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ABSTRACT ~ 

Two pion excha.nge contribution to the charge symmetry breaking class IV neutron­
proton interaction is examined in a potential and coupled channels approach. Based on 

. nOllrelativistic 7r NN and 7r Ntl. vertices, a TPE interaction is treated in two ways, as a 
potential or as a part calculable by the coupled channels method plus a residual potential 
interaction. A practical parametrization of the TPE potentials is given, which can also be 
used in the case of class III CSB forces as well as for charge symmetric interactions. The 
results show that below 300 MeV the TPE contribution to CSD in elastic np scattering 
is insignificant, whereas at higher energies it should not be neglected. 
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One of the nlost widely used and successful symmetries in nuclear physics is charge 

independe,lice' or isospin sYlnmetry VI PJ1rle8!tfprcf~'~ It is obviously broken ill electro­
magnetic interactions but is known to be broken even in the strong interaction due to 
electromagnetic effects within hadrons and differences of quark Inasses. This breaking 
of the isospin sylnmetry in the nuclear force has been studied for a long tinle. However, 
earlier research has mostly concentrated on looking for differences in the pp vs. np system 
or in the pp vs. nn interaction. In the terminology of Henley and !\iillerl these differences 
arise from isospin aSYInnletric forces of class II (isotensor) and III (propot,ional to the 
total isospin vector TIO + T20)' The latter is a charge symmetry breaking (CSH) force 
and it distinguishes between isospin mirror systems. For nucleons CSB nleans simply 
s, way to tell the neutron from the proton in an experiment. CSB interactions of class 
III have been typically studied in nuclear mirror systelIls or com.paring pp and nn low 
energy scattering paralneters. Both of these approaches are halnpered by difficulties with 
nuclear structure treatment, extraction of the Coulomb interaction from the pp system 
or the three-body nature of experiments with neutron targets. 

Not until very recently has the class IV CSB force, which acts only in the np system 
and actually changes the isospin, become experinlentally tractable. In the presence of this 
interaction the analyzing power ( or polarization) of the proton is different from that of the 
neutron in np scattering. At present there are two datapoints for the difference of the pro­
ton and neutron analyzing powers .6A = An - Ap in elastic np scattering. The TRIUMF 
experiment2 at 477 MeV gave .6A(72°) = 0.0047 ± 0.0022 ± 0.0008 and the preliminary 
angle averaged IUCF result at 183 MeV is3 .6A(82° -116°) = 0.00331 ±0.00059±0.00043. 
Unfortunately it appears impossible to extend these already difficult experiments outside 
the neighbourhood of the angle where An or Ap crosses through zero and obt.ain a full 
angular distribution of .6A, although the IUCF experinlent can give sOlne features of it. 
Measurelnents are possible at this particular angle, since nlany systernatic error sources 
cancel off there. For example, the TRIUMF experiment measured directly the difference 
in the zero crossing angles of Ap and An rather than A's thelIlselves, so t.ha.t the knowl­
edge of the absolute normalization of the polarization was not so crucial. Knowing the 
slope of the analyzing power A(8) one can then deduce .6A at this angle with first order 
uncertainties in the beam and target polarization vanishing. The IUCF nlea.surenlent on 
the other hand is based on the assunlPtion of the constancy of the uncertainty of A(8) 
around the zero crossing angle, in which case the measured apparent difference is 

.6A(8) = .6 Atrue ( 8) + const . A(8). (1) 

In an average about the zero crossing angle the la.tter term carrying the dOIIlinant un­
certainty about the absolute polarization cancels off. Another experimental proposal at 
TRIUMF suggests to measure .6A at the energy 350 MeV, intennediate between the 
present data.4 
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There has been a. considerahle amount of theoretica.l activit.y t.o predict or reproduce 
10these nUlnbers5- (for up-to-date overviews see Refs. 11 and 12). Most theoretical 

calculations are able to explain the llieagre data by nleson exchanges. The TRIUlVIF 
result originates nearly totally from the muudane one pion exchange if the neutron­
proton mass difference is taken 'into account, because other effects are sInall at the zero 
crossing angle at 477 MeV. The IUCF number, on the other hand, consists of nearly 
equal contrihutions from OPE, the magnetic interaction of the neutron dipole moment 
with the proton charge and the more interesting short ranged pw lltixing in heavy meson 
exchange. The comparable significance of the last rnechanisn. ntakes the lower energy 
measurernent of IUCF inlportant in studies of the short range behaviour of the strong 
interaction. Figs. 1 and 2 show the two existing data points t.ogether with theoretical 
predictions of Ref. 8. The difference between the dashed and dash-dot curves is due to 
heavy rnesons, mainly pw lltixing. 

The class lV CSB potential responsible for ~A in np scattering can be of two spin 
and isospin changing forms 

liVa = (fi x T2)0 a1 x a2 • Lv(r) (a) 


livb = Cr. - T2)0 (a. - a2 ) • Lv(r). (b) (2) 


Quite obviously the former of these interactions arises only in exchanges of a charged 
particle (or effective particle). By far, the dOluinant contribution here is the effect of t.he 
np mass difference in t.he charged pion vertex. In contrast, the latter is dne to neutral 
exchanges, most typically the magnetic int~raction between the neutron and proton or 
pw meson mixing. The two forms of CSB force give rise to qualitatively different angular 
distributions of M( fJ), the latter being rather similar to Ap( fJ) or An( fJ) for intennediate 
energies and consequently small at the zero crossing angle of these observables. A possible 
qualitative reason for this sintilarity may be the structural likeness of the potent.ial ~'iVb to 
the spin-orbit force (which, of course, conserves the spin and isospin). Because for a given 
total angular momentum J the dominant lnixed states have both either an attractive or 
repulsive pha.se (i .e. the triplet and singlet are silltilar), also the spin mixing transition 
IItatrix is siluilar ill phase to that due to the spin-orbit force in these tensor uncoupled 
partial waves. The tensor coupled states have TIluclt smaller phases and filay be less 
important in the analyzing power and polarization. The interaction \;Iva, in contrast, has 
an additional state dependent phase ( -1)J, which removes the cha.nce of any resemblance 
of M(8) to A(8). Thus the partial wave mixing parameters for IVb are unifonnly of the 
Sallte sign (for the inportant pw lllixing and the magnetic interaction positive), while 
those for IVa (OPE) alternate their sign with J. This qualitative difference is clearly 
seen in Figs. 1 and 2, with neutral particle exchange contributions also changing their 
signs near the zero crossing angle, whereas OPE is positive with a principal and secondary 
maximum in the forward and backward directions. 

Since the interactions (2) change the spin and isospin, triplet and singlet states of a 
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given L J are mixed. This nlixing can be expressed as an S - IIlatrix paralnetrization 

(3) 

where "YJ is a. mixing parameter analogous to €,T, and 6J (6JJ ) is the two nucleon "ba.r" 
phase shift for the particular singlet (triplet) state in question. At low and intermediate 
energjes the 3Pl _ IPt and 3D2 -lD2 1l1ixings are dominant. The relation of t.hese partial 
wave rnixing parameters to the isospin brea.king a.ngle dependent spin aluplitude f(fJ) and 
the observable M( fJ) can be found in earlier calculations of CSB6,8 or the compilation 
14 of spin ~ + ~ sca.ttering observables. 

One reason for the recent interest in isospin breaking, especial1y cha.rge sym.rnetry 
breaking, is the hope that its detailed understauding could tel1 sOlnethillg about the 
underlying hadron structure in terms of quarks or solitons etc. In principle, one might 
be able to gain infonnation about the strong interaction, which is cOlltplementa.ry to the 
isospin synnnetric case. In particular, the Ineson excha.nge Illodel of nuclear forces can 
be tested in a new environment where it was not originally fitted. At the very least new 
constraints on e.g. meson-nucleon couplings cou1d be expected, since meson excha.nges 
appear in different cOIIlbinatiolls as cOlllpareu with the isospin conserving case.8 On the 
other hand, deviations from the IIleson exchange picture could be signatures of a deeper 
Inechanism. 

A pa.rticularly interesting candidate for such a "smoking gun effect" of quarks in 
intermediate energy physics is the spectacularly great theoret,ical difference between the 
short range pw mixing effect and CSll quark-gluon calculations.13 All Ineson exchange 
calculations give relatively strong charge sYlllmetry violation arising from pw mixing, 
whereas the quark-gluon result is totally negligible. One might note the difference to the 
situation in the case of isospin respecting nuclear force, where the quark-gluon exchange 
mechanisms give results which are similar to vector llieson exchanges. Therefore, at 
the one u confidence level the IUCF result would appear to lend some support to the 
meson exchange model of the NN interaction even at short distances. However, before 
jUITtping to hasty conclusions of any exotic or quark effects vs. heavy meson exchanges 
at illtennetiiate energies in interpreting any experitnents, careful calculations are needed 
a.lso a.t the hadron level. The aim of this paper is to fill a void concerning relatively 
long ranged two lueson exchange effects, on which rather little work has been done in 
the case of class IV forces. Because, as will be seen later in Sec. 11.2, even the charge 
independent two pion exchange (TPE) looks partly like a vector meson exchange, it could 
well give also CSB contributions similar to pw meson mixing. Furtherrnore, scalar meson 
exchange with the np Inass difference included gives rise to a CSD effect very similar to 
what pw mixing does.8 Since much of TPE is often silnulated by a significant u meson 
exchange in meson theoretical potentials, it is essential to get estimates of CSB in two 
meson exchange. However, it was seen in Ref. 8 that the u exchange is a small effect, 
partly because of the above qua1itative sinlilarity of the angular dependence to A(fJ). 
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On the other hand, in TPE charged mesons can be exchanged resulting in a class IVa 
interaction, which may be important at the crossover angle. 

Charge dependent TPE int.eractions have been studied very little earlier applying 
the Partovi-LOlnon form ali sru 15 in the case of class IV forces6 and in the case of classes 
II and Ill.16 IIowever, these w~rks consideEcd only nucleonic states, no baryon internal 
excitations, in pnrticu1ar ~, are included, except in the study of isot.ensor forces of Ref. 
17. These are knowll to be very illlportallt in T == 1 scattering. Perturbation approach 
to isobar effects may be questionable. Although CSB itself is weak, the CSB N~ states 
(origina.ting frolu T == 0 initial NN states) are coupled strongly to T == 1 NN states. 
The N~ cOlnponents should be generated as exactly as possible froIlI T == 1 states and 
then be coupled by a weaker CSH potential to T = 0 states. That is to say, the DWBA 
starting point should be a distorted wave function including N~ admixtures as exactly 
as possible. The coupled channels technique is a. very good practical Jllethod to achieve 
these. Although, in principle, DWBA would then be quite adequate to calculate CSH, 
it is just as easy to consider the T = 0 NN state as another still coupled channel and 
solve the whole system exactly. 

The outline of this paper is as follows. First in Sec. II the CSB OPE is brie.f1y 
presented both with the CSB 7rNN vertex (including the np mass difference) and with the 
CSB 7rN~ vertex. Then the two meson exchange contribution is introduced for the isospin 
symuletric and CSB case alongwith a practical technical di vision to coupled channels plus 
a potential. Both NN and N~ interrnediate states are considered including both box and 
crossed box diagrams. The results of the nunlerical calculations are gi ven in Sec. Ill. 

II. THEORY 

11.1 CSB in one pion exchange 

The prilnary ongIn of charge synunetry breaking considered in this work is the 
neutron-proton mass difference in the pion-nucleon coupling or the corresponding mech­
anism in the 7rN~ vertex. It has been known for a long tinle that the CSD structure of 
the 7rNN coupling is in the nonrelati vistic liIUH 

II1rNN 	= Ho + III + 112 

== -i £ [(pi - P) . U T . ~+ (p' - P) . 0" <Po 6 + i(pl +P) . a(i x ~)o a]. (4) 
1£ 

Here p and pi are the initial and final nucleon nlomenta and U and T are the spin and 
isospin operators. The pion field is ¢ and its mass 1£. The small parameter of the theory 
IS 

6 _ Aln - Alp 
(5)

- !tin + !tIp' 

and only tenns in the zeroth or first order have been kept in Eq. (4). The pion-nucleon 
coupling constant is given by f2/47r = 0.075. 18 This coupling is in good accord with the 
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o1le used in the Reid potelltial,t9 which will be used as the basis of strong il1t,eractioll 
distortions. In the coordinate space this pion-nucleon vertex can also be presented as 

H = -La. [V T' ;j(i) +6 Vt/Jo(i) +6 (f + i) (i x ;j(i))o]. (6)
J.t I 

The pion-nucleon coupling (4) leads to the one pion exchange interaction 

(7) 

In practice, of course, some form factor is also included in the vertices and the potential. 
It is clear from Eq. (7) tha.t in OPE the np nlass difference effect leads into a class 
III CSD force in the case of neutral pion exchange, whereas the exchange of charged 
pions gives a class IVa. interaction. This potential is able to explain most of the LlA 
observed in the TRIUMF experitnent of ref. 2 at the angle where A goes through zero. 
However, other possible contributiolls should be carefully evaluated to have a meaningful 
cotnparisoll with the data. Caution is especially inlportant for the interpretation of the 
IUCF result of Ref. 3, where also other effects are sigllilicant. 

If the CSB 7fNN vertex is considered to originate at the quark level from the differences 
of the constituent quark masses, it is easy to show in the nonrelativistic quark model 
that also 7fNLl coupling has a sitnilar isospill dependence20 

(8) 

As a difference to the 7fNN case, now § and f are the tra.nsition spin and isospin operators 
for N -+ Ll and the coupling constant is f*2/ 47r = 0.35 frolll the free Ll width. 21 Another 
difference is that the term H~ analogous to Hl of Eq. (4) is missing, since the transition 
necessarily needs an isospill operator. The second tenn is sitllilar to H2 of Eq. (4) and 
will give rise to a CSB transition potential like the last term in Eq. (7). The simple 
quark arguments would give for the splitting of the successive charge states of the Ll the 
same 1.3 MeV as for the nucleons. This agrees very well with the known mass relations22 

LlO - Ll++ = 2.7 ± 0.3 MeV 
Llo-Ll+ 

Ll++ + = 4.6 0.2 MeV. (9)
3 

Similarly to the OPE potential between nucleolls one gets a transition potential for 
NN +--+ LlN + NLl as 
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(10) 

The CSB term proportional to TlO arises only from CSB in the nucleon end of the pion 
exchange. The first term conserves the isospin and is nonzero only for T 1 nucleon 
states, whereas either of the CSB tenns can cause a transition fronl an initial T == 0 state. 
Finally another iteration of l'tr brings the system back to a T == 1 NN state, causing a 
net isospin breaking in the two nleson system. 

This transition potential a.pproach to CSB has so far heen applied by tIle coupled 
channels method to incorporate box diagrams with ~ 's in Refs. 20, 23 and 24. Ref. 24 
showed that below, say, 500 Me V the effect of inelasticities closely related to the ~ are 
small but at higher energies they become nonnegligible. That work was not a totally 
systenlatic treatise of the ~ effects in that, for example, the crossed box diagrams were 
not considered. We shall now proceed to introduce CSB two meson Iuechanisms in a 
more systelna.tic way and then consider a hybrid approach hy treating a box part with 
the more exact coupled channels method and the remainder as a two meson exchange 
potential. 

11.2. Isospin conserving two pion exchange 

In deriving the box and crossed box diagram contributions as meson exchange in­
teraction the kinematics will be fixed as easy and symmetric as possi ble and is shown 
in Fig. 3. In these dia.grarns an overal1 InOfllentuIIl q is transferred to the particle 1 
and the average relative momentum of the nucleons is p. The momentum k is a loop 
integral variable. Also the formalism is kept nonrelativistic (except for kinematics) with 
no attention to the relativistic off-shell behaviour of the ~ propagator.25 

To the extent that the angular dependence of the propagators can be omitted in 
the integration over k, the space-spin and isospin structure obtained frorn the isospin 
symmetric vertices is 

ff+)2[2(k2 1 2k2 ( __ __ )] 2........)
BOX -- - - q2/)24 + - q 20"'1 • 0"'2 - 5 12 (2 + - Tl • T2( J.L2 3 27 3 

( 
f f + ) 2 [2 (k 2 2/ ) 2 1 2k 2 ( .... .... 5)]CROSSED -- - - q 4 - - q 20"'1 • U2 - 12 (2 - i T~ . T2), (11)
J.L2 3 27 

where the tensor operator is defined as 

512 == 3Ut . qU2 . q- Ut . U2' (12) 
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The omission of odd powers of k is justified, if the energy denominators are even with 
respect to the direction of k. This is true for all but the kinetic energies of t.he intennediat.e 
baryons in the box diagrams. The pion energies do not give odd k-dependence, since all 
vectors k - if/2 appear with a corresponding k + if/2, and in a sum over diagrams the 
pair cOJuuines to an even function of cos 8kq . It is easy to infer frolu Fig. 3 that only 
in the box diagrams does cos 8kp survive unpaired in odd powers. In the liinit of static 
baryons this dependence vanishes as a relativistic correction. Its effect will be studied to 
sonle ext~nt later. Of course, the survival of an "odd" k in the numerator has nothing 
to do with parity violation, which is a weak interaction phenoinenon. The nlomentuni k 
is always combined with another vector and parity is conserved. The pion energies can 
contribute via cos2 8kq or higher even powers to the quadratic spin-orbit and other terms. 
The "sniall" parameter of this expansion would be k2q2 cos2 8kq /(J.L2 + k2 + q2/4)2 < 1 
and its effect to the numerator will be omitted. However, in the following discussions, 
when the propagators themselves are calculated, the angular dependence on 8kq will be 
included. The factor 47r arising froin the angular integration will be included in the 
propagators. 

The above differences between t.he box a.nd crossen box diagram contrihutions are, of 
course, due to the COllullutation rules of the spin and isospin opera.tors in the exchange 
of the pion absorbtion and creation operators on, say, nucleon 2. They do not depend on 
other time orderings as long as the property BOX or CROSSED is fixed. The operator is 
directly symrnetric in the exchange of 1 +-t 2 so that the exci tation of each nucleon will 
simply be an overall multiplicative factor 2. It is interesting to note that the second (spin 
dependent) ternl inside the brackets is exactly of the form obtained nonrelativistically 
for vector Ineson exchange wi th the meson nucleon coupling of the form ii x if· 11. 

It can immediately be seen that, if the propagators for the two classes were the same, 
the terms with odd nurnber of spin or isospin operators would cancel leaving only the 
tenns scalar-isoscalar and vector-isovector. The fornier of these is the basis of sitnulating 
the isobar effect by a scalar meson (J". Of course, this sirnulation does not take in to 
account the energy dependence in any way and even this simple ODE argument should 
be supplemented by an effective p exchange, too. However, the vector-isovector part is 
suppressed by a numerical factor of 1/54 as cOinpared with the scalar-isoscalar term. 
Furthermore, the propagators are not the same, but as seen later one may still argue 
that the spin-isoscalar or scalar-isovector parts should be slnaU in comparison with the 
nlain tenu. 

If the internlediate state is NN instead of N6., then the corresponding contributions 
would be sirnply 

BOX = (~)
4 [w - ~)' - ~ (2ITI . IT. - 5 12) q'k'] (3 - 2Tl . i2) 

CROSSED = (~r [w - ~)' + ~ (2ITI . IT. - 51') q'k'] (3 + 2Tl . T"2). (13) 
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The iterated OPE (box) is pa.rticularly strong in the isospin zero states and is, in fact, 
8.n 	ilnportant part in the deuteron binding. 

Of course, the NN box contrihution is included for the nlost pa.rt in the solution of 
Schrodinger equa.tion by iteration of OPE. Even the N~ box can be obtained in this 
way by the coupled channels ~.pproach. Now, since the nUlnerator and denominator 
(propagator) is different for the box and crossed diagrams, oue could nlake a separation 

NBDB + NeDe NB(DB + De) - (NB Ne)De. 	 (14) 

The numerator N B contains the spin-isospin st.ructure of the box diagrams shown in the 
above equations, i.e. the it.erated transition potential, and Ne the structure of the crossed 
Ol1es. The first term on the right hand side includes also the sum of all propaga.tors of 
different time orderings (Fig. 4), which turns out to be just the propa.gator expected from 
iterating the normal OPE transition potential with an intermediate two baryon state, i.e. 
the same as could be obtained by a coupled channels calculation. Keeping only the box 
diagram propagators would not give this siInple result but rather a transition potential 
with a modified range.26 The energy denominators D will be discussed in detail later. 
For strong interactions the initial state can be so distorted by the intermediate isobar 
configurat.ions that 8. sirnple iteration in second order may not be reliable but. a.u actual 
coupled channels calculation would be necessary, which removes some probabiJity from 
the NN state iut.o the ~ components. Also the relatively strong energy dependence of 
the box contribution especially in the N~ threshold region is naturally treated by coupled 
channels. The second tenn on the right hand side of Eq. (14) is then a correction that 
can hopefully be treated perturbatively or as an energy independent potential in the NN 
channel with sufficient accuracy. With IDc·f < IDB + Dc I this expectation may well be 
justified, but needs a numerical verification. 

The above separation - keeping the box structure explicit - is suited for 8· separation 
into a coupled channels calculation plus a perturba.; ion. A more symmetric choice for 
potential approaches would be 

NB+Ne 	 NB -Ne
NBDB + NeDe = 2 (DB + Dc) + 2 (DB - Dc). (15) 

The second term should be sOlall as a difference of the propagators, whereas the first 
term consists only of an effective scalar-isoscalar exchange potential supplclnellted by a 
weaker vector-isovector exchange. This form justifies the expectation above that, overall, 
the odd spin-isospin opera.tor terms give only a minor contribution. 

11.3. Isospin breaking two pion exchange 

The above ideas present.ed for the isospin symtnetric interaction ca.n also he a.pplied .. 
the isospin breaking case. The two lueson exchange Iuechanislu will be separated into a 
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part that can be treated by coupled channels plus a correct.ion. One can have a numerical 
consistency check on the method by calculating the first term both as a potential and 
using coupled channels. 

II.3.l H2 and H~ vertex 

Table I shows the isospin factors for each diagram in Figs. 5 and 6. The result is 
given both as an operator and as the rnatrix elelnent for the transition from the T = 0 
state to T 1. One lllay note sotne synuuetries such as exchanging the 'parf,icles 1 and 2 
(change of sign) or changing the position of the CSB vertex (here only of the type of H2 
or H~ given in Eqs. (4) and (8)) in the otherwise similar diagrams. The change from the 
box to crossed one is now much less trivial than in the isospin sYlnnletry obeying case 
Sec. Il.2. It should be noted tha.t the opera.tors corresponding to individual diagranls 
are not time reversal invariant, aHhough their surn is. The value of the rnatrix element is 
zero for the last four diagrams 5e-h as it should, since the flN state cannot lllix with the 
initial T = 0 state without isospin breaking. If the initia.l and final states are reversed, 
the zeros would appear for diagranls 5a-d. At this stage it ma.y be useful to relnind that 
the basic isospin nlatrix elenlents are 

(10ITlOI00) == 1 (OOITlOIIO) 

(IOIT:lOIOO) == - 1 == (00IT20110) (16) 
(lOI(Tl x T-;)oIOO) = 2i = -(OOI(Tl x T-;)ollO). 

The space spin structure is sornewhat lengthier but also st.raightforward to obtain. 
Considering ouly nUlnerators arising from the vertices of Eqs. (4) and (8) and ornitting 
odd powers of the intermediate momentum k, as discussed in the previous subsection, we 
get the results given in Table II for the CSB vertices H2 and H~. In Table II a shorthand 
notation 

A± == 2 (k2 - q2/,1)(k2 + q2/4 ± if· PJ 
3 

B == i/3 (k 2 
- q2/4) 

C = ~ ik2 (17)
9 

D = 2 k2 

9 

has been used. 

Combining Tables I and II and adding the strength coefficient.s of Eqs. (4) and (8) 
one obtains for the total box contribution of the type H2 and II~ CSB vertices as 
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BOX ff*)2 is [20 (0 B) iTtO + 16 (0 - B) iT2o] ifx p. 0"1( /12 3 
+ [16 (C - B) iTIO + 20 (C - B) iT20] ijx p·u-; 

+ 4D (ij x PJ . (u~ X u-;) (T~ x T2)0} 


f f* ) 2 6 {6 (k2 q2). _ _ ( _ _) ( )

- - - - - ~q x p - Ul + U2 TIO + T20 (18)( /12 3 3 4 

2 (k2 q2). _ _ ( _ _ ) ( )+ - - - ~q x p - - TIO - T20Ul U2 
3 3 4 

+ : k 2 (iif x p) . (0"1 x 0"2) (fi X T2)" } 

and for the crossed diagrams 

(ff*)2i6{ (A A+)(' .)CROSS /12 3" 4 - + ~TIO + ~T20 

+ [20 (C B) iTIO - 16 (C - B) iT20] ij x p. u~ 
+ [-16 (C B) iTIO + 20 (C - B) iT20] ij x p -U2 

+ 4D (ijx PJ . (ul x U2) (T~ x T2)O} 

(ff*)26{ !(16k4 q4) (TIO+ T20) (19)
/1 2 3 3 

2 (k2 q2). ... _ (... ... ) ( )+ - -- ~q x p' Ul + U2 TIO + T20 
3 3 4 

k2 q2 
+6 ( - -) iij x p. (ul - u-;) (TIO - T20)

3 4 

+ : k2 (iif x p) . (0"1 x 0"2) Ui x T2)0 } . 

In these equat.ions only the lIutnerators depicting the spin-isospin struct.ure are expressed. 
The energy denoIninators (llonrelativistic propagators) will be discussed later in subsec­
tion 11.4. 

As shown previously in Eq. (14) the box contribution can be treated by coupled 
channels leaving as the residual interaction 

(20) 
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The first two ternls are of class III and of no immediate interest in the present work, 
whereas the last tenn is of class IV contributing to ~A in np scattering. It is interesting 1.0 
note that the charge exchange CSB force can be completely treated by coupled channels 
leaving a vanishing residual. 

For nucleonic intermediate s'tates the CSB TPE is 

(21) 

CROSSED 

(22) 

Of course, the boxes are normally obtained 8.utomatically by solving the Schrodinger 
equation .. However, the stretched box diagranls similar to 4e and 4f with two simulta­
neous pions are not included in this way and should be added separately. Since there 
are IflaIlY Hlore crossed dia.grams than stretched boxes with the sanle numbers of simul­
taneous pions, the crossed contribution may be expected to be larger and class IVa to 
dominate over IVb. This conclusion agrees with Ref. 6, though nUlnerically the present 
result will becolne larger. 

II.3.2 Vertex HI 

Similarly, Table III gives the operators and t.he corresponding matrix elements for the 
CSB 7rNN vertex of the type HI in Eq. (4) as shown in Fig. 7. There are fewer diagranls, 
since this vertex can only appear in the nucleon end of pion exchange. Again the zeros for 
the matrix elements of the box diagrams are obvious. The zeros of the crossed diagrams 
are not so immediately obvious but still understandable. Since this CSB vertex does not 
change the baryon isospin state (no T operator), from the point of view of the initial 
state the crossed graphs 7a and 7b effectively look like a CS transition potential into an 
N~ or ~N intermediate state, and this is nonzero only for a T == 1 state because of 
isospin conservation. On the other hand, the spa.ce-spin part for the 111 generated CSB 
potential is the saIne as for the isospin respecting interaction. The tenDS in equa.tion (9) 
are totally symmetric in the exchange of the N and the ~. Obviously then the sum of 
all the diagrams in Fig. 7 would give only an isospin conserving class III force and would 
not Inix the isospin, once the isospin factors of Table III are taken into account. 
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However, also this type of vertex (either due to the np mass difference or 1J1r mixing) 
was found to contribute significantly to the effective class IV interaction and ilA in the 
coupled channels calculations of Ref. 24. Qualitatively one could understand this, be­
cause in individual part.ial waves the spin changing matrix elements do not vanish. Due 
to different distortions then their cancellation is not complete. on a more quantitative 
basis the explanation is that, in fact, there is an additional term in the spin-space nu­
merator of the box diagrams, which is not symlnetric in the exchange of the nucleon and 
the il: 

~N2(odd) = ('~'r 5 [~(k2 - :) (2 qx k.".-; - qx k· 0'2)] 

~Nl ( odd) ( f~.r5 [~ (k' - : ) ( - qX k . 0'-; + 2 qx k .0'2)] , (23) 

where the subscripts refer to the particle that goes through the il int.ermediate state. 
(ilN2 corresponds to Figs. 7a and c, ilNl to 7b and d.) This is odd in the integra­
tion variable k and has been omitted previously. It was already mentioned that for box 
diagrams there is also an odd contribution in the energy denominators due to the in­
tenuediate baryon energies. In principle, then these two odd tenus can he cODlhined 
to give a total nonzero effect, which does not actually vanish in the angular integration 
over the intermediate momentum but could be smaH in the above case of vertex H2 in 
a comparison with the dominant isotropic background. Now, since the background gives 
a zero contribution, it is necessary to calculate this higher order terrn frorn the angular 
dependence. 

Simply combining the space-spin parts of Eqs. (11) and (23) with the isospin fac­

tors of Table III and perfonning the angular integration over k, one gets the isospin 
nonsymmetric result for the sum of diagrams 7a-d as 

(24) 

The parameter €(k, p) is in fact connected rather to the propagator of the particular time 
ordering, but is symbolically included here with the numerator to remind which terms 
require this special treatment of the a.ngular dependence. It will be presented explicitly 
later, when the propagators are discussed. 
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A class IV force due to HI arises only in the box diagrams. Since in the crossed 
diagrams all k dependence of the propagators combines to form an even function, no 
cla.ss IV intera.ction survives there in the int.egra.tion over intermediate mOlnenta. Since 
the angular dependence of the propagators of the box can cause a nonzero result in spite 
of the pure nUII1erator of the fOrnl involving only a "class III" vertex (Le. Ill, not "class 
IV" 112 or I{~), then the nonzero result for isospin mixing from the coupled channels can 
now be understood. The energy denoruinatQrs correspond to the IIarniltonia.ns of t.he Nt;:,. 
channels ill the coupled Schrodinger equation. Since different partial waves have different 
centrifugal barriers, on partial wave basis the contrihutions from different intermediate 
isobar states cannot exactly cancel as they would, if the propagators were the same for all. 
Also the correlations generated by the strong interactions would be sOluewhat different in 
different channels. It is essential to realize that in partial waves the spin-isospin factors 
of isospill hreaking NN ~ Nt;:,. transitions do not vanish for individual channels. Finally, 
it should be noted that class IV forces do not arise from any kind of boxes involving 
the vertex HI and only nucleons. The direct box is merely an iteration of the isospin 
conserving class III interaction and the crossed diagrams do not contribute either. 

In all the above results also the CSB interactions of class III are shown for later refer­
ence, although they will not be elaborated more in the present work which concentrates 
on np scattering. Since the vertex HI is similar to the isospin symmetric vertex Ho in 
its spatial structure and since dass III interactions are similar to isoscala.r interactions, 
one can see that in second order of also normal charge independent pion exchange one 
should get an induced effective spin orbit force from box diagrams, although this is in 
no way apparent in the basic interactions. This has been demonstrated elsewhere, for 
example in the spectacularly large polarization in pp scattering due to the very strong 
tensor force of the T == 0 fiN interaction.27 

11.4 Propagators 

Now we turn to the nonrclativistic propagators. In the static lilnit for the baryons it 
is very straightforward to see that the sum of all propagators in Fig. 4 reduces to the 
form -(WIW2t;:,.Af)-1, where t;:,.A,f is the mass difference between the t;:,. and the nucleon. 
With the normalization factors of the pion fields this gives a result which is exactly as 
if a normal OPE (with range p-l) had been iterated with an intermediate state of the 
excitation energy Ei - E = t;:,.Af. In fact, even the static limit is unnecessarily restrictive 
and can be extended to an accuracy to which the approximation 

(26) 

is valid, where 2E is the total incident CM energy, E;;_k the intermediate nucleon energy 

and E the t;:,. energy. As compared with the nlass difference of the nucleon and the t;:,. 

(~ the first ternl) the last term can often reasonably be ignored in an integration over 
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-
k. Due to this property of the propaga.tors it, is convenient to perfornl the division (14) 
iuto a terrn which ca.n be calculated by iterating the transition potential plus a potential 
ternl. Of these, the first one can be expected to have a strong energy dependence around 
the Ll threshold and is treated exactly by coupled channels. The second one depends on 
the energy nlore snloothly and is developed as a two llieson exchange potential at the 
N N threshold. 

The propagators can be explicitly written as sums of the energy denominators of 
different tinle orderings 

1 
------------------~-----------+------------------~----~-----

)(E-Et-wd (E-Et - W 2)(2E-Et - -wd 
1 

(27) 

if each nucleon is assumed to carry the energy E in the external states (Le. the elastic 
situation). Here the nucleon and meson intermediate energies are 

Et /1112 + (f - k)2 Wt = /11-2 + (k - if(2)2 
(28) 

E2 /11/ 2 + (f+ k)2 W2 = /11-2 + (k + ij/2)2. 

The analogous Ll energy is denoted by Ei (i 1,2) and has the Ll mass intead of 
the llucleon Inass. In spite of the nonrelati vistic perturbation theory, the energies can 
be taken as relativistic. Except for the purpose of deriving the form of one part of the 
interaction in terms of ii/x p in subsection 11.3, the external kinetic energy E is onlitted in 
the calculation of the propagators. (Note also that in this limit p -+- i//2 and iijx f -+- 0, 
as it should, because it represents the orbital angular momentuIll.) The total potential 
ill the momentum presentation is then obta.ined by calculating the integral 

(29) 
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Partial potentials are calculated siInilarly using the saine conventions. 
To calculate the angular dependence correction t.o the box diagrams, the int.ermedia.t.e 

energies Ei and Ei are expanded in powers of k . Pkeepius only two lowest orders. The 
correction to each factor of a given time ordering term is -k·p times this factor multiplied 
with the SUln of the inverses o(the appropriate energies included in this factor. So, for 
example, the first term ill the box propagator hecomes in this way 

DBI -+ DBI {I - k .p [~ 1 + (~ + _1) 1 +~ l' l}
EtE-Et-w El El E-Et-Et EIE-EI-WI . 

(30) 
Angular integration with the nnrnerator (23) gives then the result (24) a.nd (25) for the 
effective CSH potential. The above additional correction term in the brackets is what 
was sYlnbolically denoted by E and is actually part of the propagator resulting also in 
different radial dependence. 

When the energy dependence is essential, especially nea.r the NI1 threshold, the cou­
pled channels approach can be used. This anlounts to coupled Schrodinger equations of 
the type 

(- \l2/ltl + llNN - E) '1! NN == -l/~r WNA 

(- \l2/2Afred + VNA + 11 - It! E) '1! NA == -l/;r WNN, (31) 

where It/red == 1t111/(ltf +11) is the NI1 reduced Inass. The transHion pot.entiall~r contains 
in addition to pion exchange also p meson exchange. Apparently the energy dependence 
of the N11 propagator is closely related to the energy vs. the mass difference 11 - Itl 
in the second equation. Pionic inelasticities can be handily incorporated by inclusion 
of the 11 width making its mass complex. 28 In partial waves the centrifugal barrier can 
be different. for different NI1 states coupled to the same NN initial state, causing e. g. 
isospin breaking also for the type lIt CSB vertex as was found earlier in Ref. 24. As noted 
above, the total SlIm of all the propagators would correspond to a second order iteration 
of the OPE transition potential l~r at least in the static baryon linlit. However, since the 
numerators are not the saIne for the crossed and box diagrams, a lnodification is necessary 
as shown in Eq. (14). In principle, the effective potential could be computed for finite 
energies. However, the use of such a.n energy dependent potent.ial would be cUlnbersolne, 
sillce it should be computed for each energy as a three dimensional integral. Clearly the 
coupled channels method is preferable as a way of introducing energy dependence. In the 
low energy linlit the two rnethods were shown to give numerically sitllilar results. As a 
bonus the coupled channels give the explicit NI1 wave function for use in reactions etc., 
when there is an external probe on the details of the baryon wave functions. 

Finally, it may be noted t hat since the charge is conserved, in the quark model the 
overall lnass of the intermediate stat.e ItIN + ItIA relnains independent of the individ­
ual charges of the 11 or the nucleon (Le. the number of u and d quarks is constant). 
This means that the total nlass difference between the NN and NI1 states is charge 
independent and does not cause isospin breaking. It is the charge dependence of the 
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individual baryon mass at the meson-baryon vertex considered above tha.t breaks the 
isospin symmetry. Further, in the case of neutron-proton scattering one of the baryons is 
always neutral, so there is no long range Coulomb interaction adding to the propagators. 
Therefore, the propagators thenlselves do not break charge sYlnrnetry. Also any isospin 
breaking interaction in the ND.: intennediate state can he negJected, because the only 
isospin change could be fronl T = 1 to T = 2 states, which would require another isospin 
violating interaction to connect to a two nucleon state. So it can be concluded that it 
is sufficient to consider only the CSB lllecbanistllS introduced to the nurnerator in the 
previous subsections. 

III. RESULTS 

The two pion exchange potentials describetl in Sec. II are calculated in the rnolnel1hlln 
space in the static approximation, where all baryon energies are neglected. Also some 
results are given to show the possible influence of nonstatic effects, by calculating the 
TPE potential including the intermediate state baryon energies but 5tH] neglecting all 
external energies. Fig. 8 shows the isobar contributions to the class IV CSB interactions 
in the static model. Both the part treatable by coupled channels and l~e5 are calculated 
at the initial zero energy. The solid curves are the result of llunlerical integration and 
the overlapping dotted lines are fits with functions of the type 

(n=O,1,2). (32) 

Since the fit is so good that it cannot be distinguished froln the exact results, apparently 
the two pion exchange potential can be weIl approxima.ted in the coordinate space by a 
single Yukawa function modified by a monopole or dipole form factor. This is a significant 
sirnplification in numerical calculations, when TPEP is used. The irreducible TPE with 
nucleonic intermediate states can be parametrized similarly. 

Table IV gives the results of this fitting for different potentia.! components with the 
notation l.~(j) = Jd3k/(27r)3 kiD j . (The coupJing constants and other coefficients are 
not included ill these fitting parameters.) The potentials l-o(j) (and V2 for the angular 
correction), which in the present context appear with an additional factor q2 were fitted' 
with this as a weight function. The values of the masses B from unweighted fits are 
generally 5% lower and the form factor masses C 5-7% higher, so the results are not 
excessively dependent on the fitt.ing procedure. Also "'4 is given for conlpleteness, since 
these ingredieHts can be used to build a class III or isospin symlnetric TPEP. Furthermore, 
it should be added that in this calcula.tion also a monopole forrn factor 

A2 JL2 
F(q) = A2+ 2 (33)

q
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is included in each pion-baryon vertex. (However, to avoid superficial nortnalization 
factors in the results of Table IV the normalization with A2 in the numerator, i.e. F(O) 
1, is used.) The value of the cut-off mass A is taken to be 1000 MeV. This is a reasonable 
compromise between soft29 and hard30 form factors of 700-800 MeV and 1200-1300 MeV, 
respectively, and will be given 'further justification as giving the correct N N ---4 N ~ 
transition potential strength in pion production. Fronl the table it is inlmediately seen 
that the range of the TPEP is somewhat longer than that of vector IneSOllS, lnaking it 
potentially ilnportant if the effective couplings are strong enough. 

The solid curves in Fig. 9 show the contributions of the N~ mechanism to the CSB 
TPE interaction in the coordinate presentation. Since class IVa and IVb potentials be­
come comparable outside 1 fm, at low energy ,I should beconle negligible because of 
cancellation, wheras ,2 remains large. In addition to the isobar effects, Fig. 9 presents 
also the irreducible CSB TPE potential arising from the nucleonic time orderings which 
are not obtained silnply by iterating the OPE (dashed curves). The effective charged 
exchange is nearly as important as with ~ 'so A specific note may be in place about the 
sign change of the two IVb potent.ials. Fornlally on would expect the tenns proportional 
to k 2 and q2 in Eqs. (18-22) to add constructively, because operating on a Yukawa func­
tion q2 should give just a factor -B~. However, the dipole form factor in the potential 
YO is so strong that it dOlninates this term inside the OPE range, causing strong cancel­
lation of the two terms and changing the sign of the class IVb potentials at 0.8 fm. The 
strong effect of the form factor nlay be the reason why the nucleonic contribution here 
is significantly larger than that obtained in Ref. 6, where the two class IV interactions 
nearly cancelled each other a.t the crossover angle. The corresponding ternl in the poten­
tial derived from the angular correction (Eq. (24)) has only a. monopole form factor of 
shorter range and is also proportionally smaller, so that this class IVb potential remains 
significant at intertllediate ranges. For comparison also the OPE contribution is shown 
(dotted curve). Inside about one fermi radius the TPE potentials become significant and 
should be given serious consideration at medium and high energies. 

Table IV shows also the potentials using the nonstatic model results and for a softer 
form factor with A 790 MeV. It can be seen that, although the general features are 
the sarne, the intennediate baryon energies may play a significant role. Especially in 
the cases where a power of k is involved in the phase space integral, the nonstatic result 
differs from the static one, since high momenta are weighted and baryon energies cannot 
be neglected. One feature of these results is that the range in the present nonstatic model 
is longer than in the static ulodel (the lllass paranleters Bare slllaller). This is somewhat 
unexpexted since with the intermediate baryon energies the intermediate states should 
be further off mass shell. However, the longer range arises from the faster decrease of the 
propa.gators in this case, while the larger energy denonlinator is reflected in the smaller 
overall strength. Since the inclusion of baryon energies opens many new questions (e.g. 
Ilonstatic effects in exchanges of one meson) and different possible approximation schemes 
(this nlodel of oluitting all external energies in both the initial and the final state being 
just one), in the present calculations the static model is conservatively used, with this 

18 



llonstatic result given only as a precaution and for completeness. 

The isobar TPE contributions of the "box" type to the mixing parameters ;1 and ;2 
are shown in Fig. 10. The solid curve is the part of the static model potential due to 
the isobar intermediate states that can be calculated by iterating the NN --+ N/j. OPE 
transition potential of normal range (the first term in Eq. (14). Its behaviour for partial 
waves with its sign alternating with J is similar to one pion exchange, but a.n order of 
rnagnitude smaller. In all these TPE potential calculations the Reid soft core potentiaP9 
is used to generate the two nucleon correlations. 

In the following calculat.ions the energy dependence will arise na.t.urally in the coupled 
channels treatment of the dOluinant part of the TPE interaction, but would be clumsy 
to introduce into a potential. Since only crossed propagators appear in the residual 
interaction, its energy dependence is presunlably flluch weaker than that of the box 
dia.granls and is neglected. As a numerical test of the possible equivalence of the iterative 
box like potential of Eq. (14) and coupled channels, Fig. 10 shows a comparison of 
this contribution to the mixing pararneters ;1 and ;2 calculated also by way of coupled 
channels in addition to the approxinlation by a TPE potential NB(DB + Dc) computed 
at the zero energy. The agreement between the two methods at low energies (dotted vs. 
s01id curves) suggests that the potential approach is reasonahle and should be even more 
relia.ble in the less energy dependent residual interaction. At high energies the coupled 
channels results are significantly larger than the corresponding energy independent TPE 
potential would give. The reason for this deviation is mostly due to the influence of the 
N/j. threshold. Also the interaction (Reid soft core potential modified to counteract the 
channel coupling effect on the phase shifts) was made phase equivalent with the original 
Reid potential only at 100 Me V, and the width of the N/j. state is included above pionie 
inelasticity threshold. The dotted curve presents the real part of the mixing parameter, 
which becomes complex in the presence of inelasticities. 24 In the present case (H~) the 
inlagin8.ry part is small, since the operator 51 X if2 • i cannot connect N/j. states with 
lower L than ill the initia.l state. The actively participating intennedia.te states are not 
favoured in the transitions. 

The situation is very different with the tensor transition potential part of l~r of Eq. 
(10), which can arise from the use of both the charge independent couplings and the CSB 
vertex III . With this a high orbital angular 11l0luentuIll initial state can get to a low 
L N/j. state. At the distance of 1 fm, most relevant for strong interactions, the gain 
in the centrifugal barrier energy can be comparable to the mass difference, resulting in 
an enhanced N/j. anlplitude around this distance. Examples of transitions pa.rticularly 
important ill the NN interaction are 1 D2 --+582 , 3 F3 --+5P3 and IG4 --+5D4 "dibaryons". 
Sec. 11.3.2 indicated that this could be accounted for by a correction in the angular 
dependence of the propagator. Fig. 11 shows now a comparison of mixing parameters 
for P waves (dashed curves) and D waves (full curves) using the class IVb part of the 
potential (24) derived in Sec. 11.3.2 vs. the coupled channels results. Again at low 
energies the two methods give qualitatively shnilar luixing parameters, while at and 
above the /j. threshold the coupled channels result is qualitatively larger. However, now 

19 

http:intennedia.te
http:inlagin8.ry
http:inelasticities.24


it is irllportant to reIIleIIlber that the figure shows only the real parts of coupled channels 
results. The 552 and sP3 ND. amplitudes go through a rapid resonance-like variation 
around their respective effective thresholds,31 and the imaginary parts are comparable 
to the real parts.24 Quite apparently also this effect IIlust be included in the consistent 
evaluation of TPE effects in charge symmetry breaking. 

In the following calculations the coupled channels method will now always be used to 
treat the iterative part of the isobar contribution, and the effects of Yres and noniterative 
nucleon states will be added to the coupled channels results. Furthermore, also p exchange 
will be included in the isospin symtnetric transition potential, so that equivalence of the 
pion box potential and coupled channels can no IIlore be expected. 

In the above consistency checks the diagonal NN interaction of the coupled systeln 
was the usual Reid soft core potential simply adjusted at intemediate range to produce 
the same phases at 100 MeV as the original. In the final calculations a better overall 
fit is used with also some short range Inodifications added ill both isospin states. To 
be precise, using the ND. transition potential defined below the corrections to the Reid 
potential in the most inportant partial waves are (in MeV) 

e-2~r e-6~r 

D.VCPd 20-- 3100--
Itr Itr 

~VeD2) = 230 e-3~r + 8000 e-7~r (34)
Itr Itr 

e-3~r e-7~r 

20-- + 1500-- . 
Itr Itr 

In this way the J = L phase shifts of the energy dependent analysis of Ref. 32 can 
be reproduced to within three degrees over a wide energy range - OIlly 1D2 gets too 
attractive above about 700 MeV. However, these potentials are only used to give the 
distortions of the wave functions to calculate the Inixing parameters 'J. The strong 
interaction amplitudes of Ref. 32 a.re otherwise used to avoid introducing unessential 
theoretical error sources. As described in Ref. 8, the long ranged OPE is subtracted in 
partial wave amplitudes and added back into the overall angle dependent spin amplitudes 
to avoid truncation effects on the partial wave expansion. Also all the calculated mixing 
parameters have the relativistic correction factor6 (AI/ ET )2, where ET is the total energy 
of a nucleon in the center of mass system. 

The fornl factors are irnportant in the overall strength of the transition potential. 
This can be fixed most conveniently and reliably by the height of the pion production 
maximum at about 580 Me V in the reaction pp -4 d7r+. Using for this the model of 
Ref. 33 with the pNN coupling const,ants g!/47r 0.55 MeV and Kp = 6.134 it was 
possible to reproduce this cross section with the above A = 1000 MeV for the pion and 
Ap = 1050 MeV for the p, not very far from the pion value but significantly srnaller than 
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the Bonn potential fit.30 However, this is quite gratifying in that the p does not see a 
different nucleon than the pion, and is also consistent with the proton electrolIlagnetic 
form factor. No potential is inserted for the diagonal Nt:::,. interaction "-Na. 

Figs. 12 and 13 show the final TPE lllixing pa.rameters ;1 and ;2 and their COlllposition 
of dirrerent contrihutions as a fUllction of energy. The dotted curves are the results of the 
coupled channels Nt:::,. calculation only, analogous to (but not the same) the dotted curves 
in Fig. 10. The residual interaction turns out to be about as important at low energies 
due to its long ra.nge and the large factor in Eq. (20) vs. the factors in Eq. (18). At short 
distances ~~e5 changes sign, and this dirninishes its effect at high energies. It decreases 
,1, but enhances the value of the negative ;2, i.e. is a negative contribution in both. 
Structurally this is sitnilar to pw ITJixing, but again an order of magnitude slnaller and of 
opposite sign. The total isobar effect arising frolH H2 and II~ is shown by the dash-dot 
curve. As expected previously, at low energies ;1 is quite small. The noniterative TPE 
with nucleonic states is in turn sirnilar to pion exchange, as anticipated ill the end of 
Subsec. II.3.1, and significantly increa,ses both ;1 and ;2 (in the fonner la.rgely cancelling 
the effect of '/~e5 and bringing the total essentially to the same result as the iterative 
isobar contribution; dashed curves). The total sunl of the TPE potential mixings, also 
including the contribution from the III vertex, is given by the solid curve. This part 
shows the important 5S2 ( Nt:::,.) threshold effect in the energy dependence of ;2' 

In Figs. 12 and 13 also the onset of the irnaginary part is presented, since it is so 
closely related to the box diagrams with t:::,. 'so It is clearly seen that the irna,gillary part 
gets contributions mainly fronl the direct coupling to the Nt:::,. states. For the inelasticity, 
the isospil~ hreaking tensor interaction due to III is crucial. As a curiosity, to check 
the cancellation of the Nt:::,. effect under this interaction, if the correlations had been the 
same in different channels, the La was set to L = J in all Nt:::,. channels. The result with 
lnore sinlilar channel wave functions was indeed suppressed by an order of Inagnitude as 
cOInpared with the above results, which confirnlS the conjecture present,ed ill Sec. 11.3.2. 
Also inclusion or onlission anyone channel in this exercise caused order of magnitude 
effects in the cancellation, even if a high angular momentum state was omitted. 

In Figs. 14-17 the TPE effects to the observable t:::,.A(8) itself are given. Figs. 14-16 
have these split iuto various contributions as in Figs. 13 and 14. The corresponding 
energies are chosen to be the ones where there are data available2,3 or an experiment 
is underway.4 The division into single contributions is made to facilitate comparisons 
and co.tn binations with other possible calculations of sirllilar nature. Fig. 17 shows the 
full TPE effect at four additional energies. These results show conclusively that at low 
energies TPE CSB can be neglected. It does not affect significantly the IUCF point at 
183 MeV. However, it is an about 15% contribution at the TRIUMF energy 477 MeV 
and about 10% at 350 MeV. At higher energies also TPE is significant, though sInaller 
tha.n the dOlI1iuant mechanisllls. The rea.son for the rela.tive slllalllless of TPE is that 
out of the four different contributions, roughly equal in magnitude, ill ;1 two pairs come 
with opposite signs. At the zero cross over angle of A(8) this parameter is most decisive. 
Without this destructive interference the effect could have been twice as large. Outside 
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the zero crossing angle (especially in the forward direction) the TPE contribution to 6.A 
is rather large. 

Because the effect of TPE could, in principle, he larger than the resultoh1.ained above 
at the zero crossing angle (also indicated by the fact that outside this angle the contri­
bution to 6.A is significant) a clleck of the dependence on the fonn factor is worthwhile. 
For this pn rpose the potentials with A = 790 MeV of Table IV were used in a coupled 
channels ca1culation. The isospin breaking transition potential had also the sallle form 
factors, but the stronger isospin symmetric one was kept as it was before. In spite of an 
apparent inconsistency at this point, physically there is lit tIe point to change the latter 
Illuch, since its strength is dictated externally by the reaction pp -+ d7r+. At intenllediate 
energies the effect was to lower the TPE contribution to 6.A by 20-30%, while at low 
energy (183 MeV) this caIne down by a factor of three. The angular slructure remained 
the saIlle. Therefore, no qualitative change to the previous conclusions became necessary. 
Making the form factor harder would a.pparently effect the opposite way, except that the 
low energy result would not change as drastically. Since the latter is so slltall at the cross 
over angle, the TPE effect rernaills still negligi ble at low energies. As observed also in 
Ref. 8, varying the form factors cannot qualitatively change the angular distribution and 
the forward luaximUln does not move towards the angle where experitnents are possible. 

Finally, in Fig. 18 is a study of the angular distribution of 6.A. Due to measurement 
uncertainty in the ratio of neutron to proton polarizations, 6.A(0) can be extracted from 
an experiment only to wi thin a constant times A(0), as indi cated in Eq. (1).3 In the face 
of this alnbiguity, a rlleallingful comparison between theory and experitnent Ca.ll still be 
made by considering the coefficient of A(0) in Eq. (1) as a free parameter, adjusted to 
rninimize the variance of 6.A(0).3 Effectively, this procedure determines a distribution 
6.A(0) optimally orthogonal to A(0) subject to the constraint (1). The sanle lllethod 
has been applied ill Fig. 18 for the present theoretical results at 183 MeV ,35 using the 
sanle angle range (68 - 121 0 

) for the variance minitnization as was used to obtain the 
experirllental results.3 Here are shown the results including OPE+'"Y + P (Illodel 1, dash­
dot and dotted curves) and OPE+p + I + pw+TPE (model 3, solid and dashed curves), 
the interest being in the effect of the pw contribution. The curves without TPE at this 
energy are slightly lower in the forward direction but qualitatively indistinguishable. The 
full result changes little in going frOllt the true 6.A(0) to the nlinimum variance modified 
distribution, but in the OPE result the change is more significant. The resulting full dis­
tribution agrees well with the sintilarly treated data, and is essentially indistinguishable 
from the one obtained froln the Bonn results7 in Ref. 3. In calculating the aSB p and 
pw contributions, the full Bonn potential couplings and form factors30 are used, while 
the distorting potential is the full coupled channels calculation as described above. 

Fig. 19 shows a siluilar conlpa.rison of aSB effects for the true 6.A(0) and the lnodifi­
cation due to the Ininimal variance a.t 350 MeV. (Here, an angle range 48 - 960

, centered 
about the zero crossing angle at 350 MeV, has been used for the minimiza.t.ion.) Now the 
change of 6.A{0) from the minitnal variance in the case of the total result is ruuch larger 
than in Fig. 18 bringing the distribution close to OPE (which in turn relnains practically 
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uncha.nged). The reason for this large effect if; the nearly complete correlation of the 
pw effect with the analyzing power A(8) itself at. this energy, as was discussed in the 
Introduction. This shows that above, say, 300 MeV the only significant contributions to 
the Ininima.l variance Inodified angular distribution must arise from class IVa forces, i.e. 
from charged excha.nges. The minimal variance result without TPE at this energy would 
be about uniforrnly 0.0007 lower than the dashed curve shown here. At this point it could 
be added that the program SCORE,36 used in these calculations for Figs. 18-19, does 
not allow for inelasticity even in charge symnletric NN anlplitudes (which is included in 
all other results of this paper). Since this program has been widely used in recent theo­

9retical work on CSB6 and also sonle other work7 is elastic by construction, the neglectt 

of inelasticity above the pion production threshold deserves an explicit study.37 

IV. CONCLUSION 

In sunlmary, a systematic study of class IV CSD in TPE has been Iuade including 
both the NN and ND. internlediate states. It can he seen that the energy dependence 
in the box dia.grarns is rather crucial and a.pparently a coupled channels treatment of 
the effect is preferable. However, far below the ND. threshold an energy independent 
TPE potential is found to be a reasonable approximation to the Inore exact approach. A 
division into two parts, in one of which the coupled channels method is applicable and the 
other a residual interaction with its propagator as in crossed diagrams, was introduced 
and enlployed in the calculations. In the particular case of class IV interactions the 
resid ual part was not SInal!. This approach can be applied also more generally in charge 
independent interactions and in the case of class III CSB.38 A practical paranletrization 
of TPE potentials is given in Table IV. 

TPE does not change earlier interpretatdons of the available two data points at 183 
lVleV and at 477 MeV. The latter is dOlninated by OPE and the error liIllits are wide 
enough to allow the present 10-15% TPE contribution to be added. At the lower en­
ergy TPE is negligible as compared with OPE, pw meson mixing and; exchange. The 
proposed TRIUMF experiment at 350 Me V would he about internlediate also in the 
irnportance of TPE. The snlallness of the effect is partly due to cancellations between in­
dividual contributions of roughly the same size. From the formalism of Sec. 11.3 one may 
expect the ND. effect to be equal importance as TPE with nucleonic interrnediate states 
(calculated in Ref. 16) in the case of class III, but still an explicit calculation should and 
could easily be done for the difference of the singlet scattering lengths D.a = app - ann' 
The formulae in Sec. 11.3 and the parametrization of TPE potentials ill Table IV can 
also be used as a starting point for calculating CSB in nuclei. 

This work has evaluated one group of contributions of potential irnportance to CSB as 
a precaution in interpreting the data. 'J'here are other effects which also have a. long range 
a.nd should he incorpora.ted for consistency. The nlixing of the pion and t.he 11 Ineson gives 
rise to similar transition potentials as the vertex HI does. 20,24 This can be considered as 
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long ranged since basically the 11 acts as if it were a soft form factor in OPE. The tensor 
coupling will be ilnportant in the mixing of the D states around the ~ threshold energy. 
Ref. 24 treated only box diagrams which appears justified, since the effect is formally 
siolilar to that arising fronl III discussed in Subsec. 11.3.2, and so the crossed box con­
tribution should be expected to' be zero. IIowever,the",NN coupling constant remains 
a great source of uncertainty in this effect. Another long ranged effect is the combined 
pion and "y exchange. It has been shown to be significant in the cases of the isotensor 
interaction/6 giving 20% of the scattering length difference ~a = (app + ann )/2 - anp , 

and of class III CSB interaction,39 but has not been studied for class IV forces. Further 
work on this contribution is needed on this before CSB in np scattering can be said to 
be understood. This need is even lTIOre compelling, if one considers the possibility that 
pw mixing is strongly different for off-shell lneson exchanges as cOlnpared with isospin 
violating on-shell decays or fonnation of p and w nlesons. Recently a siluple quark model 
based calculation of Ref. 40 suggests that due to this effect the pw mixing potential 
would be negligible in practice. 
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Table I: The isospin factors 71 . ¢ 71 ' ¢ iJ .¢ (1~ x ¢)u etc. for the type H2 or H~ of 
Eqs. (4) and (8) CSB vertex in two pion exchange. 

Diagra.m Operator 	 (lOIOpIOO) 

2' 4' 1(-+-+) 4 ­t3a 31.720 + 3t710 - 3 71 X 72 0 3 

'2 ' 4- 1(-+-+) 4
3b 	 3 t72O 3t710 + 3 71 X 72 0 3 t 

4- 2' 1(-+-+)3c 	 3t720 + 3t710 + 3 71 X 72 U -3
4-

t 

4- 2- 1(....-+) 4 ­3d 	 3t720 - 3t710 - 3 71 X 72 0 3 t 

2- 4- 1(-+-)3e -3t720 - 3t71O - 3 71 X 72 0 0 

2- 4- 1(-+-+)3f 	 3t720 + 3t710 + 3 71 X 72 0 0 

4 . 2- 1(--)3g -3 t72o 3t710 + 3 71 X 72 0 0 

4- 2' 1(....-+)311 	 3t720 + 3t710 - 3 71 X 72 0 0 

2- 4- 1(- .... ) 8­4a 	 31,7 20 - 31,7 10 -+ 3 71 X 72 0 -3 t 

2- 4- 1(-+-) 4 ­4b 	 31, 7 20 - 3t710 - '3 71 X 72 0 -'31, 

4- 2- 1(--) 8­4c -'31. 7 20 + 3t710 - 3 71 X 72 0 3
t 

4' 2- 1(--) 4­4d -3t720 + 3t710 + 3 71 X 72 0 3t 

2' 4' 1(--) 4 ­4e -'3t720 + 3t710 + 3 71 X 72 0 '3
t 

2- 4- 1(--) 8­4f -31,7 20 + 3t710 - '3 71 X 72 0 '3 t 

4' 2- 1(-+-+) 4 ­4g 	 '3t720 - '3t710 - '3 71 X 72 0 -31, 

4 - 2- 1(--) 8­4h 	 '31, 7 20 3t710 + '3 71 X 72 0 -31, 
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Table II. The space-spin structures of different diagra.ms for vertices H2 and I{~. The 
coefficients A ±, B, C and D are as defined in Eq. (17). 

3a 

4a 

3b 

4b 

3c 

4c 

3d 

4d 

3e 

4e 

3f 

4f 

3g 

4g 

3h 

4h 

-A- +2C qx p. 0'-; 

-A- - 2C if X p. 0'1 

-A- +2B qx p. 0'-; 

-A- + 2 B if x P. 0'1 

-A- B ifx p. 0'1 

-A- -B qx p. 0'-; 

-A- -C qx p. 0'-; 

-A- +C qx p. 0'-; 

A+ - 2C if x P . 0'1 

A+ +2C qxp·O'-; 

A+ -2Bqxp·u;. 

A+ -2B qx p. 0'1 

A+ +B if x p. 0'1 

A+ +B ifx p. 0'1 

A+ +C qx p. 0'-; 

A+ -c ifx p. 0'1 

-B ifx p. 0'2 

-B ifx p. 0'2 

-C qx p. 0'2 

+ C if x p. 0'2 

+2C qx p. 0'2 

-2C qx p. 0'2 

+2B ifx p. 0'2 

+2B qx p. 0'2 

+B ifx i· 0'2 

+B ifx p. 0'2 

+C qx p. 0'2 

-C q X p. 0'2 

- 2C if X p. 0'2 

+2C qx p. 0'2 

-2B ifx p. 0'2 

- 2B if x P . 0'2 
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- D (q X 0'1) . (p X 0'2) 

+D (if x 0'1) . (p x 0'2) 

- D (p x 0'1) . (q x 0'2) 

+D (f x 0"1) . ((] x 0'2) 

- D (p x 0'1) . (if x 0'2) 

+D (p X 0'-;) . (q x 0'2) 

D (if x 0'1) . (p x 0'2) 

+D (q x 0'1) . (p X 0'2) 

D (if x 0'-;) . (i x 0'2) 

+D (q x 0'-;) . (p x 0'2) 

- D (p X 0'1) • (q X 0'2) 

+D (p X 0'1) . (q X 0'2) 

- D (p x 0'1) . (if x 0'2) 

+D (p x 0'1)' (q x 0'2) 

- D (if X 0'1) . (p X 0'2) 

+D (if X 0'1) . (p x 0'2) 
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Table III: The isospill factors i 1 • 1> <Po fJ .1> T2 . 1> etc. for the CSB vertex of the type 

Diagram 

9a 

9b 

9c 

9d 

111 of Eq. (4). 

BOX CROSSED 


Operator (lO\OpIOO) 
 Operator (lO/Op\OO) 

2 i ( .... .... ) 1- 2 i ( .... .... )

aTlO + a Tl x T2 0 aTlO - a Tl x T2 0 03 


2 i ( .... ....) 4 2 i(....-)

aT20 - a Tl x T2 0 -a aT20 + a Tl x T2 0 0 


2 i ( .... ....) 2 i ( .... ....) 1­a TIO - a TI x T2 0 0 aTlO + "3 Tl X T2 0 3 


2 i(....-) 2 i(....-) .1
aT20 + "3 Tl X T2 0 0 aT20 - a Tl x T2 0 3 
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Table IV: Parametrizations for potent.ials Vi(j) as described in the text. Here in the 
form factor n = 2 for lo and n = 1 for V2 , whereas Y4 has no form factor. All A's are 
given in the uIlits of MeVfrn3 - i and B's and C's ill fnt- I . These need the appropriate 

coupling constants and other numerical factors shown in Eqs. (18-25) to make the 

A lUUUMeV 

N~ cross 

Nb,. box 

NN cross 

NN "long" 

Angle 

A = 790MeV 

N~ cross 

Nb,. box 

NN cross 

NN "long" 

Angle 

Nonstatic 

A = 790 MeV 

Nb,. cross 

N~ box 

NN cross 

NN "long" 

Angle 

actual physical potentials. 

Ao Bo Co A2 B2 

1.426 1.973 6.411 -2.368 3.200 

-3.021 2.267 7.577 -7.200 3.745 

-3.905 1.689 6.005 -4.861 2.830 

-1.310 1.604 5.313 -1.624 2.603 

-2.7] 5 3.788 

1.280 

-2.635 

-3.579 

-1.195 

-1.113 

-2.052 

-2.970 

-1.056 

1.9U9 4.997 -1.722 2.837 

2.113 5.828 -4.773 3.222 

1.660 4.680 -3.729 2.515 

1.605 4.201 -1.244 2.399 

-1.884 3.276 

1.866 4.039 -1.290 2.842 

1.901 4.479 -2.620 2.642 

1.594 3.493 -2.549 2.372 

1.525 3.726 -0.961 2.213 

-0.832 2.230 
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C2 A4 B4 

8.635 

9.468 

9.228 

6.707 

8.184 

-14.60 

-66.80 

-23.51 

-8.007 

-22.56 

4.786 

5.384 

4.720 

3.715 

5.257 

6.079 -7.682 3.774 

6.831 -30.28 4.260 

6.250 -13.25 3.664 

4.721 -4.506 2.969 

5.905 -10.65 4.131 

3.870 -4.852 2.909 

5.210 -10.13 3.283 

3.533 -7.261 2.550 

4.056 -2.949 2.610 

5.034 -2.112 3.085 



FIGURE CAPTIONS 


Figure 1. The experimental data point of TRIUl\IF2 at 477 MeV vs. theoretical results 
of Ref. 8: OPE with the np mass difference (dashed curve), including also heavier mesons 
(mainly pw meson Jnixing, dash~dot), including also the interaction of the neutron Inag­
netic moment with the proton charge (solid). 

Figure 2. As Fig. 1 but theory at 188 MeV, experitnent at 183 MeV.3 

Figure 3. The choice of IDomellta for calculating two pion exchange contributions. The 
overall Dlomentum transfer is if and k is an integration variable. 

Figure 4. Different possible titne orderings of two pion exchange. 

Figure 5. CSB pion-nucleon coupling (circle) in the TPE box diagrams. Each diagram 
gives a different contribution to the spill-isospin structure of the llUlnerators. 

Figure 6. CSB pion-nucleon coupling (circle) in the crossed pion diagrams. 

Figure 7. Possible contributions of the CSB vertex HI (see Eq. (1)) to TPE involving 
the ND. interluediate state. CSD can take place only in the nucleonic vertices. 

Figure 8. Contributions from different isoba.r effect parts to the class IVa and IVb CSB 
potentials in the DlOlnentum space. Here "box" means the first tenll of Eq. (14), which 
can be obtained by iterating nonnal pionic transition potential. 

Figure 9. The TPE contributions to the class IVa and IVb CSB potentials in the co­
ordinate representation. Solid lines: the isobar contributions as in Fig. 8. B refers to 
"box" and R to "residual". Dashed lines: the nucleon intermediate states not obtained 
by iterating OPE. Cha.in line: the contribution from the isobar box angular correction 
as discussed in Subsec. 11.3.2. Also shown is the class IV OPE CSB potential of Eq. (7) 
(dotted line). All class IVa potentials remain positive, while those of class IVb become 
negative at short distances. 

Figure 10. The real parts of the rnixing parameters 11 and 12 a.rising from H2 and H~ 
with ND. excitations calculated by coupled channels (dotted) and by the corresponding 
zero energy box potential (solid). 

Figure 11. Contributions to the mixing para.met.ers 11 (dashed) and 12 (solid) arising 
frolll the HI vertex in the box diagrams of Fig. 7. The slnaller ones are results froln 
using the class IVb part of the potential (24), whereas the larger ones are obtained from 
a coupled channels calculation (the real parts of IJ are shown). 
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Figure 12. The TPE contribut.ions to the fina1 Inixing parameter ;1: Dotted: Coupled 
channels result including ~'s with the vertex ll~; Dash-dot: Including also the residual 
interaction (20); Dashed: Including also the nucleonic intermediate states; Solid: The 
total result, where also the transition poten bia.! arising fronl HI is used ill the coupled 
channels calculation. The curves starting above 400 MeV are the iinaginary parts, others 
the real parts. 

Figure 13. As Fig. 13 but for ;2' 

Figure 14. TPE contributions to the observable ~A(0) at 477 MeV. Notation as in Fig. 
13. 

Figure 15. As Fig. 15 but at 183 MeV. 

Figure 16. As Fig. 15 but at 350 !vIeV. 

Figure 17. The total TPE effect on ~A(0) at four more energies. 

Figure 18. The true and minitnal variance modified angular distributions of ~A(0) 
at 183 MeV. 1 refers to OPE+; + p contributions, 3 to the total of all (OPE+p + ; + 
pw+TPE). The data are froin Ref. 3. 

Figure 19. As Fig. 18 but at 350 MeV. 

32 




A.A 
I I 

0
•
0 

0
• 
0 

0
• 
0 

0 
•
0 

0. 
0 

--L 0 0 0 --L 

0 01 0 01 0 

0 
. 

~Irn . " I\) 
0 " 
~ 
0 

0) 
0 

(X)
OCD 

('"')
s: --L 


0 

0 

--L 

I\) 

0 

--L 

~ 
0 

,.. ," 
a..o" --L - 0> 

0 

--L 
(X) 

~I " 0z ' \ 
en \ \~ 

-n \c: Ir-
r-

J 

/
/

/ 
--I --I /
~);:
c: eo I 
~ II ( 
-n ~ \-....J 

-....J 

~ 
CD 
< 

0 



• • • • 

AA 
I I 

0 0 0 0 0. 
0 0 0 0 0 
--L --L0 0 0 
0 01 0 01 0 

0 

S::/ 
, 

\ 
I\) rn · \0 enfo. \ 

~\. \ 0 s;:--I ~ 
OJ0 \-0 

, II\rn 
--L.\ 

, J c:::c(j) c:::c0 \. I s:: 
CD . 

. 
<(X)

O / \CD /("') 

s:: --L 
 I .10 


0 
 I .I c 
C')\1 -n--L 

.......--..
I\) 
--L.

0 . c:::c 
1\ (A) 

--L s::. \ 
-n 0 

~ ! I $ 
CD 

r"/ 

~ 
.. --L I

(j)P /0 

/
--L 
(X) 
0 




I I 
I 

II ".
I 


INl~ 

I 

,I 


I 

I A'

1+ 
'Nf..o~1 

I 

1 


I 
-0 ~ 
+
At 



,, 7 , / 
/ 

(~. 

\
'// 

7 

>. 
g"

," ,
) 

" ,/,I'" 
,I " ) 

\ I 

/ 
)(,

/ ,
< > 

/"7 
"l1 ", 

~ 
~". ,,""

-' l 
...c 

<::: \ 
,~ 

~, 
~ 'II 

\ I 
\ I 
\ I
\ I2 

7 I 
I I 


I I 

I I 

\ \ 
\\ 

, \\ 
\ \ 

\ 

I \ 

I \ 


I \ 

I \ 

« 

, / 

/ 

7 
/ 

7 
/ /

/ / 

, ,,,,, " ,, 

~ ~ 



I I I 
I I I co I I I
I' 

cb c3, 

i Q (j) I 
I I I I

II 0- I I 
I ,I I I , 

g 0 
I I 

lO I () I 
II 

I I 

, , 
 : 
II I 
II 0.. IT1 II I

("""/ 

0....0 I c9 CO) 
~ 



CD 

\ (l) 

< ~ 
, 
/'( 

/ 

,
,/ , 
< , < , 


a. 


\ , / 
7 

/'<, 
a/ -\ 

e 7, /, / 

/ 
X,

/ ,, ) 

E( > 




n 

--rr 
("' . .f' 

0...0 

-tJ a. 

e ,
, / 


/ / 

)/
',


$ ) 

,<,,// 

/A,,C§ 

, ~
,, / 

/ 
~ ' 

( " 

,<, /
,/

J<..,/ 
,/ '0 

I 
I I 
I I 
,I I 

, i 
I 
I 
I 

<!> 


I 
I 
I 
I 

I 

I 
I 
I 

<P 

I 

I 

I, 

: 
II 
II 

I I 
I e 



V(IV) (keV fm 3
) 

I I I I
tN I\J ~ 
(]I (]I (]I (]I (]I 

CD ;0 
o CD 
X en 

(]I~----~----~--~~--~~----~ 




• • • • • 

V(IV) (keV) 


o 
• 

, 
,• ,, ,, 

,• 
,• , 

--..Ii. •. ~~~~~~~--'~~~~~~~~~ 
'" 

" 

-< 
0­

", 
\ 
~rn 

o 

, I 
. I 
~ I 
I I
•II 
'/ 
~ 

/ 
/ 

I 

(J1 
o 

",­
/' 

/ 
/ 

/ 

•,
•••, 

•, 

<: 
o 

• 

••• 

•• 

••• 

••
II 

• 

" 

••• 
• 

.", 

• 
••• 

",, ­

•• 

••• 

.""". 
ttl"" 

••••••• 

" 

--t. 

o 
o 

"• 

,
• 



1000 'Y 12 (deg) 
--..... '--II. I\) N 

o (]I 0 (]I 0 (]I 
--..... 
()~~------------~------~------~------~
() 

I\) 
() 

() 


tN 

() 

() 

tTlb 
~() 

~ 
CD(J1<()

'--"() 

m 
o 

••••••••.. 
•.. 

•.. 
••.. .. 

~ 

o 
o 
o 
~ 

••• 
'" ••..

•
• 

•.. 

.. 
'" .. 
•.. 

.. 

•••• 

.. 

--..!. 

0 
0 
0 

~ 
.. .. I'J 

'" .. .. 
.. 
" 

•••, 
I 

I

••• 
•,
•• 

.. 
.... 

o " l1li .. .. .. .. .. .. .. 
• 

o 
~ • 

()o 
, , 
,• ,ex> • 

()-P-------P----~~------~----~~-------+-
() 



1000 '"1 1.2 (deg) 

~ I
~ 

(]I o (]I 0 (]I 
~ 

o~----~------~----~------~o 

I\J Al0 
0 I 

I 
tN I 
0 I0 

I 
I 

rrt6 , 
",.........,0 I 
~ I 
CD (]I J 
<0 ,

'---"0 -0, 
~I 

C» ' I
0 I0 

11 I 
~-< 

I~ '-J. 
0 1 
0 1 

1 
(X) , 
0 
0 



• • 

1000 "1 1 (deg)
I 	 --' 

(J1 o 	 (J1 0 
-110 

o~----~~----~------~------~o 


'" o 
o 

tN 
o 
o 

(j) 
0 
0 

T1 
,-~ 

~ - '-J 
0 ~ 0 

(Xl 

O 
o 

I 
, 
I 

~ 


\ ~ 

\ • 

~ 


\ 
I 

:

•, 

,I • 
I , 


I \ ~ 
\ 
I, 

I 

\ ,'-.
•I 
~.\ \• , 
~ 
". \ 

, -'. \ 

\ \, 
'1\, 
1 ' .~ 

-~ 

'.~ 	

, " 

\ \ ... \ 
... \ 
....' 

\ ·'\ " ,
,, , ,-, 

"~\"'- \\ ."",'1 \
", ,," 	 'I.. ," 	 \

' .. ,,-, 	 \ .... ," I.
-", 	 \ .... ~",

.... ,' , 	 ,
", , · 

~----~~--~~~~~~--~~~ 



0 

1000 11'2 
(deg)


I I I I I

tN tN f\) f\) ~ --t. I 

(]1 0 (]1 0 (]1 0 (]1 


--IiI. 

0 
0 

f\) 
0 
0 

tN 
0 
0 

fTlb 
~O 
~ 
CD(]1 
<0 
~O 

m 
0 
0 

11 

('"'", 

DJ=l 

'-J 
W 0 

0 

ex> 
0 
0 

, 

17,
, 

,• 
, 

, ,r , ,, 
, 

,/ , , 
,•/ I 


I ,•/ I 	 , , 
I
I , 	 ,,

/ , I 	 • 

/ I , 
I 
, , 

I
/ 
, 

, I ,• 
I 


/ 	 , ,,I
/ , ,• 
/ I •

, 
,, 

I
/ I 
, 

,
I 	 , I 

, I 


/ , I , , , 
,•I 	 I 
, ,,/ 	

, I 
, 

,.F, 
/ 	 • 

I 

I 


I 


,•/ 	 , I 11 

I
I , Ii 


I I Ij

I I,· 


I
I 	 ,, I 
, 

,• 
• /l•,I 	 , • /.1 


I ,
I 	 • 
I 

/ .~ 
• 

I
, 	 ,• • I ,"
•
I 
 .., 

I 


• 	 I ." 



10000 flA 
I 

(J1 o (J1 

tN 
0 

m 
0 


CJ:) 


~c.o 
c..o 
CD 

o~----~----~----~----~----~ 

•
"I 

••.. 
• I•• 

I 

• I 

• /••• , 
I 

/•• 

~ 
c.O '-J"-../ 

'-J 
--ir. 

N ~ 
0 CD 

< 
IJ 
~, --ir. 

oJJ (J1- 0 ~ 

--ir. 

(»-.-----r----......---......---.....-----I­o 



10000 I1A 

(.N (]1

--It 0 --It N ~ 

0 

.. .. 
II 

II .. .. 
II .. .. ..(.N ..

" II \0 
II 

II .. , 
. 
• .• I 
•
• 

/ 
, 

•
•• fillm • ",

•0 ,• /' ­-
Q:) 

",--...... <.D 
0..0 
CD ~ 

(Xlen 
~ VJ 

N 
~ 

~ 
CD0 <-n 

r", .. 
~ II 

II 

II

•~ 
II(]1 
• 
II"\ 0 ,• 

,• , 

--Ji. 

ex> 
0 



10000 flA 
I 

(J1 	 C) (J1 

C)~----~~----~------~------~ 

,. .. 	 ,..,.. 
,. 	 , 
••
• \tN 

C) •	• , 
•••• 

I 
•• 

, 
/

•• ,
• /en • 

I ,
IIIC) 
:/ 

CJ:) 

~<.O 
Q..C) 

CD 
 tN

lC 	 (J1
'-..../ 

0 
~ 

rv 	 ~ 
C) CD 

< 
T1 
~/; 

~ . ~ 

- (J1 

t)'4 C) 


~ 

oo~------~----~------~------~C) 



10000 llA 

~ I ~ ~ I\J 
0 (J1 0 (J1 0 (J1 0 

0 

VJ 
0 

m 
0 

Q:) 

~c.o
0.. 0
CD 

lO 
~ 

-..I. 

I\J 
0 

T1 
-,.. 

a-O ......J.. 
U1 
0-tJ 

......J. 
(Xl 
0 

••••••••••••••••••••••••••••••• 

I 

I 
I 

I 

---l. (J1ex> (»
0 0 (J1 ex>
0 0 0 0 

~ ~ ~ ~ 
CD CD CD CD< < < < 




"!lA(e)'.': Modifications to Theory 
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