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Nuclear decay via neutrino pair production is found to have a large ~sity 
dependence because of intermediate electromagnetic couplings to electrons. These 
are calculated in a relativistic random phase approximation. The decay rate for 
vector (Fermi) transitions producing electron type neutrino pairs can be enhanced 
by 105 or more at densities relevant for stellar collapse. 
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I. Introduction. 

A variety of weak neutral current reactions are of interest in astrophysics. 
For example, neutrino-nucleus elastic scattering influences neutrino transport in 
a supernova. Neutral current reactions may have a large density dependence 
because of matter induced ZO photon mixing. Indeed, this mixing was found to 
strongly reduce neutrino-nucleus elastic cross sections [1,2]. 

In this letter, we examine the density dependence of nuclear decay via neu­
trino pair production. These reactions have been considered by Fuller et.al. [3] 
and are interesting for supernovas because the neutrino pairs can transport en­
ergy without carrying net lepton number (in contrast to neutrinos produced in 
charged current reactions). 

, The density dependence of conventional beta decay (from Pauli blocking of 
the outgoing electron) is well known. Here, we consider an intermediate coupling 
of the nucleus to a particle-hole excitation of the dense relativistic electron gas 
which then couples to a neutrino pair (see Fig. 1). This coupling will be important 
for kinematics near the plasmon or transverse photon collective modes and can 
lead to a large increase in the decay rate. 

In general, the coupled system of neutrinos interacting with a dense electron 
gas is a non-trivial example of a relativistic many-body problem. The relativistic 
many-body problem is interesting. For example, there is mixing between particle­
hole and particle-antiparticle excitations. By studying this simple, weakly inter­
acting, system one may gain useful insight for strongly interacting systems such 
as the QeD plasma. 

II. Formalism 

In this paper we calculate how correlations involving the dense electron gas 
change the basic decay rate of Fig. (la). In order to separate the electron and 
nuclear physics, we will calculate a ratio of the total decay rate to the decay rate 
ignoring the electron contributions. This ratio will be used in a later work, along 
with a model of the nuclear transition strength, to calculate the total neutrino 
production rate. 

The rate of nuclear decay via pair production w for the original diagram 
in Fig. (la) is easily calculated. This has contributions from both axial-vector 
(Gamow-Teller) and vector (Fermi) weak neutral currents. Only the vector neu­
tral current will be modified by the coupling to electrons. Therefore, in what 
follows, we assume a pure vector transition. The axial·vector contribution to the 
decay rate will be unchanged. 

The vector transition rate is easily calculated, 

J
d3pd31 

w ~ 1 [2(p. J)(I· J) - (p ·l)(J· J)]6(po + 10 - qo).
Po 0 

Here p is the momentum of the neutrino and 1the momentum of the antineutrino. 
For a longitudinal transition, the nuclear current J I1 has zero Jo and longitudinal 
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J1 components related by current conservation q. J = O. We adopt a frame where 
the one axis is along the momentum transfer q= p+ r The energy of the nuclear 
transition is qo. For a transverse transition, Jo = O. 

For simplicity, we assume first forbidden transitions so that, 

Jo = qp, Longitudinal (2) 

J2 = J3 = qjt, Transverse (3) 

with q = 1q1. Note, Ref. [3] showed that there is considerable first forbidden 
strength. Higher forbidden transitions will give similar results. 

Using Eqs. (2-3), Eq. (1) is easily integrated. For longitudinal transitions 
the decay rate is proportional to the phase space integral, 

rQO 
8w? = Jo dq!,(q, qo) = 135 q~, (4) 

!,(q, qo) = q!q2. (5) 

While the transverse phase space integral is, 

(6) 


!t(q, qo) = q!q4. (7) 

It is now a simple matter to modify these phase space integrals to include other 
diagrams. 

The response of the dense relativistic electron gas can be included in a rela­
tivistic random phase approximation (RPA). This includes all the ring diagrams 
of Figs. (la and b) and is expected to be an excellent approximation at the high 
densities appropriate for stellar collapse. The ratio of the transition matrix ele­
ment squared for the sum of all diagrams in Fig. 1 to the bare nuclear process 
(Fig. la only) is easily calculated, 

(8) 


Here f(q, qo) is either the longitudinal fl or transverse ft dielectric function of the 
electron gas depending on the nuclear transition. These functions are given in 
Ref. [4], 

(9) 

(10) 
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where e is the electric charge and the relativistic polarizations ITi are calculated 
analytically at zero temperature [4]. 

Finally, 9 is the ratio of the weak charge of the electron c:, to that of a 
nucleon C!/, 

(11) 

The electron's charge is, 

(12) 

with the plus sign for electron neutrino pairs and the minus sign for the produc­
tion of mu or tau neutrino pairs. [We use a Weinberg angle sin2(9w ) = 0.223.] 
For simplicity we assume a nuclear electromagnetic current that is a sum over 
nucleons, 

Jem_~_ .[I+T3i] (13)p - L...J e"{pi 2 ' 
i 

and a weak vector current, 

-~ .([!-2· 2(9 )][I+T3i]_![I- T3i]) (14)JP - L...J "(PI 2 sIn w 2 2 2 . 
i 

Thus C!/ for an isoscalar transition is, 

(15) 

and for an isovector transition, 

(16) 

Thus g is 1.708 (-2.121) for an isovector (isoscalar) transition producing elec­
tron type neutrino pairs and -0.098 (+0.121) for the production of muon or tau 
neutrinos. 

The ratio of total decay rates is obtained by integrating Eq. (8) over the 
phase space in Eqs. (4-7). This gives, 

90 

< r >t= 01 1 dq!t(q, qo)ll + (1 - -1 )gI2, (17) 
0 ftW t 

90 

< r >,= 01 1 dq!,(q, qo)ll + (1 _ -1 )gI2. (18)w, 0 fl 

These simple expressions are the basic results of this paper and describe how the 
electron medium modifies the neutral current decay rate. 

Often the integrals in Eqs. (17-18) are dominated by the transverse photon 
or longitudinal plasmon collective modes where, 

(19) 
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The dispersion relations qo as a function of qc implied by Eq. (19) are discussed 
in Ref. [5]. If one expands the dielectric function for q near qc, 

the integrals (Eqs. 17, 18) can be easily evaluated, for example, 

This shows that the rate depends on the imaginary part of the dielectric function 
( fi). 

A collective mode can decay into an electron-positron pair or into a two 
particle-two hole excitation. Decay into a single particle-hole excitation is not 
possible for these time-like momentum transfers qo > q. Electron-positron decay 
is Pauli blocked at zero temperature for qo much less then the Fermi energy [6]. 
Thus 2p-2h decay probably dominates the width. However, e+e- can contribute 
at high temperatures (see below). 

Unfortunately, we are not aware of a relativistic calculation of the 2p-2h 
width. Therefore, we make a crude estimate based on a nonrelativistic calculation. 
Glick and Lang [7] estimate the 2p-2h contribution to fi for the longitudinal mode 
for qc much less than the Fermi momentum (kF) to be, 

Here, the coefficient a is predicted to depend only weakly on density. Perhaps the 
highest density at which the nonrelativistic calculation can be directly applied is 
kF = m with m the electron mass. At this density the analytic estimate (including 
Thomas-Fermi screening) gives a = 0.13 [7]. For higher densities, Glick and 
Lang predict that a will change only very slowly with density as p-l/12 (and that 
screening will be unimportant). Therefore, we simply take, 

a R:: 0.1, 

for all the densities of interest here. As a further crude approximation, we will 
use Eqs. (22) and (23) also for transverse modes. [Note, at small q the dispersion 
relation for the transverse mode is very close to that for the longitudinal plasmon.] 

It is hoped that Eqs. (22-23) will allow us to make an order of magnitude 
estimate of the enhancement of the neutrino rate. If fi is significantly different 
from Eqs. (22-23), then Eq. (21) shows that the enhancement factor will scale 
with one over fie 

III. Results 

The ratio of transition rates is plotted in Fig. 2 for longitudinal transitions 
at a density of 9.1/Ye x 1011 (g/cc). Here Ye is the electron to baryon ratio. This 
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(22) 

(23) 



corresponds to an electron Fermi momentum of 50 MeV. Note, Eq. (18) has" been 
numerically integrated rather then simply using Eq. (21). 

The ratio can be as large as 106 or more for the production of Ve pairs. 
The ratio for Vr or v" pairs is much smaller because of the small value of c: in 
Eq. (12). The ratio rapidly increases at the plasma frequency qo ~ 2.8 MeV. 
Just above this frequency, qc is small, so the damping in Eq. (22) is also small, 
this gives a large enhancement. As the energy increases further, the dispersion 
relation for the plasmon rapidly becomes light-like, q5 - q~ -+- O. Therefore, the 
phase space factor in Eq. (5) causes the ratio to rapidly decrease. 

Near the peak, the ratio is similar for isoscalar and isovector transitions. 
However, these have different interference terms which show up at low and high 
energies. The ZO couples primarily to neutrons (see Eq. (14) with sin2( Ow) ~ 
1/4) while the photon couples to protons. Therefore, the relative phase of the 
interference term changes with isospin. 

The ratio for transverse transitions, Eq. (17), is shown in Fig. (3). This can 
be as large as 105 • The transverse dispersion relation does not have q5 - q~ -+- 0 
nearly as fast. Furthermore, the phase space factor in Eq. (7) is different. There­
fore, the transverse ratio is enhanced at higher energies than the longitudinal. 
[Note, the eventual falloff in the ratio at high energy may be sensitive to our 
assumption for the width in Eq. (22) which becomes large for large qc.] 

For muon or tau neutrino pairs there is again only a modest enhancement. 
Note, for transverse transitions, there is a small mixing term between vector and 
axial-vector currents (proportional to the IIva of Ref. [4]) which allows the axial 
coupling of the electrons to contribute. This term (which we neglect) is very small 
for electron neutrinos but could be about a 10 percent correction for mu or tau 
neutrinos. 

The magnitude of the enhancement is similar at other densities. However, 
the enhancement affects lower energies as the density decreases. Fig. (4) plots (as 
a solid line) the plasma frequency vs. density. Excitations with smaller energies 
will not be significantly enhanced. Also shown in Fig. (4) (as a dotted line) is the 
upper energy where < r >1 = 10. Longitudinal transitions with energies between 
these solid and dotted lines will be significantly enhanced. Finally, the dashed 
line in Fig. (4) is the upper energy where < r >t = 10. Transverse transitions in 
this larger energy range between the dashed and solid lines will be significantly 
enhanced. 

Our calculations have been for zero temperature. However, we do not expect 
a strong temperature dependence as long as the system is still degenerate. At a 
temperature of 15 MeV, there is a small contribution to the plasmon width from 
e+e- decay, which we calculate as in Refs. [8-9]. This leads to a small decrease 
in the peak of < r >1 in Fig. (2). To investigate nondegenerate conditions, one 
will need a finite temperature calculation of the 2p-2h decay width. 

IV. Summary 

We have calculated the density dependence of the nuclear decay rate to neu­
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trino pairs. This arises because of an intermediate coupling to electron particle­
hole excitations. We treated the dense electron gas in a relativistic RPA and used 
a crude nonrelativistic estimate of collective mode widths from 2p-2h excitations. 

The transition rates can be greatly enhanced. Furthermore, transverse modes 
are enhanced over a larger energy range than longitudinal modes. However, only 
vector (Fermi) transitions to electron type neutrino pairs are significantly en­
hanced. We will use these enhancement factors, Eqs. (17-18), along with a model 
of the nuclear transition strength in a later work to calculate the total neutrino 
production rate. 
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Figure Captions 

Figure 1. (a) Nuclear decay via emission of a ZO which produces a neutrino pair. 
(b) Nuclear decay via intermediate electromagnetic couplings to electron 
particle-hole excitations. 

Figure 2. 	 Ratio of decay rate at a density (times electron fraction Ye ) of9.1x lOll (g/cc) 
to that in free space for a longitudinal transition to Ve pairs, see Eq. (18). 
The solid (dot-dashed) curve is for an isoscalar (isovector) transition. The 
dotted curve is for the production of vp. or v". pairs in an isovector transition. 

Figure 3. 	 As per Fig. 2 except for transverse transitions, see Eq. (17). 
Figure 4. Plasma frequency (solid curve) vs. density (times electron fraction Ye). Also 

shown is the upper energy where < r >,= 10, Eq. (18) (dotted) and 
< r 10 (dashed curve). Transverse transitions are significantly en­
hanced for energies between the dashed and solid curves, while longitudinal 
transitions are enhanced for energies between the dotted and solid curves. 
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