we found the usual conformal scaling in the massless case, cf. 

(4.17). These properties we also want to retain for scalar fields. We replace at first in the 

Lagrangian Lo = -t(gJlv'V .
J1
'V ," + m2'V'V ) the tensor gJlY by g''''MV, as we did in (4.1) with 

the Dirac Lagrangian (,ir. = me / t1). But to ensure the mentioned scaling properties, we have 

to add some further terms, and the scalar Lagrangian corresponding to Eq. (4.1) is 

R:v is the Ricci tensor of metric g:", as in Eq. (2.17); it ensures the confonnal scaling. The 
. I 

K - tenns are needed for the K -1/2 - scaling of the wave fields. (The double semicolon 

denotes covariant differentiation with respect to g:v') In fapt, we may define now, cf. Eq. 

(4.2), L' =LtC , ~ =K 1/2", , so that 

(5.2) 

(5.3) 

V(R':= R:vglJ 
..... ) which explains the choice of the Lagrangian (5.1). Instead of imposing the 

detenninant condition gB =g of Sec. 2, we simply scale 1C into the wave fields. This 

ensures the right semiclassical limit, cf. also Sec. 6. 
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The field equation reads as 

(5.4) 

To compare with the Dirac equation, we shortly indicate the spectral resolution of this wave 


equation in the context of the line elements (2.23) and (2.24). Note that the space-time 


. metric (2.23) enters only via 1C in (5.4); K (1') = a3 I (b'hB). The curvature scaiar of metric 


(2.24) reads as 

(5.5) 

Applying the d' Alembertian ofmetnc g:v to K(1'), we obtain 

(5.6) 

We consider a plane wave propagating along the I-axis of H', and perfonn the 

variable separation '" = <p(1' )/1+1.r in Eq. (5.4), cf. Ref. [12]. If we define 

to (4.8), but with the imaginary mass term icbb-1hBm dropped. Accordingly, all the 

considerations of Sec. 4, from Eq. (4.8) onwards, apply with minor modifications. Solution 

(4.12) gets elementary with a=1/2, and in Eq. (4.14) the real part of a has to be dropped 

which, however, does not affect the phase in (4.15). 
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6. Electromagnetism revisited 

In this Section we consider electrodynrunics in the ether without the determinant condition 

gB =g on the permeability tensor, which we asswned in Sec. 2 (but dropped already in 

Sees. 3-5). The solutions of the field equations should scale with K -112, K = ~g I gB, as is 

the case with spinor and scalar fields, cf. Sees. 4 and 5. This scaling assures that the phase of 

the wave fields does not depend on the space-time metric, which enters in the action via the 

volwne element, cf. (4.1) and (5.2). This is necessary since both eikonal (2.12) and 

Hamilton-Jacobi equation (3.1) are independent of the space-time metric, and we want the 

right semiclassical limit. To achieve this scaling, we modify the Lagrangian (2.1), (2.2) of 

the electromagnetic field, 

L - -1.G KPv !A '11 (6.1)- 4 I1Y + C ,..1 , 

(6.2) 

Defining L8 := LK, A,..:= K. 1/2 Ap , and Jfl := K 1/2 jP, we may write, cf. (5.2), 

s =*JLB~_gB dxdt, with 

(6.3) 

FA..:1 A'" K IIlG H'"pV'. = gB-1IAiigB--W. ~iY-' 
pY': 4'''v;;p - 11;;v: pv' r;.., (6.4) 

(The double semicolon denotes' covariant differentiation with respect to g:y ). From (6.3) 

we immediately derive the field equations 

fIJiV = .!.l~Jl 
;;v c , (6.5) 

and from the potential representation (6.4) follow the homogeneous equations 

(6.6) 
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· Expressed in G p.v and Kp.v tensors, we may write the field equations as 

(6.7) 

(6.8) 

Eqs. (6.5)-(6.8) are entirely written in terms of the permeability tens9r g:v, the space-time 

metric enters only via its determinant g in the scalar field K • From (6.5) and (6.6) it is clear 

that we may impose the Lorentz conditi~n gB-Ip.y Ap.;.'V =0 , or, equivalently, 

I 
8- p.v (A 1. -I A )- 0 (6.9)g p.;;v + 2 K K. ,p. .n..y - , 

reflecting the gauge invariance Ap. -+ Ap. +K. -1I2cp.p of (6.7) and (6.8) with an arbitrary 

scalar <p • By means of this gauge condition we write Eq. (6.7) asa wave equation for the 

vector potential, cf. (2.17), 

B-Ip.v [ K .v B ( 1 K. , .. ;;v 1 K. ,p.K.y )] _ 1.p. B g AA""'~ +Al..... --AII~). +Al. ---- 2 ---} gil).' (6.10) 
..,..... ..,... 1C"" 2 1C 4 1C C"" 

(Note that we raise and 10weriJ;ldices of tensors always with the space-time metric, never 

with the permeability tensor.) Rv~ denotes the Ricci tensor of metric g:v as in (2.17) and 

(5.1). 

In the case that jp. =0, we may impose on the solutions of the field equations (6.7), 

(6.8) in addition to the Lorentz gauge (6.9) the covariant Coulomb condition 

(6.11) 

Using the gauge conditions (6.9) and (6.11) (differentiated), we write Eq. (6.7) (jP = 0) as 

(6.12) 

(6.13) 
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, to the Lagrangian (3.2) the interaction tenn eK 112 AIlXIl . We have then for the current of a 

point charge 

.!.}Il (x) =eK Jcb(_g)-lila (x(s) - x ).i(s) =K 1/2 .!. jll . (6.16) 
C C 

This means a variation ofcharge in cosmic time, 

- 1/2 3/2b-3I2hs-1I2e =eK =ea , (6.17) 

which complements the scaling laws (4.23) and (4.26). 

The considerations on electromagnetic energy in (2.18)-(2.22) can easily be adapted 

to the case K.1l :I: 0 . Instead of (2.18) we start with the tensor 

(6.18) 

From Eq. (6.S) we have t" Il;;Il' = c-I Fvp}1l ,and 

(6.19) 

with Ilapv as in (2.22). We define the energy-momentum tensor as 

(6.20) 

so that 

r Il - 1 G ·a r pAa 
v ;Il - c va J + Ll. Ilv a • (6.21) 

That ~ Il is indeed the right choice for the energy-momentum tensor gets clear if we use 3-d 

fonnalism. We only indicate here the very minor nlodifications that fonnulas (2.7)-(2.10) 

undergo if we drop the detenninant condition. In (2.7) we have to replace Fllv and Hllv 

by GIlV and KIlV, respectively. The definition of charge density and 3-current remains 

unaltered. In the continuity equation (2.8) and the Maxwell equations (2.9) and (2.10) the 

only modification is to replace.JY by.JK..Y in the tenns containing the time derivative, i.e., 
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y -1I20(Y 112.) lOr. is replaced by (ICy rIl2a«q )112.) Ien. The material equations (2.11) 

renlain unaltered. The energy density To 0 as defined now in (6.20) relates to field ~trengths 

and displacement vectors as in (2.19), and formula (2.20) holds true for the free part of the 

Lagrangian (6.1) .. 

7. Conclusion 

The cosluology deveJoped here is based on two symmetric tensor fields, a space-time 

metric, and a symmetric permeability tensor representing the world ether. This permeability 

tensor we assume as homogeneous and isotropic. It is detennined by two scale factors 

h8 (t) and b(t), both functions of cosmic time like the expansion factor a(-r) in the 

Robertson-Walker metric. 

Electromagnetic fields are coupled to the permeability tensor like in a dielectric 

medium, cf. Sec. 2, apart from some technical modifications described in Sec. 6. Classical 

mechanics in the ether is defined by replacing in the Hamilton-Jacobi equation the space­

time metric by the permeability tensor, cf. Sec. 3. The propagation of spinor fields in the 

ether is likewise defined by this substitution in the Dirac Lagrangian, cf. Sec. 4. 

We studied the evolution of free particles and wave fields in the ether, and obtained 

explicit formulas for the variation of their wave length, frequency, velocity, and energy in 

cosmic time. The speed of light is a function of the three cosmic scale factors, and need not 

be, as a function of cosmic time, bounded from above. Massive particles may come 

arbitrarily close to the speed of light, but cannot really reach it. (However, at two different 

instants of cosmic time the particle speed may well exceed the speed of light; if 

e(t 1) > eft 2) we nlay have v p ('t I) > e(t 2)' of course.) 
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~ We do not suggest evolution equations for the space-time metric, nor for the 

permeability tensor. What we do in this article is to try various choices for the three scale 

factors and to see what makes the difference in the resulting particle dynamics in an open 

universe, cf. Examples I-IV in Sees. 3 and 4. 

The fact that the speed of light is unbounded in cosmic time does not result in an 

unbounded speed of signal transfer in local Minkowski frames. Whenever we consider some 

local physical process we can neglect the cosmic time variation, and take the space-time 

metric as well as the penneability tensor dwing the whole process at a given instant of 

cosmic time. Then the three cosmic scale factors can be scaled into the constants of nature in 

. . 
the Hamiltonian of the local system, cf. Sec. 4. In the Minkowskian limit cosmic time 

parametrizes the constants of nature, and must be distinguished from the local system time 

that labels the evolution of the Hamiltonian system. So, locally, the special relativistic 

vacuwn dynamics in Minkowski space is recovered, with constants of nature depending on 

the cosmic time parameter. The concept of local Minkowski frames and relativistic 

mechanics works because we can accommodate, formally, the effects of the ether in the 

J 

constants of nature. But Minkowski space is only an abstraction based on a purely geometric 

space-time view. 

This theory is unrelated to the ideas of Eddington, Milne, and Dirac on the variation 

of the constants of nature; in particular it is not a scaling theory for 'large ratios', cf. Ref. 

[13]. The variation of the constants is a consequence of the cosmic ether. 

Because the speed of light itself is varying in cosmic time, the energy of photons 

does not scale inversely to their wave lengih~ cf. Sec. 4. So the prediction is that red shifts of 

absorption spectra will differ from those based on wave length measurements by diffraction, 

via grating spectrographs, for example. 
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