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proton interaction is examined in a potential and coupled channels approach. Based on
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interaction. A practical parametrization of the TPE potentials is given, which can also be
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is insignificant, whereas at higher energies it should not be neglected.
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I %IIGTRE)D UCTION

One of the most widely used and successful symmetries in nuclear physics is charge
mdependence or isospin symmetry g‘f pyclea,r,forcés ¢ It is obviously broken in electro-
magnetic interactions but is known to be broken even in the strong interaction due to
electromagnetic effects within hadrons and differences of quark masses. This breaking
of the isospin syinmetry in the nuclear force has been studied for a long time. However,
earlier research has mostly concentrated on looking for differences in the pp vs. np system
or in the pp vs. nn interaction. In the terminology of Henley and Miller! these differences
arise from isospin asymmetric forces of class Il (isotensor) and III (propotional to the
total isospin vector Tyo + T20). The latter is a charge symmetry breaking (CSB) force
and it distinguishes between isospin mirror systems. For nucleons CSB means simply
a way to tell the neutron from the proton in an experiment. CSB interactions of class
II1I have been typically studied in nuclear mirror systems or comparing pp and nn low
energy scatlering parameters. Both of these approaches are hampered by difliculties with
nuclear structure treatment, extraction of the Coulomb interaction from the pp system
or the three-body nature of experiments with neutron targets.

Not until very recently has the class IV CSB force, which acts only in the np system
and actually changes the isospin, become experimentally tractable. In the presence of this
interaction the analyzing power (or polarization) of the proton is different from that of the
neutron in np scattering. At present there are two datapoints for the difflerence of the pro-
ton and neutron analyzing powers AA = A, — A, in elastic np scattering. The TRIUMF
experiment? at 477 MeV gave AA(72°) = 0.0047 & 0.0022 =+ 0.0008 and the preliminary
angle averaged IUCF result at 183 MeV is® A A(82°—116°) = 0.00331+0.0005940.00043.
Unfortunately it appears impossible to extend these already difficult experiments outside
the neighbourhood of the angle where A4, or A, crosses through zero and obtain a full
angular distribution of AA, although the IUCF experiment can give some features of it.
Measurements are possible at this particular angle, since many systematic error sources
cancel off there. For example, the TRIUMF experiment measured directly the difference
in the zero crossing angles of A, and A, rather than A’s themselves, so that the knowl-
edge of the absolute normalization of the polarization was not so crucial. Knowing the
slope of the analyzing power A(#) one can then deduce AA at this angle with first order
uncertainties in the beam and target polarization vanishing. The IUCF measurement on
the other hand is based on the assumption of the constancy of the uncertainty of A(6)
around the zero crossing angle, in which case the measured apparent difference is

AA(0) = AArue(8) + const - A(8). (1)

In an average about the zero crossing angle the latter term carrying the dominant un-
certainty about the absolute polarization cancels off. Another experimental proposal at
TRIUMF suggests to measure AA at the energy 350 MeV, intermediate betiween the

present data.?



There has been a considerable amount of theoretical activity to predict or reproduce
these nuinbers®° (for up-lo-date overviews see Refs. 11 and 12). Most theoretical
calculatlions are able {o explain the meagre data by meson exchanges. The TRIUMF
result originales nearly totally from the mundane one pion exchange if the neutron-
proton mass difference is taken into account, because other effects are small at the zero
crossing angle at 477 MeV. The IUCF number, on the other hand, consists of nearly
equal contributions from OPE, the magnelic interaction of the neutron dipole moment
with the proton charge and the more interesting short ranged pw mixing in heavy meson
exchange. The comparable significance of the last mechanismu makes the lower energy
measurement of [lUCF important in studies of the shorl range behaviour of the strong
interaction. Figs. 1 and 2 show the two existing data points together with theoretical
predictions of Ref. 8. The difference between the dashed and dash-dot curves is due to
heavy mesons, mainly pw mixing.

The class 1V CSB potential responsible for AA in np scaltering can be of two spin
and isospin changing forms

Vive = (71 X T3)o 61 X &2 - L v(r) (a)
Vive = (71 — T2)o (61 — &2) - L v(r). (b) (2)

Quite obviously the former of these interactions arises only in exchanges of a charged
particle (or effective particle). By far, the dominant contribution here is the effect of the
np mass difference in the charged pion vertex. In contrast, the latter is due to neutral
exchanges, most typically the magnetic interaction between the neutron and proton or
pw meson mixing. The two forms of CSB force give rise to qualitatively different angular
distributions of AA(f), the latter being rather similar to Ap(f) or An(#) for intermediate
energies and consequently small at the zero crossing angle of these observables. A possible
qualitative reason for this similarity may be the structural likeness of the potential Viy to
the spin-orbit force (which, of course, conserves the spin and isospin). Because for a given
total angular momentum J the dominant mixed states have both either an attractive or
repulsive phase (i.e. the triplet and singlet are similar), also the spin mixing transition
matrix is similar in phase to thal due to the spin-orbit force in these tensor uncoupled
partial waves. The tensor coupled states have much smaller phases and may be less
important in the analyzing power and polarization. The interaction Viv,, in contrast, has
an additional state dependent phase (—1)7, which removes the chance of any resemblance
of AA(8) to A(@). Thus the partial wave mixing parameters for IVb are uniformly of the
same sign (for the inportant pw mixing and the magnetic interaction positive), while
those for [Va (OPE) alternate their sign with J. This qualitative difference is clearly
seen in Figs. 1 and 2, with neutral particle exchange contributions also changing their
signs near the zero crossing angle, whereas OPE is positive with a principal and secondary
maximum in the forward and backward directions.

Since the interactions (2) change the spin and isospin, triplet and singlet states of a



given L = J are mixed. This mixing can be expressed as an S—matrix parametrization

( cos 2y €% isin 2yy ei6s4617) ) (3)
prmm— ’ ..

isin 2yy e(6s+957) cos 2yy €27

where 7, is a mixing parameter analogous to &;, and §; (6;) is the two nucleon "bar”
phase shift for the particular singlet (triplet) state in question. At low and intermediate
energies the 3Py —'P; and 3D, —'D, mixings are dominant. The relation of these partial
wave mixing parameters to the isospin breaking angle dependent spin amplitnde f() and
the observable AA(4) can be found in earlier calculations of CSB®® or the compilation
14 of spin 1 + 1 scattering observables.

One reason for the recent interest in isospin breaking, especially charge symmetry
breaking, is the hope that its detailed understanding could tell something about the
underlying hadron structure in terms of quarks or solitons etc. In principle, one might
be able to gain information about the strong interaction, which is complementary to the
isospin symmetric case. In particular, the meson exchange model of nuclear forces can
be tested in a new environment where it was not originally fitted. At the very least new
constraints on e.g. meson-nucleon couplings could be expected, since meson exchanges
appear in different combinations as compared with the isospin conserving case.® On the
other hand, deviations from the meson exchange picture could be signatures of a deeper
mechanism.

A particularly interesting candidate for such a ”smoking gun effect” of quarks in
intermediate energy physics is the spectacularly great theoretical difference between the
short range pw mixing effect and CSB quark-gluon calculations.’® All meson exchange
calculations give relatively strong charge symmetry violation arising from pw mixing,
whereas the quark-gluon result is totally negligible. One might note the difference to the
situation in the case of isospin respecting nuclear force, where the quark-gluon exchange
mechanisms give results which are similar to vector meson exchanges. Therefore, at
the one o confidence level the IUCF result would appear to lend some support to the
meson exchange model of the NN interaction even at short distances. However, before
jumping to hasty conclusions of any exotic or quark effects vs. heavy meson exchanges
at intermediate energies in inlerpreting any experiments, careful calculations are needed
also at the hadron level. The aim of this paper is to fill a void concerning relatively
long ranged two meson exchange effects, on which rather little work has been done in
the case of class IV forces. Because, as will be seen later in Sec. 1.2, even the charge
independent two pion exchange (TPE) looks partly like a vector meson exchange, it could
well give also CSB contributions similar to pw meson mixing. Furthermore, scalar meson
exchange with the np mnass difference included gives rise to a CSDB eflect very similar Lo
what pw mixing does.® Since much of TPE is often simulated by a significant ¢ meson
exchange in meson theoretical potentials, it is essential to get estimates of CSB in two
meson exchange. However, it was seen in Ref. 8 that the o exchange is a small effect,
partly because of the above qualitative similarity of the angular dependence to A(9).
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On the other hand, in TPE charged mesons can be exchanged resulting in a class IVa
interaction, which may be important at the crossover angle.

Charge dependent TPE interactions have been studied very litile earlier applying
the Partovi-Lomon formalism!® in the case of class IV forces® and in the case of classes
II and I11.1¢ Ilowever, these works considered only nucleonic states, no baryon internal
excitations, in particular A, are included, except in the study of isotensor forces of Ref.
17. These are known to be very important in T' = 1 scattering. Perturbation approach
to isobar effects may be questionable. Although CSB itself is weak, the CSB NA states
(originating from T = 0 initial NN states) are coupled strongly to T =1 NN states.
The NA components should be generated as exacily as possible from T = 1 states and
then be coupled by a weaker CSB potential to 1" = 0 states. That is to say, the DWBA
starting point should be a distorted wave function including NA admixtures as exactly
as possible. The coupled channels technique is a very good practical method to achieve
these. Although, in principle, DWBA would then be quite adequate to calculate CSB,
it is just as easy to consider the ' = 0 NN state as another still coupled channel and
solve the whole system exactly.

The outline of this paper is as follows. First in Sec. II the CSB OPE is briefly
presenied both with the CSB #NN vertex (including the np mass difference) and with the
CSB nVA vertex. Then the two meson exchange contribution is introduced for the isospin
symimetric and CSB case alongwith a practical technical division to coupled channels plus
a potential. Both NN and NA intermediate states are considered including both box and
crossed box diagrams. The results of the numerical calculations are given in Sec. III.

II. THEORY

I1.1 CSB in one pion exchange

The primary origin of charge symmetry breaking considered in this work is the
neutron-proton mass difference in the pion-nucleon coupling or the corresponding mech-
anism in the mNA vertex. It has been known for a long time that the CSB structure of
the NN coupling is in the nonrelativistic limit

H.ny = Ho+ H, + I,
:-iif[(,;'-j;)-ar*-$+(ﬁ—ﬁ)-a¢06+i(ﬁ+p')-a(fxq?)oé]. (4)

Here 7 and p’ are the initial and final nucleon momenta and & and 7 are the spin and
isospin operators. The pion field is ¢ and its mass . The small parameter of the theory

1S
M, - M, )
= M, + M, ?

and only terms in the zeroth or first order have been kept in Eq. (4). The pion-nucleon
coupling constant is given by f2/4w = 0.075.'® This coupling is in good accord with the

)
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one used in the Reid potential,’® which will be used as the basis of strong interaction
distortions. In the coordinate space this pion-nucleon vertex can also be presented as

H = -ﬁa V7 $@) + 6 Véo(&) + 6 5+ F) (7 x §(E)ol- (6)

The pion-nucleon coupling (4) leads to the one pion exchange interaction

r f2 1 - - e—#r g — — -
1«'(OPE):4—W;—2- V-G V-G | —— | [T T2+ (71 + T2)o d]
= . o2l od e
—25(7’1)(1’2)00'1)(02‘[';5( - )} (7)

In practice, of course, some form factor is also included in the vertices and the potential.
It is clear from Eq. (7) that in OPE the np mass difference effect leads into a class
III CSB force in the case of neutral pion exchange, whereas the exchange of charged
pions gives a class IVa interaction. This potential is able to explain most of the AA
observed in the TRIUMF experiment of ref. 2 at the angle where A goes through zero.
However, other possible contributions should be carefully evaluated to have a meaningful
comparison with the data. Caution is especially important for the interpretation of the
IUCF result of Ref. 3, where also other eflects are significant.

If the CSB 7NN vertex is considered to originate at the quark level from the differences
of the constituent quark masses, it is easy to show in the nonrelativistic quark model
that also 7VA coupling has a similar isospin dependence?®

H.na = Hy+ H,

i L5 - STG+iF + )-8 (T x D] ®)

As a difference to the 7NN case, now S and T are the transition spin and isospin operators
for N — A and the coupling constant is f**/4r = 0.35 from the free A width.?! Another
difference is that the term H] analogous to H, of Eq. (4) is missing, since the transition
necessarily needs an isospin operator. The second term is similar to H; of Eq. (4) and
will give rise to a CSB transition potential like the last term in Eq. (7). The simple
quark arguments would give for the splitting of the successive charge states of the A the
same 1.3 MeV as for the nucleons. This agrees very well with the known mass relations??

A° — AtY =2740.3 MeV
A° — At
AT — At 4+ — =46 + 0.2 MeV. (9)
Similarly to the OPE potential between nucleons one gets a transition potential for

NN «— AN + NA as
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gI(OPE) f{r p, {V Slv 0'2 (er )[T1F2+T106]

—25(T1><T2)051><0'z Ll—d—( )+(1H2)}. (10)
rdr\ 7

The CSB term proportional to Ty, arises only from CSB in the nucleon end of the pion

exchange. The first term conserves the isospin and is nonzero only for T = 1 nucleon

states, whereas either of the CSB terms can cause a transition from an initial 7' = 0 state.

Finally another iteration of V;, brings the system back to a T' = 1 NN state, causing a

net isospin breaking in the two meson system.

This trausition potential approach to CSB has so far been applied by the coupled
channels method to incorporate box diagrams with A’s in Refs. 20, 23 and 24. Ref. 24
showed that below, say, 500 MeV the effect of inelasticilies closely related to the A are
small but at higher energies they become nonnegligible. That work was not a totally
systematic treatise of the A effects in that, for example, the crossed box diagrams were
not considered. We shall now proceed to introduce CSB two meson mechanisms in a
more systemalic way and then consider a hybrid approach by treating a box part with
the more exact coupled channels method and the remainder as a two meson exchange
potential.

I1.2. Isospin conserving two pion exchange

In deriving the box and crossed box diagram contributions as meson exchange in-
teraction the kinematics will be fixed as easy and symmetric as possible and is shown
in Fig. 3. In these diagrams an overall momentum ¢ is transferred to the particle 1
and the average relative momentum of the nucleons is p. The momentum k is a loop
integral variable. Also the formalism is kept nonrelativistic (except for kinematics) with
no attention to the relativistic ofl-shell behaviour of the A propagator.?®

To the extent that the angular dependence of the propagators can be omitted in
the integration over k, the space-spin and isospin structure obtained from the isospin
symmetric vertices is

BOX = (ff ) [ (k2 g*/4)? + q¢’k? (261 - 03 — 512)] (2 + gﬁ . 7)

CROSSED = ({sz ) [§(k2 — g?/4)? — - qzkz (267 - 65 — Slz)] (2 - ;ﬁ - 13), (11)

where the tensor operator is defined as

512=3071'<§0:§"§‘0?1";2- (12)
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The omission of odd powers of k is justified, if the energy denominators are even with
respect o the direction of k. This is true for all but the kinetic energies of the intermediate
baryons in the box diagrams. The pion energies do not give odd k- dependence, since all
vectors k — q/2 appear with a corresponding k+ q/2, and in a sum over diagrams the
pair combines to an even function of cos Okq. 1t is easy to infer from Fig. 3 that only
in the box diagrams does cos i, survive unpaired in odd powers. In the limit of static
baryons this dependence vanishes as a relativistic correction. Its effect will be studied to
some extent later. Of course, the survival of an "odd” k in the numerator has nothing
to do with parity violation, which is a weak interaction phenomenon. The momentum k
is always combined with another vector and parity is conserved. The pion energies can
contribute via cos? i, or higher even powers to the quadratic spin-orbit and other terms.
The ”small” parameter of this expansion would be k?q? cos? O,/ (u? + k% + ¢q?/4)?

and its effect to the numerator will be omitted. However, in the following discussions,
when the propagators themselves are calculated, the angular dependence on 8, will be
included. The factor 47 arising from the angular integration will be included in the
propagalors.

The above differences between the box and crossed box diagram contributions are, of
course, due to the commutation rules of the spin and isospin operators in the exchange
of the pion absorbtion and creation operators on, say, nucleon 2. They do not depend on
other time orderings as long as the property BOX or CROSSED is fixed. The operator is
directly symmetric in the exchange of 1 « 2 so that the excitation of each nucleon will
simply be an overall multiplicative factor 2. It is interesting to note that the second (spin
dependent) term inside the brackets is exactly of the form obtained nonrelativistically
for vector meson exchange with the meson nucleon coupling of the form & x ¢'- V.

It can immediately be seen that, if the propagators for the two classes were the same,
the terms with odd number of spin or isospin operators would cancel leaving only the
terms scalar-isoscalar and vector-isovector. The former of these is the basis of simulating
the isobar effect by a scalar meson o. Of course, this simulation does not take into
account the energy dependence in any way and even this simple OBE argument should
be supplemented by an eflective p exchange, too. However, the vector-isovector part is
suppressed by a numerical factor of 1/54 as compared with the scalar-isoscalar term.
Furthermore, the propagators are not the same, but as seen later one may still argue
that the spin-isoscalar or scalar-isovector parts should be small in comparison with the
main term.

If the intermediate state is NN instead of NA, then the corresponding contributions
would be simply

o (1)

(k*

]' — — — nd
)2 - 6 (201 c 09 — 512) q2k2] (3 et 27'1 . Tz)

q2
4
Y ¢, !
CROSSED = (—) ) )? + 5 (27} - 73 — S12) qzkz] (3421 -13). (13)

"




The iterated OPE (box) is particularly strong in the isospin zero states and is, in fact,
an important part in the deuteron binding.

Of course, the NN box contribution is included for the most part in the solution of
Schrédinger equation by iteration of OPE. Even the NA box can be obtained in this
way by the coupled channels é.pproach. Now, since the numerator and denominator
(propagator) is different for the box and crossed diagrams, one could make a separation

NgDp + NcD¢ = NB(DB -+ Dc)—(NB-Nc)DC. (14)

The numerator Ng contains the spin-isospin structure of the box diagrams shown in the
above equations, i.e. the iterated transition potential, and N¢ the structure of the crossed
ones. The first term on the right hand side includes also the sum of all propagators of
different time orderings (Fig. 4), which turns out to be just the propagator expected from
iterating the normal OPE transition potential with an intermediate two baryon state, i.e.
the same as could be obtained by a coupled channels calculation. Keeping only the box
diagram propagators would not give this simple result but rather a transition potential
with a modified range.?® The energy denominators D will be discussed in detail later.
For strong interactions the initial state can be so distorted by the intermediate isobar
configurations that a simple iteration in second order may not be reliable but an actual
coupled channels calculation would be necessary, which removes some probability from
the NN state into the AN components. Also the relatively strong energy dependence of
the box contribution especially in the NA threshold region is naturally treated by coupled
channels. The second term on the right hand side of Eq. (14) is then a correction that
can hopefully be treated perturbatively or as an energy independent potential in the NN
channel with sufficient accuracy. With |D¢t < |Dp + D¢| this expectation may well be
justified, but needs a numerical verification.

The above separation — keeping the box structure explicit - is suited for a separation
into a coupled channels calculation plus a perturba:‘on. A more symmetric choice for
potential approaches would be

Np + N¢

NgDg + NcD¢ = —E——(DB + Dc) + (DB —_ D(,) (15)

Np — N¢
2
The second term should be small as a difference of the propagators, whereas the first
term consists only of an effective scalar-isoscalar exchange potential supplemented by a
weaker vector-isovector exchange. This form justifies the expectation above that, overall,

the odd spin-isospin operator terms give only a minor contribution.

I1.3. Isospin breaking two pion exchange

The above ideas presented for the isospin symnetric interaction can also be applied .
the isospin breaking case. The two meson exchange mechanism will be separated into a
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part that can be treated by coupled channels plus a correction. One can have a numerical
consistency check on the method by calculating the first term both as a potential and
using coupled channels.

11.3.1 H, and H; vertex

Table 1 shows the isospin factors for each diagram in Iigs. 5 and 6. The result is
given both as an operator and as the matrix element for the transition from the 7 = 0
state to T' = 1. One may note some syminetries such as exchanging the particles 1 and 2
(change of sign) or changing the position of the CSB vertex (here only of the type of H,
or H} given in Eqs. (4) and (8)) in the otherwise similar diagrams. The change from the
box to crossed one is now much less trivial than in the isospin symmetry obeying case
Sec. 11.2. It should be noted that the operators corresponding to individual diagrams
are not time reversal invariant, although their sum is. The value of the matrix element is
zero for the last four diagrams 5e-h as it should, since the AN state cannot mix with the
initial T = 0 state without isospin breaking. If the initial and final states are reversed,
the zeros would appear for diagrams 5a-d. At this stage it may be useful to remind that
the basic isospin matrix elements are

(10[1’10‘00) = 1 = (00'7’10“0)
(10!7’20'00) = —1= (00|7’20|10> (16)
(10|(71 X 72)0]00) = — 22 = —(00|(77 X 73)o|10).

The space spin structure is somewhat lengthier but also straightforward to obtain.
Considering only numerators arising from the vertices of Eqs. (4) and (8) and omitting

odd powers of the intermediate momentum l_c‘, as discussed in the previous subsection, we
get the results given in Table Il for the CSB vertices H, and Hj. In Table Il a shorthand

notation

2
A* =2 (K = @) (K + ¢4+ - P)
B =1i/3 (k' — ¢’/)
C = g ik? (17)
D=2
9

has been used.

Combining Tables I and II and adding the strength coefficients of Eqs. (4) and (8)
one obtains for the total box contribution of the type H, and H}) CSB vertices as

10
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* 6 N — — —
BOX = (fﬂ); ) %—{[20 (C— B)irio+ 16 (C — B)it2] g X p- 01
+[16 (C — B) ity0 + 20 (C — B) it20] § X - G
+ 4D (§ x p) - (61 x 02)(71 X T2)0}
2
* 6 kz 2 ’ — — - o
- (L) s & - Dyians @i o (o ) 1)
2 kK ¢ L L L
+3 (5 = ) id x5 (6 = 6) (o — 7a0)

8 - o N (e L
+ g K (0% 5) - (6 x ) (i X o

and for the crossed diagrams

6 i .

CROSS = p —3—{4(A + A*) (iT10 + iT20)
+[20(C—B)1T10—16(0"“3)1:7'20](?‘)(];U-’I
+[——16(C'-B)‘I,Tlo+20(C—B)l7'20]q’x50-"2
+4D (§x p) - (1 % 73) (11 X 72)0}

2
*\ 46 1
= (ffz) —{—~ (16k* — ¢*) (110 + T20) (19)
pr ) 31 3 ,

2 k? 2 L -
+§(?—%’)qup'(o'l-FO’z)(Tm'FTzo)

kK2 .. L, L
+6 (5 = L) igx 5 (61~ ) (ri0 — 1)

8 - - N (o =
+ 5 kz (1qXﬂ'(01 X 0'2) (Tl X Tz)o}.

In these equations only the numerators depicting the spin-isospin structure are expressed.
The energy denominators (nonrelativistic propagators) will be discussed later in subsec-
tion I1.4.

As shown previously in Eq. (14) the box contribution can be treated by coupled
channels leaving as the residual interaction

V;es - '—(NB - NC) DC
o= (ff*) é {—% (16k4 —_ q4) (T10 4 T20)

pr ) 3

16 K ¢, .. . . .
_"'g'("3__%’)qup'(”l‘*'Uz)(Tw-*-Tzo) (20)
16  k? 2oL L. o
‘*'—3"(”é“—%’1)1‘1x1"(0’1—02)(7'10-‘r20)}Dc-

11



The first two terms are of class IIl and of no immediate interest in the present work,
whereas the last term is of class IV contributing to A4 in np scatlering. It is interesting to
note that the charge exchange CSB force can be completely treated by coupled channels
leaving a vanishing residual.

For nucleonic intermediate states the CSB TPE is

4
‘ k? 2 L. -
BOX = (i) 6[4(——— — q—) gxp- (61— 02) (110 — 7'20)
I 3 4
4k* i - Ny o
+—3— (g x P) - (61 % 62)(T1 X T2)o (21)

4 4
CROSSED = (ﬁ) 6[—8 (k* — %) (T10 + T20)

2 2

k .
(5 - %') i x P (1 + 02) (710 + Ta0) (22)

4k2 . - - — — —
+—3— (1g x P) - (61 X G2)(T1 X T2)o] -

Of course, the boxes are normally obtained automatically by solving the Schrodinger
equation. However, the stretched box diagrams similar to 4e and 4f with two simulta-
neous pions are not included in this way and should be added separately. Since there
are many more crossed diagrams than stretched boxes with the same numbers of simul-
taneous pions, the crossed contribution may be expected to be larger and class IVa to
dominate over IVb. This conclusion agrees with Ref. 6, though numerically the present
result will becomne larger.

11.3.2 Vertex H,

Similarly, Table 111 gives the operators and the corresponding matrix elements for the
CSB mNN vertex of the type Hy in Eq. (4) as shown in Fig. 7. There are fewer diagrams,
since this vertex can only appear in the nucleon end of pion exchange. Again the zeros for
the matrix elements of the box diagrams are obvious. The zeros of the crossed diagrams
are not so immediately obvious but still understandable. Since this CSB vertex does not
change the baryon isospin state (no 7 operator), from the point of view of the initial
state the crossed graphs 7a and 7b effectively look like a CS transition potential into an
NA or AN intermediate state, and this is nonzero only for a T' = 1 state because of
isospin conservation. On the other hand, the space-spin part for the H; generated CSB
potential is the same as for the isospin respecting interaction. The terms in equation (9)
are totally symmetric in the exchange of the N and the A. Obviously then the sum of
all the diagrams in Fig. 7 would give only an isospin conserving class III force and would
nol 1nix the isospin, once the isospin factors of Table 11I are taken inlo account.

12



Ilowever, also this type of vertex (either due to the np mass dilference or 77 mixing)
was found to contribute significantly to the effective class IV interaction and A4 in the
coupled channels calculations of Ref. 24. Qualitatively one could understand this, be-
cause in individual partial waves the spin changing matrix elements do not vanish. Due
to different distortions then their cancellation is not complete. on a more quantitative
basis the explanation is that, in fact, there is an additional term in the spin-space nu-
merator of the box diagrams, which is not syminetric in the exchange of the nucleon and

the A:

AN (odd) = (fu’:) 5 [% L) 2gxk-Gi—Gxk- 52)}

4
AN;(odd) = (’;’:) P [% (k? - qzz) (—@x k-61+2§x E-&z)] , (23)

where the subscripts refer to the particle that goes through the A intermediate state.
(AN; corresponds to Figs. 7a and ¢, AN; to 7b and d.) This is odd in the integra-
tion variable k and lias been omitted previously. [t was already mentioned that for box
diagrams there is also an odd contribution in the energy denominators due to the in-
termediate baryon energies. In principle, then these two odd terms can be combined
to give a total nonzero effect, which does not actually vanish in the angular integration
over the intermediate momentum but could be small in the above case of vertex H; in
a comparison with the dominant isotropic background. Now, since the background gives
a zero contribution, it is necessary to calculate this higher order term from the angular
dependence.

Simply combining the space-spin parts of Eqs. (11) and (23) with the isospin fac-
tors of Table 11 and perforining the angular integration over k, one gets the isospin
nonsymmetric result for the sum of diagrams 7a-d as

2 kz 2
BOX=();I) { [2 (K — 4) +T(201 07 — S12)

kz 2 . - . . . -
+e€ 6( —z)qul"(UIJrUz)] (11 + 72)o (24)
2k? v g g
+€T(k2-qz)zq><p~(a'1—02)(71—-1'2)0

CROSSED = (f”f ) { 2 (k? ~ Z)’*’ - kgq (28, - &2 — S12)] (R +r“z)o} . (25)

The parameter €(k, p) is in fact connected rather to the propagator of the particular time
ordering, but is symbolically included here with the numerator to remind which terms
require this special treatment of the angular dependence. It will be presented explicitly
later, when the propagators are discussed.
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A class IV force due to H; arises only in the box diagrams. Since in the crossed
diagrams all k dependence of the propagators combines to form an even function, no
class [V interaction survives there in the integration over intermediate momenta. Since
the angular dependence of the propagators of the box can cause a nonzero result in spite
of the pure numerator of the form involving only a "class 111" vertex (i.e. Hj, not "class
IV” l; or H}), then the nonzero result for isospin mixing from the coupled channels can
now be understood. The energy denominators correspond to the Hamiltonians of the NA
channels in the coupled Schrodinger equation. Since different partial waves have different
centrifugal barriers, on partial wave basis the contributions from different intermediate
isobar states cannot exactly cancel as they would, if the propagators were the same for all.
Also the correlations generated by the strong interactions would be somewhat different in
different channels. It is essential to realize that in partial waves the spin-isospin factors
of isospin breaking NN « NA traunsitions do not vanish for individual channels. Finally,
it should be noted that class IV forces do not arise from any kind of boxes involving
the vertex H; and only nucleons. The direct box is merely an iteration of the isospin
conserving class III interaction and the crossed diagrams do not contribute either.

In all the above results also the CSB interactions of class III are shown for later refer-
ence, although they will not be elaborated more in the present work which concentrates
on np scattering. Since the vertex H, is similar to the isospin symmetric vertex Hy in
its spatial structure and since class III interactions are similar to isoscalar interactions,
one can see that in second order of also normal charge independent pion exchange one
should get an induced effective spin orbit force from box diagrams, although this is in
no way apparent in the basic interactions. This has been demonstrated elsewhere, for
example in the spectacularly large polarization in pp scattering due to the very strong
tensor force of the 7' = 0 NN interaction.?’

11.4 Propagators

Now we turn to the nonrclativistic propagators. In the static limit for the baryons it
is very straightforward to see that the sum of all propagators in Fig. 4 reduces to the
form —(wyw; AM)!, where AM is the mass difference between the A and the nucleon.
With the normalization factors of the pion fields this gives a result which is exactly as
if a normal OPE (with range p~') had been iterated with an intermediate state of the
excitation energy E; — E = AM. In {act, even the static limit is unnecessarily restrictive
and can be extended to an accuracy to which the approximation

E—E, = (E—E;z) +(E—E;;) (26)

is valid, where 2E is the total incident CM energy, E ; the intermediate nucleon energy

and E the A energy. As compared with the mass difference of the nucleon and the A
(= the first term) the last term can often reasonably be ignored in an integration over
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k. Due to this property of the propagators it is convenient to perform the division (14)
into a term which can be calculated by iterating the transition potential plus a potential
term. Of these, the first one can be expected to have a strong energy dependence around
the A threshold and is treated exactly by coupled chanunels. The second one depends on
the energy more smoothly and is developed as a two meson exchange potential at the
NN threshold.

The propagators can be explicitly written as sums of the energy denominators of
different time orderings

1 1
Dp = = + = :
i [(E—-El—wg)(ZE-El-El)(E—El-wl) (E—Es—w3)(2E— E1— Ey)(E— Ey—wy)
1 1
+ = : + = = =
(E—E1~w2)(2E—E1 —E’l)(E—" El—wl) (E—El —U.«’2)(2E~E1 -El)(E—-El-—wl)
1 i 1

+ - +—
(E——E1-wz)(——w1-—wz)(E'—~E'l —w,) (E—El—wg)(wl—wz)(E—El—wl) 4‘-"1“}2

1
D¢ = =
¢ [(E—El—wg)(ZE’-—El——Ez—wl—~wz)(E'—E1—-w1)
' 1
+ - - (27)
(E——El—wz)(ZE—El—Ez—wl —-wz)(E—Eg“‘wz)
1
+ = =
(E—Eg—'wl)(ZE-‘El—Ez—wl —UJQ)(E—El—w]_)
1
+ = = =
(E—*Ez—wl)(ZE—*El—Eg—wl——w‘g)(E'—Eg'-w2)
1 1 1

+ = + =
(E—El—wg)(——wl '—UJ2)(E-‘ Ez-(ﬁz) (E—‘ E'z“'wl)(—wl -—wg)(E—El'-—~w1) 4w1w2’

if each nucleon is assumed to carry the energy I in the external stales (i.e. the elastic
situation). Ilere the nucleon and meson intermediate energies are

=M+ (G-R? w = et (R gp) (28)
= /M2 4 (5+ k) wp = \u? + (k + §2)2.

The analogous A energy is denoted by E; (i = 1,2) and has the A mass intead of
the nucleon inass. In spite of the nonrelativistic perturbation theory, the energies can
be taken as relativistic. Except for the purpose of deriving the form of one part of the
interaction in terms of i¢'x p'in subsection 11.3, the external kinetic energy E is omitted in
the calculation of the propagators. (Note also that in this limit p’— §¢/2 and igx g — 0,
as it should, because it represents the orbital angular momentum.) The total potential
in the momentum presentation is then obtained by calculating the integral

V(q) = / (NBDB + N¢Dc¢). (29)
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Partial potentials are calculated similarly using the same conventions.

To calculate the angular dependence correction to the box diagrams, the intermediate
energies I; and E; are expanded in powers of k- p keeping only two lowest orders. The
correction to each factor of a given time ordering term is —k-p times this factor multiplied
with the sum of the inverses of the appropriate energies included in this factor. So, for
example, the first term in the box propagator hecomes in this way

- |1 1 1 1 1 1 1 -
oo oo 157 [t (54 5) 5 el |
(30)
Angular integration with the numerator (23) gives then the result (24) and (25) for the
eflective CSB potential. The above additional correction term in the brackets is what
was symbolically denoted by € and is actually part of the propagator resulting also in
diflerent radial dependence.
When the energy dependence is essential, especially near the NA threshold, the cou-
pled channels approach can be used. This amounts to coupled Schrédinger equations of
the type

(—V2/A'I + Vv — E) Yy = Vi ¥na
(—V’/ZM,ed + "}VA +A—- M- E) ‘I’NA - ‘—";.r q’NNy (31)

where Mg = MA/(M+A)is the NA reduced mass. The transition potential V}, contains
in addition to pion exchange also p meson exchange. Apparently the energy dependence
of the NA propagator is closely related to the energy vs. the mass difference A — M
in the second equation. Pionic inelasticities can be handily incorporated by inclusion
of the A width making its mass complex.?® In partial waves the centrifugal barrier can
be different for different NA states coupled to the same NN initial state, causing e. g.
isospin breaking also for the type ; CSB vertex as was found earlier in Ref. 24. As noted
above, the total sum of all the propagators would correspond to a second order iteration
of the OPE transition potential 1}, at least in the static baryon limit. However, since the
numerators are not the same for the crossed and box diagrams, a modification is necessary
as shown in Eq. (14). In principle, the effective potential could be computed for finite
energies. However, the use of such an energy dependent potential would be cuinbersome,
since it should be computed for each energy as a three dimensional integral. Clearly the
coupled channels method is preferable as a way of introducing energy dependence. In the
low energy limit the two methods were shown to give numerically similar results. As a
bonus the coupled channels give the explicit NA wave function for use in reactions etc.,
when there is an external probe on the details of the baryon wave functions.

Finally, it may be noted that since the charge is conserved, in the quark model the
overall mass of the intermediate state My + M remains independent of the individ-
ual charges of the A or the nucleon (i.e. the number of u and d quarks is constant).
This means that the total mass difference between the NN and NA states is charge
independent and does not cause isospin breaking. It is the charge dependence of the
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individual baryon mass at the meson-baryon vertex considered above that breaks the
isospin symmetry. Further, in the case of neutron-proton scattering one of the baryons is
always neutral, so there is no long range Coulomb interaclion adding to the propagators.
Therefore, the propagators themselves do not break charge symmetry. Also any isospin
breaking interaction in the NA'intermediate stale can be neglected, because the only
isospin change could be [rom T = 1 to T' = 2 states, which would require another isospin
violating interaction to connect to a two nucleon state. So it can be concluded that it
is sufficient to consider only the CSB mechanisms introduced to the numerator in the

previous subsections.

III. RESULTS

The two pion exchange potentials described in Sec. II are calculated in the momentum
space in the static approximation, where all baryon energies are neglected. Also some
results are given to show the possible influence of nonstatic effects, by calculating the
TPE potential including the intermediate state baryon energies but still neglecting all
external energies. Fig. 8 shows the isobar contributions to the class 1V CSB interactions
in the static model. Both the part treatable by coupled channels and Vi, are calculated
at the initial zero energy. The solid curves are the result of numerical integration and
the overlapping dotted lines are fits with functions of the type

V(q) = ABzB: qz ( ¢’ ) (n=0,1,2). (32)

C? + ¢?

Since the fit is so good that it cannot be distinguished from the exact results, apparently
the two pion exchange potential can be well approximated in the coordinate space by a
single Yukawa function modified by a monopole or dipole form factor. This is a significant
simplification in numerical calculations, when TPEP is used. The irreducible TPE with
nucleonic intermediate states can be parametrized similarly.

Table IV gives the results of this fitting for different potential components with the
notation V;(j) = [d3k/(27r)® k'D;. (The coupling constants and other coefficients are
not included in these fitling parameters.) The potentials V5(7) (and V; for the angular
correction), which in the present context appear with an additional factor ¢* were fitted -
with this as a weight function. The values of the masses B from unweighted fits are
generally 5% lower and the form factor masses C 5-7% higher, so the results are not
excessively dependent on the fitting procedure. Also V} is given for completeness, since
these ingredients can be used to build a class II1 or isospin symmetric TPEP. Furthermore,
it should be added that in this calculation also a monopole form factor
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is included in each pion-baryon vertex. (However, to avoid superficial normalization
factors in the results of Table IV the normalization with A? in the numerator, i.e. F(0) =
1, is used.) The value of the cut-ofl mass A is taken to be 1000 MeV. This is a reasonable
compromise between soft?® and hard3® form factors of 700-800 MeV and 1200-1300 MeV,
respectively, and will be given further justification as giving the correct NN — NA
transition potential strength in pion production. From the table it is immediately seen
that the range of the TPEP is somewhat longer than that of vector mesons, making it
potentially important if the effective couplings are strong enough.

The solid curves in Fig. 9 show the contributions of the NA mechanism to the CSB
TPE interaction in the coordinate presentation. Since class IVa and 1VDb potentials be-
come comparable outside 1 fm, at low energy ~; should become negligible because of
cancellation, wheras v, remains large. In addition to the isobar effects, Fig. 9 presents
also the irreducible CSB TPE potential arising from the nucleonic time orderings which
are not obtained simply by iterating the OPE (dashed curves). The effective charged
exchange is nearly as important as with A’s. A specific note may be in place about the
sign change of the two IVDb potentials. Formally on would expect the terms proportional
to k? and ¢? in Eqs. (18-22) to add constructively, because operating on a Yukawa func-
tion g? should give just a factor —BZ. However, the dipole form factor in the potential
/0 1s so strong that it dominates this term inside the OPE range, causing strong cancel-
lation of the two terms and changing the sign of the class IVb potentials at 0.8 fm. The
strong effect of the form factor may be the reason why the nucleonic contribution here
is significantly larger than that obtained in Rel. 6, where the two class IV interactions
nearly cancelled each other at the crossover angle. The corresponding term in the poten-
tial derived from the angular correction (Eq. (24)) has only a monopole form factor of
shorter range and is also proportionally smaller, so that this class IVb potential remains
significant at intermediate ranges. For comparison also the OPE contribution is shown
(dotted curve). Inside about one fermi radius the TPE potentials become significant and
should be given serious consideration at medium and high energies.

Table IV shows also the potentials using the nonstatic model results and for a softer
form factor with A = 790 MeV. It can be seen that, although the general features are
the same, the intermediate baryon energies may play a significant role. Especially in
the cases where a power of k is involved in the phase space integral, the nonstatic result
differs from the static one, since high momenta are weighted and baryon energies cannot
be neglected. One feature of these results is that the range in the present nonstatic model
is longer than in the static model (the mass parameters B are smaller). This is somewhat
unexpexted since with the intermediate baryon energies the intermediate states should
be further off mass shell. However, the longer range arises from the faster decrease of the
propagators in this case, while the larger energy denominator is reflected in the smaller
overall strength. Since the inclusion of baryon energies opens many new questions (e.g.
nonstatic effects in exchanges of one meson) and different possible approximation schemes
(this model of omitting all external energies in both the initial and the final state being
just one), in the present calculations the static model is conservatively used, with this
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nonstatic result given only as a precaution and for completeness.

The isobar TPE contributions of the ”"box” type to the mixing parameters y; and v,
are shown in Fig. 10. The solid curve is the part of the static model potential due to
the isobar intermediate states that can be calculated by iterating the NN — NA OPE
transition potential of normal range (the first term in Eq. (14). Its behaviour for partial
waves wilh its sign alternating with J is similar to one pion exchange, bul an order of
magnitude smaller. In all these TPE potential calculations the Reid soft core potential®
is used to generate the two nucleon correlations.

In the following calculations the energy dependence will arise naturally in the coupled
channels treatment of the dominant part of the TPE interaction, but would be clumsy
to introduce into a potential. Since only crossed propagators appear in the residual
interaction, its energy dependence is presumably much weaker than that of the box
diagrams and is neglected. As a numerical test of the possible equivalence of the iterative
box like potential of Eq. (14) and coupled channels, Fig. 10 shows a comparison of
this contribution to the mixing parameters v; and 7, calculated also by way of coupled
channels in addition to the approximation by a TPE potential Ng(Dpg + D¢ ) computed
at the zero energy. The agreement between the two methods at low energies (dotted vs.
solid curves) suggests that the potential approach is reasonable and should be even more
reliable in the less energy dependent residual interaction. At high energies the coupled
chanunels results are significantly larger than the corresponding energy independent TPE
potential would give. The reason for this deviation is mostly due to the influence of the
NA threshold. Also the interaction (Reid soft core potential modified to counteract the
channel coupling effect on the phase shifts) was made phase equivalent with the original
Reid potential only at 100 MeV, and the width of the VA state is included above pionic
inelasticity threshold. The dotted curve presents the real part of the mixing parameter,
which becomes complex in the presence of inelasticities.?* In the present case (H}) the
imaginary part is small, since the operator 51 X Op + L cannot connect NA states with
lower L than in the initial state. The actively participating intermediate stales are not
favoured in the transitions.

The situation is very different with the tensor transition potential part of V4, of Eq.
(10), which can arise from the use of both the charge independent couplings and the CSB
verlex H; . With this a high orbital angular momentum initial state can get to a low
L NA state. At the distance of 1 fm, most relevant for strong interactions, the gain
in the centrifugal barrier energy can be comparable to the mass difference, resulting in
an enhanced NA amplitude around this distance. Examples of transitions particularly
important in the NN interaction are 'D; —55;, 3F3; —5P; and !G4 —%D, "dibaryons”.
Sec. 11.3.2 indicated that this could be accounted for by a correction in the angular
dependence of the propagator. Fig. 11 shows now a comparison of mixing parameters
for P waves (dashed curves) and D waves (full curves) using the class IVb part of the
potential (24) derived in Sec. I1.3.2 vs. the coupled channels results. Again at low
energies the two methods give qualitatively similar mixing parameters, while at and
above the A threshold the coupled channels result is qualitatively larger. However, now
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it is important to remember that the figure shows only the real parts of coupled channels
results. The 55, and ®P; NA amplitudes go through a rapid resonance-like variation
around their respective effective thresholds,' and the imaginary parts are comparable
to the real parts.?* Quite apparently also this eflect must be included in the consistent
evaluation of TPE eflects in charge symmetry breaking.

In the following calculations the coupled channels method will now always be used to
treat the ilerative part of the isobar contribution, and the effects of V., and noniterative
nucleon states will be added to the coupled channels results. Furthermore, also p exchange
will be included in the isospin symmetric transition potential, so that equivalence of the
pion box potential and coupled channels can no more be expected.

In the above consistency checks the diagonal NN interaction of the coupled system
was the usual Reid soft core potential simply adjusted at intemediate range to produce
the same phases at 100 MeV as the original. In the final calculations a better overall
fit is used with also some short range modificalions added in both isospin states. To
be precise, using the NA transition potential defined below the corrections to the Reid
potential in the most inportant partial waves are (in MeV)

—3ur ~Tur
AV(®P)) = —150 + 18000
ur ur
—2ur e-ﬁu.r
AV('P) = 20 — 3100
ur ur
e—3ur e—’f,ur
AV('D;) = 230 + 8000 (34)
ur ur
e~ 3pr e-—?ur
AV(*D;) = 20 + 1500 :
ur ur

In this way the J = L phase shifts of the energy dependent analysis of Rel. 32 can
be reproduced to within three degrees over a wide energy range — only D, gets too
attractive above about 700 MeV. However, these potentials are only used to give the
distortions of the wave functions to calculate the mixing parameters v;. The strong
interaction amplitudes of Ref. 32 are otherwise used to avoid introducing unessential
theoretical error sources. As described in Ref. 8, the long ranged OPE is subtracted in
partial wave amplitudes and added back into the overall angle dependent spin amplitudes
to avoid truncation effects on the partial wave expansion. Also all the calculated mixing
parameters have the relativistic correction factor® (M/Er)?, where Er is the total energy
of a nucleon in the center of mass system.

The form factors are important in the overall strength of the transition potential.
This can be fixed most conveniently and reliably by the height of the pion production
maximum at about 580 MeV in the reaction pp — dnt. Using for this the model of
Ref. 33 with the pNN coupling constants g2/4m = 0.55 MeV and K, = 6.1>* it was
possible to reproduce this cross section with the above A = 1000 MeV for the pion and
A, = 1050 MeV for the p, not very far from the pion value but significantly smaller than

20


http:parts.24

the Bonn potential fit.3® However, this is quite gratifying in that the p does not see a
different nucleon than the pion, and is also consistent with the proton electromagnetic
form factor. No potential is inserted for the diagonal NA interaction Vya.

Figs. 12 and 13 show the final TPE mixing parameters 4, and 4, and their composition
of different contributions as a function of energy. The dotted curves are the results of the
coupled channels NA calculation only, analogous to (but not the same) the dotted curves
in Fig. 10. The residual interaction turns out to be about as important at low energies
due to its long range and the large factor in Eq. (20) vs. the factors in Eq. (18). At short
distances Vi, changes sign, and this diminishes its effect at high energies. It decreases
41, but enhances the value of the negative v, i.e. is a negative contribution in both.
Structurally this is similar to pw mixing, but again an order of magnitude smaller and of
opposite sign. The total isobar effect arising from H; and Hj is shown by the dash-dot
curve. As expected previously, at low energies v, is quite small. The noniterative TPE
with nucleonic states is in turn similar to pion exchange, as anticipated in the end of
Subsec. 11.3.1, and significantly increases both 44 and v; (in the former largely cancelling
the effect of V. and bringing the total essentially to the same result as the iterative
isobar contribution; dashed curves). The total sum of the TPE potential mixings, also
including the contribution from the H, vertex, is given by the solid curve. This part
shows the important 5S;(VA) threshold effect in the energy dependence of v,.

In Figs. 12 and 13 also the onset of the imaginary part is presented, since it is so
closely related to the box diagrams with A’s. It is clearly seen that the imaginary part
gets contributions mainly from the direct coupling to the VA states. For the inelasticity,
the isospin breaking tensor interaction due to H; is crucial. As a curiosity, to check
the cancellation of the NA effect under this interaction, if the correlations had been the
same in different channels, the L, was set to L = J in all NA channels. The result with
more similar channel wave functions was indeed suppressed by an order of magnitude as
compared with the above results, which confirms the conjecture presented in Sec. 11.3.2.
Also inclusion or omission any one channel in this exercise caused order of magnitude
effects in the cancellation, even if a high angular momentum state was omitted.

In Figs. 14-17 the TPE eflects to the observable AA(9) itself are given. Figs. 14-16
have these split into various contributions as in Figs. 13 and 14. The corresponding
energies are chosen to be the ones where there are data available?® or an experiment
is underway.? The division into single contributions is made to facilitate comparisons
and combinations with other possible calculations of similar nature. Fig. 17 shows the
full TPE eflect at four additional energies. These results show conclusively that at low
energies TPE CSB can be neglected. It does not affect significantly the IUCF point at
183 MeV. However, it is an about 15% contribution at the TRIUMF energy 477 MeV
and about 10% at 350 MeV. At higher energies also TPE is significant, though smaller
than the dominant mechanisms. The reason for the relative smallness of TPE is that
out of the four different contributions, roughly equal in magnitude, in 4, two pairs come
with opposite signs. At the zero cross over angle of A(#) this parameter is most decisive.
Without this destructive interference the effect could have been twice as large. Outside
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the zero crossing angle (especially in the forward direction) the TPE contribution to AA
is rather large.

Because the effect of TPE could, in principle, be larger than the result obtained above
at the zero crossing angle (also indicated by the fact that outside this angle the contri-
bution to AA is significant) a check of the dependence on the form factor is worthwhile.
For this purpose the potentials with A = 790 MeV of Table IV were used in a coupled
channels calculation. The isospin breaking transition potential had also the same form
factors, but the stronger isospin symmetric one was kept as it was before. In spite of an
apparent inconsistency at this point, physically there is little point to change the latter
much, since its strength is dictated externally by the reaction pp — dr*. At intermediate
energies the effect was to lower the TPE contribution to AA by 20-30%, while at low
energy (183 MeV) this caine down by a factor of three. The angular structure remained
the same. Therefore, no qualitalive change to the previous conclusions became necessary.
Making the form factor harder would apparently effect the opposite way, except that the
low energy result would not change as drastically. Since the latter is so small at the cross
over angle, the TPE effect remains still negligible at low energies. As observed also in
Rel. 8, varying the form factors cannot qualitatively change the angular distribution and
the forward maximuin does not move towards the angle where experiments are possible.

Finally, in Fig. 18 is a study of the angular distribution of AA. Due to measurement
uncertainty in the ratio of neutron to proton polarizations, AA(#) can be exiracted from
an experiment only to within a constant times A(#), as indicated in Eq. (1).3 In the face
of this amnbiguity, a meaningful comparison between theory and experinent can still be
made by considering the coeflicient of A(8) in Eq. (1) as a free parameter, adjusted to
minimize the variance of AA(#).? Effectively, this procedure determines a distribution
A A(8) optimally orthogonal to A(f) subject to the constraint (1). The same method
has been applied in Fig. 18 for the present theoretical results at 183 MeV *® using the
same angle range (68 — 121°) for the variance minimization as was used to obtain the
experimental results.® Here are shown the results including OPE++v + p (1nodel 1, dash-
dot and dotted curves) and OPE+p + v + pw+TPE (model 3, solid and dashed curves),
the interest being in the effect of the pw contribution. The curves without TPE at this
energy are slightly lower in the forward direction but qualitatively indistinguishable. The
full result changes little in going from the true AA(f) to the minimum variance modified
distribution, but in the OPE result the change is more significant. The resulting full dis-
tribution agrees well with the similarly treated data, and is essentially indistinguishable
from the one obtained from the Bonn results” in Ref. 3. In calculating the CSB p and
pw contributions, the full Bonn potential couplings and form factors®® are used, while
the distorting potential is the full coupled channels calculation as described above.

Fig. 19 shows a similar comparison of CSB eflects for the true A A(#) and the modifi-
cation due to the minimal variance at 350 MeV. (Here, an angle range 48 — 96°, centered
about the zero crossing angle at 350 MeV, has been used for the minimization.) Now the
change of AA(f) from the minimal variance in the case of the total result is much larger
than in Fig. 18 bringing the distribution close to OPE (which in turn reinains practically
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unchanged). The reason for this large elfect is the nearly complete correlation of the
pw eflect with the analyzing power A(f) itself at this energy, as was discussed in the
Introduction. This shows that above, say, 300 MeV the only significant contributions to
the minimal variance modified angular distribution must arise from class I'Va forces, i.e.
from charged exchanges. The minimal variance result without TPE at this energy would
be about uniformly 0.0007 lower than the dashed curve shown here. At this point it could
be added that the program SCORE,*® used in these calculations for [Figs. 18-19, does
not allow for inelasticity even in charge symmetric NN amplitudes (which is included in
all other results of this paper). Since this program has been widely used in recent theo-
relical work on CSB®? and also some other work? is elastic by construction, the neglect
of inelasticity above the pion production threshold deserves an explicit study.?’

IV. CONCLUSION

In summary, a systematic study of class IV CSB in TPE has been made including
both the NN and NA intermediale states. It can be seen that the energy dependence
in the box diagrams is rather crucial and apparently a coupled channels treatment of
the effect is preferable. However, far below the NA threshold an energy independent
TPE potential is found to be a reasonable approximation to the inore exact approach. A
division into two parts, in one of which the coupled channels method is applicable and the
other a residual interaction with ils propagator as in crossed diagrams, was introduced
and employed in the calculations. In the particular case of class IV interactions the
residual part was not small. This approach can be applied also more generally in charge
independent interactions and in the case of class I1II CSB.®® A practical parametrization
of TPE potentials is given in Table IV.

TPE does not change earlier interpretations of the available two data points at 183
MeV and at 477 MeV. The latter is dominated by OPE and the error limits are wide
enough to allow the present 10-15% TPE contribution to be added. At the lower en-
ergy TPE is negligible as compared with OPE, pw meson mixing and ¥ exchangs. The
proposed TRIUMF experiment at 350 MeV would be about intermediate also in the
importance of TPE. The smallness of the effect is partly due to cancellations between in-
dividual contributions of roughly the same size. From the formalism of Sec. 11.3 one may
expect the NA effect to be equal importance as TPE with nucleonic intermediate states
(calculated in Ref. 16) in the case of class III, but still an explicit calculation should and
could easily be done for the difference of the singlet scattering lengths Aa = app — @pn.
The formulae in Sec. I1.3 and the parametrization of TPE potentials in Table IV can
also be used as a starting point for calculating CSB in nuclei.

This work has evaluated one group of contributions of potential importance to CSB as
a precaution in interpreting the data. There are other effects which also have a long range
and should be incorporated for consistency. The mixing of the pion and the 5 meson gives
rise to similar transition potentials as the vertex H; does.?®?* This can be considered as
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long ranged since basically the 77 acts as if it were a soft form factor in OPE. Tle tensor
coupling will be important in the mixing of the D states around the A threshold energy.
Ref. 24 treated only box diagrams which appears justified, since the effect is formally
similar to that arising from H; discussed in Subsec. 11.3.2, and so the crossed box con-
tribution should be expected to be zero. Ilowever, the VN coupling constant remains
a great source of uncertainty in this effect. Another long ranged effect is the combined
pion and v exchange. It has been shown to be significant in the cases of the isotensor
interaction,'® giving 20% of the scattering length difference Aa = (app + @nn)/2 — @np,
and of class III CSB interaction,?® but has not been studied for class 1V forces. Further
work on this contribution is needed on this before CSB in np scattering can be said to
be understood. This need is even more compelling, if one considers the possibility that
pw mixing is strongly different for off-shell meson exchanges as compared wilh isospin
violaling on-shell decays or formation of p and w mesons. Recently a simple quark model
based calculation of Ref. 40 suggests that due to this effect the pw mixing potential
would be negligible in practice.
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Table I: The isospin factors 7; - 57"1 . JJ’I’J s ('.:2 X q_S‘)O etc. for the type Hy or Hj of
Egs. (4) and (8) CSB vertex in two pion exchange.

Diagram Operator (10|0Op|00)
Ja %i'rm + %i‘rm - %('Fi X T2)o %i
3b —2ir50 — dimp0 + HGR T —3i
3c %iTgo+§iT10+%(ﬁ X‘I:é 0 *%l
3d -gi‘rzg — %iTIO —_ ';'(T_; X T;)o %‘L
3e —2iry0 — im0 — %(‘r‘i X T3 )o 0
3f 2irso + $imi0 + 3(71 X T2)0 0
3g —3ir50 — ZiTyo + HGE R 0
311 %iTzo + %iTlg = %(‘fi X T—é)g 0
4a %i‘rgo - %1:1’10 -+ %(7:; X T;)o —gl
4b :‘23?:720 - %’iTlg — %(fi X 7';)0 -—‘3'1,
4c "%’i"’zo + %iTIO - %(ﬁ X T2 )o %i
4d *gi‘f'zo + %i‘f‘lo + %(ﬁ X T3)o %i
de —‘%i"'zo + %i"'m + %(‘Fi X 72)o %i
af —2iry0 + dimyo — 3(71 X T2)0 &
1g 3im20 — 5im10 — 3(71 X T2)o —4i
4h ‘:‘;iTzo - %ifm + (71 x 2)o ~—§i
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Table II. The space-spin structures of different diagrams for vertices H; and H;. The
coefficients A*, B, C and D are as defined in Eq. (17).

3a | A~ 420 qxp-o ~Bgxp-02 —D(qx01)(px02)
da | —A~  —20Gxp-a —-Bgixp-02  +D(§x 1) (px02)
3b | —A-  42B{xp-d —Cqgxp-d2 —D(pxar)-(qxa)
4 | ~A~  +2BIxp-6 +CGxp-o2  +D(Fxa1)-(7x )
3¢ | —-A- —Bixp-a1 +2Cq¢xp-02 =D (pxa1)-(qx0)
4c | —A- —Bixp-61 —-20¢dxp-02 +D(pPxa1)- (g% )
3d | —A- —Cqxp-dy +2Bqxp-ds —D(7x 1) (px2)
4d | —A- +CGxp-d1 +2Bixp-d2  +D(Ix 1) (px02)
3e At =20 {xF-d +Bgxp-02  —D(§x 1) (§x )
de AY 420 GxF- +Bixp-2  +D(§@x i) (px )
3f At —2Bgx§-a +Cgxp-dz =D (Fxo1)-(qx02)
4f At 2B {xp-c -Cqxpg-03 +D(pxay) (qxd3)
3g A¥ +Bgxp-a1 —20¢xp-02 =D (px 1) (qxa3)
4g At +Bgxp-o0y +2Cqxp-0;  +D(§x 1) (¢ x d32)
3h A+ +Cgxp-o1 —2Bgxp-oz —D(qxa1) (pxa2)
4h A+ -Cgxp-61 —2Byxp-d2 +D({x 1) (px )
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Table III: The isospin factors 7 - ¢ ¢o T4 - ¢ Ts - ¢
Hy of Eq. (4).

etc. for the CSB vertex of the type

29

Diagram BOX CROSSED
Operator (10|0p|00) Operator (10|Op|00)
9a %7'10 + f.;(‘fi X T2)o % %Tm - %(fi X T2)o 0
9b 210 — %(ﬁ X T2)o : 210 + é(ﬁ X T3)o 0
9¢c %Tm - %(ﬁ X T2)o 0 $T10 + 5(71 X 12)o ;
9d ;’2;7'20 + %(ﬁ X T2)o 0 3720 — %(ﬁ X T2)o -2




Table IV: Parametrizations for potentials V;(j) as described in the text. Here in the
form factor n = 2 for V5 and n = 1 for V;, whereas V; has no form factor. All A’s are
given in the units of MeV{m3~* and B’s and C’s in fm~!. These need the appropriate
coupling constants and other numerical factors shown in Egs. (18-25) to make the
actual physical potentials.

Ao B, Co A, B, C, Ay B,
A = 1000MeV
NA cross -1.426 1973 6411 -2.368 3.200 8.635 -14.60 4.786
NA box -3.021  2.267 7.577 -7.200 3.745 9.468 -66.80 5.384
NN cross -3.905 1.689 6.005 -4.861 2.830 9.228 -23.51 4.720
NN ’long” -1.310 1.604 5.313 -1.624 2.603 6.707 -8.007 3.715
Angle -2.715  3.788  8.184 -22.56  5.257
A = 790MeV
NA cross -1.280 1.909 4.997 -1.722 2.837 6.079 -7.682 3.774
NA box -2.635 2,113 5.828 -4.773 3.222 6.831 -30.28 4.260
NN cross -3.579 1.660 4.680 -3.729 2.515 6.250 -13.25 3.664
NN ”long” -1.195  1.605 4.201 -1.244 2.399 4.721 -4.506 2.969
Angle -1.884 3.276 5.905 -10.65 4.131
Nonstatic
A =790 MeV
NA cross -1.113 1.866 4.039 -1.290 2.842 3.870 -4.852 2.909
NA box -2.052 1.901 4.479 -2.620 2.642 5.210 -10.13  3.283
NN cross -2.970 1.594 3.493 -2.549 2.372 3.533 -7.261 2.550
NN ”long” -1.056  1.525 3.726 -0.961 2.213 4.056 -2.949 2.610
Angle -0.832  2.230 5.034 -2.112 3.085
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FIGURE CAPTIONS

Figure 1. The experimental data point of TRIUMF? at 477 MeV vs. theoretical results
of Ref. 8: OPE with the np mass difference (dashed curve), including also heavier mesons
(mainly pw meson mixing, dash-dot), including also the interaction of the neutron mag-
netic moment with the proton charge (solid).

Figure 2. As Fig. 1 but theory at 188 MeV, experiment at 183 MeV.?

Figure 3. The choice of momenta for calculating two pion exchange contributions. The
overall momentum transfer is ¢ and k is an integration variable.

Figure 4. Different possible time orderings of two pion exchange.

Figure 5. CSB pion-nucleon coupling (circle) in the TPE box diagrams. Each diagram
gives a diflerent contribution to the spin-isospin structure of the numerators.

Figure 6. CSB pion-nucleon coupling (circle) in the crossed pion diagrams.

Figure 7. Possible contributions of the CSB vertex H; (see Eq. (4)) to TPE involving
the NA intermediate state. CSB can take place only in the nucleonic vertices.

Figure 8. Contributions from diflerent isobar effect parts to the class 1Va and IVb CSB
potentials in the momentum space. Here "box” means the first term of Eq. (14), which
can be obtained by iterating normnal pionic transition potential.

Figure 9. The TPE contributions to the class IVa and IVb CSB potentials in the co-
ordinate representation. Solid lines: the isobar contributions as in Fig. 8. B refers to
"box” and R to ”residual”. Dashed lines: the nucleon intermediate states not obtained
by iterating OPE. Chain line: the contribution from the isobar box angular correction
as discussed in Subsec. 11.3.2. Also shown is the class IV OPE CSB potential of Eq. (7)
(dotted line). All class IVa potentials remain positive, while those of class IVb become
negative at short distances.

Figure 10. The real parts of the mixing parameters v, and +y, arising from H, and H}
with NA excitations calculated by coupled channels (dotted) and by the corresponding
zero energy box potential (solid).

Figure 11. Contributions to the mixing parameters v; (dashed) and -, (solid) arising
from the H, vertex in the box diagrams of Fig. 7. The smaller ones are results from
using the class IVb part of the potential (24), whereas the larger ones are obtained from
a coupled channels calculation (the real parts of v4; are shown).
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Figure 12. The TPE contributions to the final mixing parameter v;: Dotted: Coupled
channels result including A’s with the vertex I;; Dash-dot: Including also the residual
interaction (20); Dashed: Including also the nucleonic intermediate states; Solid: The
total result, where also the transition poteniial arising from H;j is used in the coupled
channels calculation. The curves starting above 400 MeV are the imaginary parts, others

the real parts.
Figure 13. As Fig. 13 but for 7,.

Figure 14. TPE contributions to the observable AA(8) at 477 MeV. Notation as in Fig.
13.

Figure 15. As Fig. 15 but at 183 MeV.

Figure 16. As Fig. 15 but at 350 MeV.

Figure 17. The total TPE effect on AA(f) at four more energies.

Figure 18. The true and minimal variance modified angular distributions of AA(9)
at 183 MeV. 1 refers to OPE++v + p contributions, 3 to the total of all (OPE+p + v +

pw+TPE). The data are {from Ref. 3.

Figure 19. As Fig. 18 but at 350 MeV.
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"AA(6)": Modifications to Theory
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"AA(0)'": Modifications to Theory, 350 MeV
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