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Abstract 
Relativistic chiral models with a light scalar meson appear to provide an economical 

marriage of successful relativistic mean-field theories and chiral symmetry. The scalar 
meson serves as both the chiral partner of the pion and the mediator of the intermediate
range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce 
the empirical nuclear matter saturation point, they fail to reproduce observed properties 
of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface 
energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. 
An alternative scenario, which features a heavy chiral scalar and dynamical generation of 
the NN attraction, is discussed. 
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Relating the observed properties of hadrons and nuclei to the underlying theory of quan
tum chromodynamics (QCD) is a major challenge, particularly since most existing nuclear 
data reflect the properties of QCD at low energies and large distances. While present 
and future experiments that probe extreme conditions of density and temperature, or high 
four-momentum transfer, should help to elucidate the connections to QCD, theoretical 
models to interpret these experiments and make these connections must still be cali Drated 
to low-energy data. Furthermore, extrapolations from observed nuclear properties to ex
treme conditions will be reliable only if general principles of physics, such as quantum 
mechanics, special relativity, and microscopic causality, are maintained. To meet these 
requirements, one naturally turns to field-theoretic models based on low-energy degrees of 
freedom-hadrons-that are constrained by the underlying symmetries of QCD. 

In this letter, we consider hadronic models with chiral symmetry, which is a symmetry of 
the QCD lagrangian with massless u and d quarks, and ask whether they can quantitatively 
describe basic features of nuclear phenomenology. Both the soft-pion theorems and the 
partial conservation of the axial-vector current (PCAC) in weak interactions imply that 
( approximate) chiral symmetry is_ a genuine feature of low-energy hadronic interactions. 
Furthermore, to construct models with reasonable pion dynamics, which is necessary for a 
detailed understanding of nuclear structure, this symmetry must be enforced. 

Relati vistic chiral models with a light scalar meson would seem to be an economi
cal marriage of successful relativistic mean-field theories and chiral symmetry. In these 
models, the scalar meson serves as both the chiral partner of the pion and the mediator 
of the intermediate-range nucleon-nucleon (NN) attraction. Several variations have been 
proposed, all based on the linear sigma model plus a neutral vector meson (w); they are 
solved in the mean-field (Hartree) approximation, with or without zero-point vacuum con
tributions included. It is possible (in some cases) to fix the parameters in these models so 
that the empirical nuclear matter binding energy and equilibrium density are reproduced. 
This would appear to calibrate the models to low-energy bulk nuclear properties, so that 
meaningful extrapolations can be made to extreme conditions of temperature or density. 

We argue, however, that fitting to infinite nuclear matter is insufficient, and that these 
models fail generically to reproduce observed properties of finite nuclei. In fact, the chiral 
models are overconstrained and contain strong many-nucleon forces, which preclude a light 
enough scalar meson if the empirical pion coupling is adopted. This leads to fundamental 
deficiencies in the description of spin-orbit splittings, shell structure, charge densi ties, and 
surface energetics. These deficiencies imply that this implementation of chiral symmetry 
is incorrect. On the other hand, we contend that phenomenologically successful mean-field 
models are consistent with an alternative scenario for chiral symmetry in hadronic models, 
which features a heavy chiral scalar and dynamical generation of the NN attraction. 

The appeal of the mean-field approximation is based largely on the phenomenological 
success of the Walecka model mean-field theory (MFT),t which contains nucleons, neutral 
scalar mesons, and neutral vector mesons. The parameters of the model can be fit to 
reproduce the empirical binding energy and saturation density of infinite nuclear matter; 
when subsequently applied to spherical finite nuclei, the Walecka model provides a realistic 
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description of many bulk properties, such as charge densities, rms radii, and energy spectra.2 

The basic physics responsible for this success is that the NN interaction in this MFT 
contains strong attractive Lorentz scalar and repulsive Lorentz vector components, which 
tend to cancel in the central interaction that generates the binding, but which add to pro
duce a strong spin-orbit force that is consistent with the observed single-particle spectra~ 
The vector meson is identified with the wand assigned a mass of roughly 780 MeV, while 
the scalar mass is determined by fitting nuclear properties and typically takes values around 
500 MeV. Although such a light scalar meson is not observed as a true resonance in nature, 
scalar meson exchange is an economical way to simulate more complicated processes (such 
as the exchange of two correlated pions) that are responsible for the mid-range NN at
traction. This procedure is also consistent with successful modern boson-exchange models 
of the NN interaction, all of which require large contributions in the channel with scalar
isoscalar quantum numbers.3-6 Thus the Walecka model MFT provides a simple, appealing 
picture of nuclear saturation and nuclear properties that is consistent with more detailed 
studies of the underlying NN interaction. Nevertheless, chiral symmetry does not play an 
obvious role in the Walecka model. .-

Chiral symmetry can be implemented at the hadronic level in two different ways. In the 
linear realization (e.g., the linear sigma mode}718), an auxiliary scalar field is introduced 
as the chiral partner of the pion. The scalar and pion are combined into a chiral four
vector, and these fields mix under chiral transformations.9 The symmetry prohibits a mass 
term for the nucleon in the lagrangian, and spontaneous symmetry breaking is used to 
generate a nucleon mass. In the nonlinear realization,10 there is no scalar field, and the 
appropriate transformations are realized by the pions alone. For applications involving 
low-energy nuclear phenomena, the linear sigma model is particularly compelling, since 
there is an explicit scalar meson that can play the same role as the scalar contained in the 
Walecka model. But is chiral symmetry actually realized this way in nature? Should the 
chiral partner of the pion really be identified with the low-mass scalar field that provides 
the bulk of the mid-range attraction between nucleons? Or, to put it more bluntly, can we 
achieve a viable nuclear phenomenology with a single scalar meson serving in both roles? 

Our answer is negative: chiral mean-field models using a light scalar meson cannot 
produce realistic results for finite nuclei. We survey chiral models that are capable of 
reproducing the empirical saturation point of nuclear matter and find that they fail gener
ically to reproduce observed nuclear systematics. The most serious prnblems are that the 
spin-orbit interaction is much too small, which leads to unrealistic single-particle spectra 
and incorrect shell closures ("magic numbers"), the nuclear densities exhibit large oscilla
tions that are unobserved, and the total binding energies (as well as the partitioning of the 
energy between volume and surface terms) are unphysical. Indeed, in most models, heavy 
spherical nuclei like 208Pb do not even exist. 

To highlight these deficiencies, we compare the chiral results with those of successful 
calculations obtained in "nonchiral" mean-field models.11- 14 A more exhaustive comparison 
will be given elsewhere;15 here we summarize the results. To accomodate a wide range of 
candidate chiral mean-field models, we start with a general lagrangian containing nucle
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ons, neutral scalar and vector mesons, and pions, which is invariant under (linear) chiral 
tranformations when m 1r = O. 

After following conventional procedures to introduce a nonzero expectation value for 
the scalar field and then shifting the field, we obtain 

£, = tI'[i11'81' - gV/I'VI' - (M - g1ru) - ig1r/ST o 1r]tI' 

1 1+2(81'u81':;J - m;(2) +2(81'1r o 81'1r - m;'1r2) 

2 

+ :~(m; - m;')u(u2+1r2) - 8~2(m; - m;)(q2 +1r2)2 

- ~(8"v;, - 8.V,,)2 +~mev"v" + ~!Cg!(V"V"? 

- '12 (;:) MV"V"u + ~'12g~V"V"(u2+ 11"2) . (1) 

This lagrangian is similar to the one proposed by Boguta,I6 which uses a vector-scalar cou
pling to generate the vector meson mass. We generalize to allow for different vector-scalar 
and vector-nucleon couplings,17 the possibility of a "bare" vector mass, and a (VI'VI')2 in
teraction. The result is the most general lagrangian with non-derivative couplings through 
dimension four that is consistent with linear chiral symmetry (for m 1r = 0). (The justi
fication for stopping at dimension four is given below.) The chiral symmetry breaking is 
determined entirely by the pion mass. 

The MFT energy density for nuclear matter in these models can be written as 

(2) 

where Va and M* =M -g1rU are determined by extremization, PB is the baryon density, and 
the spin-isospin degeneracy is I = 4. We introduce the parameters I\, and A as coefficients 
of the cubic and quartic u terms. In the chiral mean-field models studied here, they are 
constrained to be 

3g1r (2 2) , 3g; (2 2)
I\. = - M mq - m 1r , A = M2 mq - m 1r (3)• 

These same parameters, without constraints, are included in the most successful mean-field 
models, which are extensions of the original Walecka model. ll - 14 

The quartic vector term with parameter ( was suggested by Gmuca.18 In principle it 
provides additional flexibility for the chiral models, but in practice it has only a small effect, 
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and it does not modify our conclusions. (See Ref. 15 for further details.) We therefore set 
( = 0 in all calculations considered here. Since the model in Eq. (1) is, in general, not 
renormalizable, we can also add arbitrary higher-order meson self-couplings. However, since 
the (dimensionless) scalar mean field is g-;rU / M ~ 0.35 in successful models, higher-order 
chiral interactions do not produce noticeable effects in nuclei unless their coupling constants 
are enormous. We feel that forcing the reproduction of nuclear properties through strong, 
unobserved, very-many-body forces is unphysical, and We therefore omit higher-order tenns. 
Similar conclusions obtain for derivative couplings because the gradients are small over the 
nucleus. 

We also allow the possibility of including chiral one-loop vacuum corrections, as in 
Refs. 19 and 20. By applying the renormalization scheme of Ref. 19, we obtain for the 
zero-point energy density 

(4) 

The first two terms can be incorporated by modifying the tree-level values of /'i, and ,\ 
[Eq. (3)], while the third term, which starts at u 5 , is the usual contribution included with 
Walecka-type models solved in the Relativistic Hartree Approximation (RHA).21112113 Note 
that different renormalization conditions simply change the effective values of /'i, and ,\ in 
the general model. 

To provide a minimal calibration to nuclear properties, we require the models to repro
duce nuclear matter saturation properties, which we define as a binding energy/nucleon of 
15.75 MeV at a density corresponding to a Fermi momentum of 1.3fm-1

• (Our conclusions 
are not sensitive to the precise values.) We only consider models and approximations that 
can reproduce these conditions. 

The linear sigma model plus neutral vector mesons ("7 = ( = 0) is a natural starting 
point. Kerman and Miller22 showed, however, that it is impossible to reproduce nuclear 
matter saturation properties at the mean-field level. This failure occurs because the sponta
neously broken chiral symmetry leads to large nonlinear scalar self-interactions that produce 
strong, attractive three-body forces between nucleons. This attractive force is opposite to 
that found in the successful MFT phenomenologiesll- 14 and it precludes a successful de
scription of saturation. 

By adding the zero-point energy of the baryons in the Dirac sea [Eq. (4)], one can 
generate enough extra repulsion to stabilize the system and to reproduce the empirical 
nuclear matter saturation point with an appropriate choice of parameters.19 Alternatively, 
the model proposed by Boguta16 [which corresponds to ( = 0, "72 = 1, and g; = g;(m~/1\{2)] 
generates both the nucleon and w masses through spontaneous symmetry breaking and is 
able to reproduce nuclear saturation at the mean-field level. 

These saturating chiral models arise as special cases of the lagrangian in Eq. (1). We 
consider a wide range of such models and solve for finite nuclei. The mean-field (Dirac
Hartree) equations for finite nuclei are derived by following conventional procedures, and 
the equations are solved by standard iteration methods. (See Refs. 2, 12, and 21 for 
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Model 9; 9; rna' ti, A 1] M"'jM [{ 

A 109.71 190.61 520.0 O. 0.0 0.00 0.54 550 

B 95.11 148.93 500.8 5000. -200.0 0.00 0.63 220 

C* 54.21 102.58 458.0 O. 0.0 0.00 0.73 450 

D* 179.56 25.08 767.2 -25195. 359.5 0.00 0.89 110 

E 68.18 47.41 650.5 -11165. 98.2 1.00 0.78 670 
F 112.36 47.41 835.1 -23618. 266.6 1.28 0.78 670 
G* 24.88 17.30 322.0 -1652. 8.8 1.00 0.90 150 
H* 112.36 17.30 684.3 -15856. 179.0 2.13 0.90 150 
I 43.58 61.85 500.0 -5273. 37.1 0.61 0.67 940 

Table 1: Parameters and properties for a variety of mean-field models. The models are 
identified in the text; an asterisk means that zero-point contributions are included. 
Values for the compressibility K (in MeV) and M* / M are given at equilibrium density. 
Both K, and ma' are in MeV. For models E through H, 1}2 = g;m;/g;M2. 

more details.) Some care is necessary to obtain convergence in these nonlinear models, 
for example, by heavily damping successive iterations. To make realistic comparisions to 
heavy nuclei, we also couple the nucleon to Coulomb and isovector p fields as in Ref. 2. 
The strength of the p coupling is set by requiring the nuclear matter symmetry energy at 
equilibrium to be 35 MeV in all models. When the zero-point terms are included, they are 
evaluated with a local-density approximation.13,23 Finally, charge densities are obtained by 
folding the point proton density with the empirical proton form factor. 

When solving chiral mean-field models, one must also be aware of the possibility of 
bound "anomalous" solutions, in which the scalar mean field interpolates between the 
minima of the effective potential. These solutions have been discussed by Boguta and col
laborators. I6,24,25,2o In anomalous nuclei, the nuclear density is concentrated at the nuclear 
surface, in strong contradiction to experiment. Nevertheless, when m1f' = 0, the anomalous 

I5solution is typically more deeply bound than the "normal" solution. I6• In contrast, we 
have verified by explicit calculation that including a finite pion mass pushes the energy of 
the anomalous solution above that of the normal solution. (The pion mass is not small on 
the scale of nuclear binding energies!) Thus, we do not consider these anomalous solutions 
further here and set m1f' = O. (The pion mass has negligible effect on "normal" solutions.) 

In Table 1, parameters are given for a representative sample of mean-field models. A 
detailed survey will be presented elsewhere. I5 In these models, the nucleon mass is 939 MeV 
and the vector meson mass is 783 MeV. The first three models are not constrained by chiral 
symmetry [i.e., Eq. (3) does not hold], while the others feature a chiral scalar meson. 

We focus on predictions for the charge density (Figs. 1 and 2), single-particle spectra 
(Fig. 3), and energy systematics. The Walecka model (labelled A [Ref. 2] in Table 1) 
serves as a baseline for these predictions. In general, successful mean-field models (of 
which model B [Ref. 12] is typical) predict the nuclear shell structure with quantitatively 
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Figure 1: Charge density of 40 Ca for several mean-field models specified in Table 1. The 

solid line is taken from experiment.26 The dashed line is from model B, the dotted line 
is from model E, the dot-dashed line is from model F, and the dOlible dot-dashed line 
is from model I. 

accurate spin-orbit splittings (see Fig. 3), reproduce the systematic features of experimental 
charge densities (see Figs. 1 and 2), including the observed flatness for heavy nuclei, and 
generate binding energies and rms radii with realistic dependence on the mass number A 
(see Ref, 13). Can a chiral mean-field model duplicate any or all of these successes? 

Ideally, the scalar-nucleon coupling 98 in a chiral mean-field model should be fixed at 
the empirical pion coupling 91r ~ 13.4 or at 91r/9A ~ 10.6 through the Goldberger-Treiman 
relation. However, this condition effectively prevents a scahtr meson mass light enough 
for reasonable finite nuclei. [Note that the mass by itself is irrelevant for static properties 
of uniform nuclear matter; see Eq. (2)]. A representative model of this type is model F 
[Refs. 16, 28], which is a variant of Boguta's model. The generic flaw is illustrated in Figs. 1 
and 2: large scalar masses lead to large oscillations in the charge densities, which are not 
observed experimentally. 

The scalar mass is reduced only marginally by adding zero-point contributions (Illodeis 
D [Ref. 19] and H [Ref. 17]), and thus there are still unacceptable oscillations in the charge 
densities, Furthermore, these contributions amplify another basic flaw of the chiral models: 
M* / M in nuclear matter is too close to unity. Vacuum contributions always drive the 
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Figure 2: Charge density of 208Pb for several mean-field models. The solid line is taken 
from experiment.26 The dashed line is from model B, the dotted line is from model E, 
the dot-dashed line is from model F, and the double dot-dashed line is from model I. 
Note that all lead nuclei are obtained by filling the "standard" set of single-particle 
orbitals, even though these may not be the lowest-energy levels in some chiral models 
(see Fig. 3). 

solution to small fields (see also model C [Ref. 21]), and correspondingly large M*IN!, 
resulting in spin-orbit splittings that are too small. The disruption of the single-particle 
structure, including the major shell closures, is illustrated in Fig. 3; for models D-H, the 
uppermost proton shell closes at uranium or thorium rather than lead! We emphasize that 
the predicted spin-orbit strength, as reflected in both the shell structure and in calculations 
of proton-nucleus spin observables, is one of the major phenomenological motivations for 
relativistic models. 

Even if we allow g8 to be a free parameter, which leads to a lower scalar mass, we 
cannot lower M*1M sufficiently, particularly with zero-point contributions included (for 
example, consider models E [Ref. 16] and G [Ref. 17] in Fig. 3). Thus, even if we eliminate 
this direct connection to real-world pion physics, the models have serious flaws. Other 
problems can also be documented,15 for example, excessive surface energies, which are 
correlated with a large nuclear matter compressibility and which lead to poor energy and 
rms radii systematics for finite nuclei. 
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Figure 3: Predicted proton single-particle spectrum for 208Pb using models from Table 1. 
Only the least-bound major shell is shown. The left-most values are from experiment,27 
followed sequentially by the results for models A through I from left to right. Note that 
the 1h9 / 2 level, which is unoccupied in a real lead nucleus, is shown as a dashed line 
throughout. 

Our calculations show that it is impossible to improve one or some aspects of a chiral 
model without degrading other features. Model I illustrates this point. t The full flexibility 
of Eq. (1) is used to set the scalar mass at 500 MeV, as preferred by successful models, and 
to reduce M*1M as much as possible. Even with an unrealistically small 9s, it is barely 
possible to reduce M*1M below 0.7 (successful models prefer 0.6 to 0.65), and this comes at 
the cost of an unacceptably large compressibility. The predicted binding energy/nucleon for 
40Ca and 208Pb are 4.7 and 4.9 MeV, respectively (the experimental values are 8.5 MeV and 
7.9 MeV), because the surface energies are roughly 70% larger than the empirical values. 
This is in contrast to an unconstrained mean-field model, such as B, which represents a 
"fine-tuning" of model A with simultaneous improvement in all characteristics of finite 
nuclei. 

Based on our survey of chiral models and the characteristics of phenomenologically 
successful mean-field models, we can list the ingredients necessary for a mean-field model 

t Here we use an equilibrium binding energy of 16.5 MeV at a density corresponding to kF =1.38 fm- 1 

to produce more favorable results for nuclei. 
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to 	reproduce nuclear systematics at what we consider to be a minimal level of accuracy: 

1. 	 The correct bulk density and binding energy systematics of finite nuclei are largely 
ensured by requiring that the model reproduce "empirical" nuclear matter saturation 
properties. We stress that this is necessary but not sufficient! Observed properties of 
fini te nuclei provide further constraints. 

2. 	 The scalar mass must be light enough to avoid strong fluctuations in the charge 
density, which signal impending instabilities.29 The preferred value from "best fit" 
models is around mq = 500 MeV; 700 MeV (for example) is simply too large. 

3. 	The effective nucleon mass M* must be small enough to imply a large spin-orbit force. 
Values of 0.6 ;$ M* /M ;$ 0.65 are found in "best fit" models. This implies that the 
mean scalar and vector meson fields are large, which in turn constrains the way that 
q3 and q4 terms can enter in order to avoid unrealistic density dependence. We note 
that large nucleon self-energies are supported by recent QeD sum rule calculations 
for nucleons in nuclear matter.30 

4. 	The nuclear matter compressibility K must be low enough to reproduce the nuclear 
surface realistically. This is reflected in the energy and charge density systematics 
with A. A desirable range is difficult to determine precisely, but I( ~ 200-250 Me V 
is found in models with good systematics, and values greater than 400 MeV are prob
lematic. ~i1odels with low conlpressibilities (I( ~ 100 MeV) cannot reproduce the 
systematics of density with A.15 

Our study shows that chiral models with a light scalar meson can meet only the first 
criterion in general, and in some cases the last one. We note that some of these ingredients 
are only marginally satisfied by the original Walecka model. In particular, the spin-orbit 
force is somewhat too large and the compressibility is definitely too high. These deficiencies, 
however, are not fatal. By enlarging the model to include scalar meson self-couplings,31.11.12 
which allow for small adjustments in the density dependence of the interactions, the imper
fections of the Walecka model can be eliminated simultaneously with relatively minor "fine
tuning." In the end, one can reproduce the bulk and single-particle properties throughout 
the periodic table as well as any existing microscopic model.13,14 Although there are serious 
issues surrounding the extension of these calculations beyoL ..d the mean-field theory,23 this 
relativistic MFT provides a successful nuclear phenomenology. 

An important difference between the successful mean-field models and the chiral models 
is that the former are not constrained by chiral symmetry to fix K, A, and 98 = 91r' The clear 
implication is that chiral models with a light scalar meson have too many constraints. There 
is not enough freedom to adjust the dynamics to simultaneously achieve successful results 
for both nuclear matter and finite nuclei. Although nuclear matter saturation properties 
may seem reasonable, there are problems with finite nuclei that cannot be "tuned away." 
This is not simply a matter of adding more parameters to play with; additional nonlinear 
chiral couplings (like () do not help. 
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Thus we conclude that a linear realization of chiral symmetry with a scalar meson 
playing a dual role does not work. The generic failures of the mean-field chiral models 
are caused by systematic problems in the many-nucleon forces that must arise from the 
constraints of chiral symmetry and its spontaneous breaking. Although solutions found for 
finite nuclei are not pathological, they are simply too poor a representation of empirical 
nuclei to provide useful input to other calculations, such as those describing electron
nucleus or proton-nucleus scattering. Furthermore, the deficiencies imply that the physics 
is incorrect. In short, one should not use the chiral partner of the pion to also generate the 
mid-range, Lorentz scalar attraction between nucleons. 

A different realization of chiral symmetry seems more compatible with the observed 
properties of nuclei and with successful relativistic mean-field models. Here one takes the 
chiral scalar mass to be large to eliminate the unphysical nonlinearities and then generates 
the mid-range attractive force between nucleons dynamically through correlated two-pion 
exchange.32- 36 This picture can be implemented with a nonlinear realization of the chiral 
symmetry, with the heavy chiral scalar merely playing the role of a regulator to retain the 
renormalizability of the linear q mode1.23 The strong scalar-isoscalar two-pion exchange can 
be simulated by adding a low-mass "effective" scalar field coupled directly to the nucleons. 
Since the pion mean field vanishes, the resulting chiral mean-field theory looks just like 
the mean-field Walecka model. Moreover, although the coupling strength 98 of the light 
scalar is comparable to g'lr' we no longer require g8 =9'1r and are free to adjust 98 within 
a reasonable range. In short, the Walecka model is consistent with the underlying chiral 
dynamics of QCD, although its realization in nuclear physics is subtle. \i\~ also observe that 
similar dynamics would be obtained directly in the linear model by going beyond mean
field theory, since inclusion of two-nucleon correlations would naturally generate sufficient 
mid-range NN attraction (through correlated two-pion exchange), and a light chiral scalar 
would no longer be needed (or desired). 

Finally, we emphasize an additional conclusion: Requiring a mean-field model to repro
duce nuclear matter saturation properties is not sufficient to ensure a quantitative descrip
tion of well-established nuclear phenomenology. Any model claiming phenomenological 
success must realistically reproduce spin-orbit splittings, the nuclear shell structure, ba
sic features and systematics of the charge densities, and surface energetics. Unless these 
constraints are incorporated, extrapolation from nuclear matter properties cannot be con
sidered meaningful. 

We thank B. C. Clark and R. J. Perry for useful conversations and critical comments. 
This work was supported in part by the U.S. Department of Energy under contract No. 
DE-FG02-87ER-40365, the National Science Foundation under Grants No. PHY-9203145 
and PHY -9258270, and the Sloan Foundation. 
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