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New Solutions of the Yang-Baxter Equation Without Additivity
and Birman-Wenzl Algebra with Colour
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Abstract

New solutions of the Yang-Baxter equation associated with the fundamental rep-

resentations of An(n > 1), By, C, and D, without the additivity of spectral parame-

ters, are found in terms of the weight conservation. The Birman-Wenzl algebra with

colour is constructed and the explicit examples are given in the cases of B,,,C, and

D,.
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1 Introduction

The Yang-Baxter equation (YBE) plays a fundamental role in the integrable systems
in 1+1 dimensions and the exactly soluble models in statistical mechanics [1-4]. Many
solutions of the YBE

Ri2(z)Raa(z y) Riz(y) = Ras(y)Rua(zy) Ras(2) (1.1)

, (= €*) and y(= e") are spectral parameters with additivity, have been found.
Among them the trigonometric solutions associated with the fundamental represen-
tations of A,, B,,C, and D, were constructed based on the quantum group (QG)
[5]. By taking the limit of R(z) the YBE (1.1) is reduced to the braid relation [6]

512523512 = 52351252 (1.2)

It is well known that the solutions of the braid relation associated with the represen-
tation of the Lie algebra can be constructed from theory of QG [7,8] and calculated
in terms of the weight conservation and the extended Kauffman diagrammetic tech-
niques [9,10]. It is shown that there exist two types of the braid group representations
(BGRs) associated with the fundamental fepresentations of A,, B,,,C, and D,,: stan-
dard and exotic [11,12], and the structure of the Birman-Wenzl (BW) algebra [13]
exists for the BGRs, not only for the standard ones [8] but also for exotic ones [14],
in the cases of B,,C, and D,. The corresponding explicit solutions of the YBE(1.1)
can be obtained by the Yang-Baxterization prescription [15,16]. ’

On the other hand, the solutions of the YBE without additivity have been found
[17). As is known, the complicated calculatins were made for deriving the non-
additivity of spectral parameters for YBE. It is not clear what the relation is between
these solutions and the structure of Lie algebra. Recently, Murakami [18] has found
a simple solution of YBE without additivity which can be expressed as a 4x4 matrix:
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A — 1.3
S ‘ t,\tn t;I(t'i - 1) ( )

—-t“"l

where ) and u are interpreted in colours, and t,,t, are coloured parameters. In Ref.
[19], we solved directly the YBE

Rlz()\, #)1'323(/\, V)sz(#- v) = st(#, V)Rn()\a V)RZS(’\‘» ﬂ) (1-4)
2



and obtained two solutions:

K

0 - nX(N) _
Ri(A\p) = (1.5)
7 X)) (g—q71)9(N)g™ (k)

gX(A) X (p) |

0 nX(A)

7Y (r) W(Ap)
-¢ ' X(N)Y (1)

where X()),g(A) and Y()) are arbitrary functions of A and W(), ) satisfies the

relation

RII(As/“) = (1‘6)

WO )W (,v) = (g = XY (W)W, v) (L7)
It is shown in Ref. [18] that the solution (1.3) is a special case of solution (1.6).
When A = g, the solutions (1.5) and (1.6) will be reduced to the standard and exotic
solutions of the braid group, respectively. In Ref. [20], the new hierarchy of solui:ions
for SU(2), called colored-braid-group representations, have been constructed. As a
natural extension, we will seek other solutions of the YBE(1.4) associated with the

representations of Lie algebra.

In this paper we will show that there exist the solutions of the YBE(1.4) associated
with the fundamental representations of An,(n > 1), B,,C, and D,. When X = g,
these solutions will be reduced to the corresponding BGRs. We construct the BW
algebra with colour, which will give the usual BW algebra when all colours are the
same. The explicit examples are calculated in the cases of B,,C, and D,. In sec.
II, the solutions of the YBE (1.4) associated with the fundamental representations of
An(n > 1) are found in terms of the weight conservation. There exist two types of
variable-separation solutions that correspond to the standard and exotic ones. In sec.
ITI, the similar method appearing in sec. II, is used to discuss the cases of B,,C,
and D,. In sec. IV, the BW algebra with colour is constructed. It is shown that this
structure exist for B,,C, and D,.

2 Solutions of R()\, x) Associated with A4,(n > 1).

The structure of the BGR associated with the fundamental representations of A, has
been given in terms of the weight conservation in Ref. [12]. We need to put the
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spectral parameters without additivity or colours in this structure only. Under the

circumstances we assume that R(), u) has the following form:

R("\s /‘) = Z Ua('\) ﬂ)eaa®ena+z W(a'b)(/\a F‘)eaa Qess +ZP(0'6)()H l‘)eab®eba
a a<b a#b

(2.1)

where (€qb)ed = 6achpa, a,b, ¢, de[-21, — M1y, B2l N = nt 1, UaCWWEH (), p)

7
and p(®¥ (), u) are determined parameters by solving the YBE (1.4).

Substitutiﬁg (2.1) into (1.4) we obtain the relations :

4

p (A, v)pl) (4, v) = p®(u,v)p*I (A, v) (a<d)
P, )P (A, v) = plI(A,v)p*I(A, ) (b<c)
PP, g)Ua(A, v) = p*IV)Ua(M ) (a #b)
{ Ub(/\,u)p("'b)(p, v) = Us(pu,v)p*M(A,v) (a #b)
WD, w0\ )WES (u.v) + p@D(A, p)WEB(X, 1)pta) (4, v)
= Uy(p, )W (X, v)Uy(A, 1) (a < b)
Ua(A )WEDN A 0)Us(pyv) = WED(u,0)Us (A, v)WER(A, )
& + P (p, )WED(A,0)p(N 1) (a < b)
(2.2)
and
(PO, WEINNWE(pv) = WO (p,w)pI(A, )W EI(N,p) (b<a<c)
WED( YyWE (A v)ped) (4 v) = W®I (g, v)p@d(\, v)Wiee) (e<b<e)
J WA, )Wy, v) = W, )WEDN R, v)pCI(N p) (a<b<o)
WA, A, )W (p,v) = pt ()W )WED (A, p) (a < e < b)
WEIO,WWEIO WD)+ poD0, WD, 0)p0) s, )
| = WO, )WEDA, )W p) + pl ()W, v)plD (N p) (e <b<c)
(2.3)

The relations (2.3) exist for n > 1 only. When n = 1, the solutions of the YBE
have been discussed in Ref. [19]. So we consider the cases of n > 1 here.

(1.4)

Let us consider variable-separation solutions of Egs. (2.2) and (2.3). Suppose

Ushp) = %) fla(w)la
PPN ) = FPen(d) Fanke)

Eq. (2.2) leads to the following constraints:

% (A) = 9apy (V) = 9(N), fa (1) = Sy (8) = fal)
(Ua + Uy Yga(1) fa(1) — 96(1) fo(1)) = 0
WEA, W uv) = (Uaga() folk) = U gs(m) o)) WED (A, v)

(2.4)

(2.5)



By solving Egs. (2.3) and (2.5), up to a common factor f;!(x)g;"(x), we obtain the

solutions:

(1) Us(M ) = q9a(N)gz (1), PP (A, 1) = go(A)g ()
WD, 1) = (9= ¢ )gs(N)ga (1) ha(A) Ry H(A)RTH (1) hs(p)

(2.6)
and
(DVar) = UsgalN)azh Uaele, a7}
PPN k) = g(N)gaa™ (k) |
WO L) = (9= g ")gs(N)g5 (1) ha(A)h5 (A)RT (1) s (k)
| (2.7)

where q is an arbitrary parameter, ga(A) and h,(X) are arbitrary functions of A. When
A = u, the solutions (2.6) and (2.7) are reduced to the standard and exotic solutions
of the braid relation: '

Ua(’\’A) = Uaa U, = q or er{q, _q_l}
PN = g(Ngzhyy W) =g—¢7,
PO =1 @8

3 Solutions of R()\, 1) Associated with Bn,Cn and
Dn |

According to the similar consideration in sec. II, the R()\,u) associated with the

fundamental representations of Bn,Cn and Dn has the following structure:

R(’\, l“) = Z Ua(Aa lu')eaa ® €aa + Z W(a’b)(/\aﬂ)eaa ® ew + Zp(a,b)(ks /‘)eab ® €pe
a a<b a#b

+ Z q(a’b)eab @ e_q-s (31)
a,b

where a,be[- 251, .. ¥=1] N = 2n +1 and 2n for Bn and Cn(Dn), respectively. In

(3.1), we assume that

a, ab ab a, =
q( b)(Aa /“)'o::kb = Q((A,#))la,b>0 = Q((,\,,_,,))|a$0,b>|a| = q( b)(/\, I‘)|b$0,a>|b| =0 (32)
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Substituting (3.1) and (3.2) into (1.4) we still obtain Eqgs. (2.2) and @2.3) in the cases
ofa+b#0,a+c#0and b+ c # 0. by solving these equations we determine the
parameters U, (A, 1)(a # 0),pl®® (A, u)(a + b # 0) and WEH (X u)(a + b # 0) given
by

Us(Mp) = qga(A)gs* ()(a # 0)
P\ p) = ga(N)g; (s)(a+b#0)
WeOu) = (g— ¢ )a(Ng (u)(a+b#0) (3.3)

where, for simplicity, we have taken U, = q and hA(\) = 1. The other constraints
given by the YBE (1.4) are different for Bn,Cn and Dn. In the following, let us first

consider the case of Bn.

(i) The case of Bn. Under the case, besides Egs. (2.2) and (2.3), the YBE (1.4)

gives rise to the constraints:

Uo(A, 1)Uo(A, v) = p=9 (A, 1)p®*) (A, ) (a > 0)
PO, 1)p =2, v) = Up(p, v)Uo(A, v)(a > 0)
PO (A, 1)g® (A, v)pt = (, v) + WO (A, p)p O (A, v)g % (1, v)

= p® (i, v)g (A, v)Ua(X, ) (a > 0)
PO W)gO T mU-a(pyv) = WED ()00, 1) O (3, )

+p* (s, v)g @™ (A, w)p® "D (A, 1)(a > 0)

¢, ;z)q‘O AP0 + WEI, w0, )W, 0)

= p®O (., )W (X )W\, )(a > 0)
p@"")(/\,u)W(o'“)(«\, V)W( a,O)(#,y) - q( a,O)(#, u)q(°' a)(/\, u)p(“"o)(,\,p)

+WO ()OI (A, ) WO, p)(a > 0)
g (A, 1)g@ (A, )p* D (, v) + ¢, 6)p® I (A, )W BRI (1, 1) = 0(0 < a < b)
7@ (s, v)g @D (A, )pEI (A, 1) + OV (4, v)WED (A, ) = 0(0 < a < b)
g (A, 1) gm0 (A, v)p @O (i, v) + ¢4, w)p @Y (A, V)W) (4, ) = 0(0 < a < b)
=0 (1, v)g = (A, )P (A, 1) + ¢ (1, v)p O, )W (A, 1) = 0(0 < a < b)
g2, g @A), v) + g2, w)pCO (A, )W SO (4, v) = 0(a, b > 0)
g2, v)g® (A, )pO (A, 1) + ¢ (1, )p (N, )W OD (X, ) = 0(a, b > 0)

gO, U (A, )W (1, 0) + 3 g, )W EI (A, )¢ =5 (4, v)
<a

+Us(A, p)W O (A, v)gO =, v) = WO (4, 1)g!% (A, v)Ua(A, p)(a > 0)
WO, 1) gC I\, v)U—a(py v) = ¢O (1, v)U-a (A, v) WS (A, p)
6



£ 300, )W, 0)g I, ) + ol WO, 2)gOI (A, ) >0)
b<a
(3.4)

and

PO )U—a (s, v) = p4 (1, v)p® (A, ) (0 < a,b < a)

PO, w)p@eD(\, v) = p2 (A, v)Ua (A, 1)(0 < a,b < a)

¢=b I, )@ (A, v)p D, v) + WD, w)p® (A, )W) (4, v)
= =)y, v) Wb (X, )W 2D (X 1)(0 < a < b)

PO, )W (u, )W (A, ) = ¢ (1, 1)~ (A, v)p*D (A, )
+WE (4, p)p@=B (N, )W ED(A, ) (0 < @ < B)

q('“‘b)(/\, y)q(""““)(k, V)p(b"“)(;l, v) + W(-a,a)(A’ ﬂ)p(a.b)()\, V)W(_“'b)(#, v)

PO, )W B )W S8 () = g8 (4, 1) B (A, )@ D(A, )
+W ) (g, v)p B A, )W (A p)0 < b < a)

4O WU ) (1, v) + 3 g, 1)g () WED (A, v)
a<lc<h

+p=I (A, WD, 0)p = (1, ) = pD (, YWED (A, 1) (A, 1)(0 < a < B)
f"a";;‘,t') p(-b,a)(A’#)W(c,b)(A’ v) - p“‘"b)(p, u)p(“"“)(;t, u)W('b*'“)()\, u)p(""-“)(A, m)

+¢ D, U (A v)g ™ 0) + 3 ¢, ) WER=I (A, v)gmo) (N, 1)(0 <ach)
a<c<h

7D, w0, ?)W(-b,b)( By v) + plO (N, p)WED (A 1)g(—3=8) (4, v)
= WD (4, 1)g @D, )Uy (A, 1)(0 < a < b)
WD, w)g D, v)Uop(,v) = p& (1, V)W P2 (X, 1) g, v)
+q@ I (4, V)U_s (A, v )WEBD (A 4)(0 < a < b)

(3.5)
Substituting (3.3) into (3.4) and (3.5) we obtain the solutions as follows:
Us(h ) =g0 (Mg  (#)y P (A 1) = ¢7'9-a(N)g7 (k)
WS (A, 1) = (g — ¢71)(1 — g~ ga (Mg (1)
gO= () = —(g—q71) ¢~ 2g5(N)gs (1) (a > 0)
g2\, p) = =(g — g7)g ™+ 2g,(A)g5 " (1)(a > 0)
¢> A p) === 97" 9-a(N)g; (1) (0 < a < B)
¢+ p8) = —(g = 47" Pe(A)9Z3(1)(0 < a < b)
g0 ) = —(g— g7 Ng ™ g (N)g5  (k)(a,b < 0)
(3.6)




where g(A) should be satisfied the relation:

9a(A)g-a(X) is independent of index a (3.7)

(ii) The cases of ¢, and D,. Under the case the YBE (1.4) leads to the algebraic
equations (3.3) and (3.5). The distinction between C, and D, is that the element
WYX 4) of R(),p) - matrix is equal to nonzero and zero for C, and D,,
respectively. By solving Eqs. (3.5) directly we obtain the solutions:

Vb)) = a0V (W), D0 0) = as(Ng'(8)  (a+b#0)
WA, p) = (g—q NeNg W) +b#0), P\ u) =g g-a(N)g (1)
@A p) = —(¢-a N t9-a(Ng ()  (0<a<b)

@ u) = —(g—9¢7") ¢ Pe(Ngi(w) (0<a<d)

{ (g— g1 + g2 1) g, (\)g7 () for C,
(¢= a1 —q7**)ga(M)g (1) for Dn

{0 ) = { (9= ¢71)g7* " ga(N)g; (1) for Cn (3.8)

W(—a!u)(}‘a F‘) =

—(g—q7")g™ " g, (\)g; (1) for D,

where a,be(—n + 1/2,—n + 3/2,...,n — 1/2) and g,(A) are also constrained by the
relation (3.7).

We emphasize that the solutions (3.3), (3.6) and (3.8) are one type of the solutions
associated with the fundamental representations of B,,C, and D, only, which will
be reduced to the standard BGRs when ) = u. It is worth mentioning that there
also exists another type of the solutions corresponding to the exotic BGRs, which
can be obtained by changing the coefficients depending on A and u of the elements of
R(), p)-matrix. Considering that the calculation is lengthy and complicated we will

not write it here.

4 BW Algebra With Colour

In the R(\.u) satisfied the YBE (1.4), the parameters A and g can be understood
as the colours. According to this consideration, we try to construct BW algeba
with colour. As is known, the usual BW algebra is generated by the unit I, the
braid operators G; and the monoid operators F; and depends on two independent

parameters m and ¢ [13]. In order to colour the usual BW algebra, we introduce
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the operators I;(\, 1), RGi(), p) and E;(A, i) instead of I,G; and E; . Gi(A,u) and
I(\, p) satisfy the relations: ‘

G.-(/\,p)G.-“(/\,u)G;(p,v) = Gipa(p,v)Gi(A,v)Gisa (A, p)
Gi(\ p)Gi(v,p) = Gi(v,p)Gi(A ), li—jl22 (4.1)

and

LW LA ) E(p,v) = Lpa(p, v) (A v)Lia (A, p)
Ii(’\vl‘)lj(vvp) = I,‘(z\,ﬂ), It_leg
L) (e, A) = LA =Lp,p) =1 (4.2)

where [ is unit. We define the following algebraic relations:

Ei(Ap) = m™(Gi(Mp) + G (p, A) = LA, )
E(\p)Gi(p, ) = Gi(Ap)Ei(p,X) = £ Ei(\ )i, A) = £ L(, p) Ei(p, M)
EiA ) Ein(Mv)Ep,v) = LA p)lip(Av)Edp,v) .
= E\ ) Ln (0 )i, v) = La (1, ) By 0) i (A, 1) _
Eini(p V) E(AV)Ei1 (M 1) = Lia(p, v) (A, v) Eia (A, 1)
= Epa(p, v)E(A, V)i = L, p) Eipa (A, v) Li(p, v)
G, 1)Gira (M V)Ei(p,v) = Eiga(p, v)Gi(A, v)Gisa (A, 1)
T = Ei(p, V) Ei(A, v)i41(A, 1) = L(X, ) Eia (A, v) Ei(p, v)
Ei(A 1)Ginn(A v)Gi(p,v) = Gina(p,v)Gi(A, v)Eiga (X, 1)
= E(\p)Eii(0 ) (s,v) = L (4, v) Ei(A, ) Erea (A, 1)
G\ LA ) L(p,v) = Lipa(p,v)Gi(A v)Lipa (A, 1) = L(A, p) i (A, v)Gi(p, v)
Gina(p, V)L Lip1(As ) = L p)GinaLi(pyv) = Lia(p, V) (A 0)Gisa (N 1) (4.3)

where m,{ are arbitrary parameters independing on the colours, G;*(g, ) is the
inverse of Gi(u,A). In terms of the algebraic relations (4.1)-(4.3), it is easy to derive
other algebraic relations given by

Gi(A )i, A) = LA u)Gi(p, )
E(\ ) Li(p,A) = L(A p)Ei(p, )
E(Ap)Ei(p,A) = (m7H €+ €7 = 1)Ei(A p)Li(p,A)
Gi(A 1)Gi(k,A) = m(Gi(A, p) + £ Ei(\ ) Li(p, A) + T
Gi(A w)Gi(p, NGi(A 1) = (m+)Gi(A p)Gipy MIi(A, 1)
9




=7 m +1)Gi(A, )

Gi(’\a /"’)Ei-H(A’ V)Ei(ﬂ'a V) -
= Gi_l(lu’u)EH-l(’\’V)Ii(/‘sV) = Ii-H(/‘,V)Gi—l(uﬂ\)Ef‘H('\’”)'
= E(\ )G, V(s v) = Ly (p,v) Ei(A,v)GY (4, v)

Gip1(p, V) Ei( A, V) Eiga (A, 1)
Ei(A, 1) Eisa(A, v)Gi(p, v)

Ei1(p, V) Ei(A,v)Gia (A, p) =
= LLipa(p, V) Ei(A v)ia (A, 1)
= ZIi(A} l‘)Ei+l(’\’V)Ii(#’ V)

Ei('xa F)Gﬂ-l('\, 14 )El(ﬂ'} V)
Ei+1 ("s V)Gs'('\7 V)EH-I(’\) /‘)

Gi(’\’ /“)EH-I ()‘a u)G’,-(,u, V) =

Gis1(, V) Ei(A, v)Giga (A, p)
Ei(\ #) i1 (A, v) Ei(p, v)
E.‘+1 (tua V)I,(A, V)Es'+l(‘x’ l‘)

Gi(A, p) i (A, v)Gi(p,v) =
Gi+l(/‘a V)I:'('\a V)Gt'-f—l(Aa »u) =

Z_II:'(A’ f‘)
Gip1(v, W) Ei(X, v)Lip1 (A, 1) = LA, p)G (v, M) Ei(pt, v)

Ein(p,v)G7 (v, 1) = LA, ) Eia (M, V)G (v, )

G (v, ) Ei(M, V)G (1, A)

G (1, N Eiga (A, v)GT N (v, )

(m7' €+ 7) = DE, p) i (A, v) i, v)

(m™ €+ 7)) = )i (2, v) (A, V) Eiya (A, )

(m(Gi(\, 1) + € Ei(A, 1)) + L\, ) L (A, )i, v)

(m(Gisa (4, v) + € Eipa (4, v)) + L (8, v)) LA, ) ia (A, 1)
(4.4)

For reason that the algebraic relations (4.1)-(4.4) will be reduced to the BW

algebra when A = g = v [13], we shall call the algebra generated by the operators
LA p),Gi(A, p) and Ei(), u) the BW algebra with colour. In the following we will
show that the R(}, u) associated with the fundamental representations of B,, C, and

D,, admits this structure.

Before doing so, we express these generators as the tensor product:
A p) =T @ - @IV (Xin) @ A, ) ® T (Xiga) @ - ® I™(An) (4.5)

where A(\, ) stands for I(\,u),G(A,u) and E(),u), IV)()j) is the unit denoting
by color Aj. In terms of the method appearing in Ref. [6.9], we introduce the
diagrammatic symbols defined by ‘

A M A4

v ¥ \
Iam= , GOwp = A ,

A A Moa

AM oM
o = N\ Eam= "

/ ) w’ )

MN M A

10



the algebraic relations (4.1)-(4.4) can be represented by Figs. 1-4 (the coefficients are

omitted), respectively.

FIG. 1 Yang-Baxter algebra with colour.

’i?"" "‘J“,V o S S YR
= v )
O | b { , ,
v r A N o N N
‘k:«“ XA M
A M A A MM

FIG. 2 The operator I(), p) satisfies the relations.
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FIG. 3 Some algebraic relations given by (4.3).

A 1/&; AWy A QY APV LY
o Il XL
I,,:-'-.! = ":"\ : - [.___/\ 1 - ( ,..".:-'. - /....'l

2 N v N v ,AA v aeN v oux VN
Yago sy ’TM ApY A Ay
AU DG -G B
( s X T J v k v '\'filf.
Al | X 7 X s X
v M A v ou v M A y M A VAN v N
nopy A pov AMy M Q,ﬂ'v Ap v
: \ = l N, = l tes ey =

1 [ , K\ ‘ l ) /\ l ’ /

voM A A RN VoM A v A A vV AN v M A
AAv  ApMY XMy A MY AMY ApuV
4 9 ] o A

"I'_;‘.:' = ‘ f {‘ = I W S " = ';: l
‘ 2 AN PANE BRI | A%

V' N v AN Ve M A NN v

FIG. 4 Some algebraic relations given by (4.4).

As is known, the linear representation of the generator R(\, u)(I(), 1) and E(A, u))
is the R(), p)-matrix on the space V(A)@V (u)(R(\, 1) : V()®V (1) = V(»)®V ().
The R()\, p)-matrix associated with the fundamental representations of B,,C, and
D, has been given in Sec. III. The corresponding R~*(y, \) has the form:

R(p,A) = 2Us(pyN)eas ® €aa + 3 WD (1, 0) @ s + 3 p™ (1, Neaws @ s -
a a>b a#b

+ Z qt(a.b)(#’ ’\)eab S €_a-b) (47)

a,b
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and '
¢ (g, Mla=ts = ¢ (1, Mlapco = ¢ a0 =] 10 =0 (4.8)
0<{a) a<(b)

The nonzero elements of the R~1(u, A) are given by

Ui(1,A) = g7 9a(N)g: (1)(a # 0), Ug (1, A) = go(A)g5™ (k)
WA (u, ) = —(g — ¢7")gs(N)g; * (4)(a + b # 0).
W= (p, ) = —(g — ¢ )(1 — ¢, 9_a(N)g=2 (k) (a > 0)
Pk, 2) = gs(N)gz (1)@ + b # 0), PN (u, A) = qga(N)gZ2 (k)
¢ (u,A) = (g - ¢7")g* 2g-a(N)g5 (#)(a > 0)
7O, X) = (9= ¢7)¢*V?gs(N)g-a7" (1)(a > 0)
¢ (U, A) = (g—¢7")g " g(V)g-a""(0 < b < a)
¢, A) = (- ¢7)g " *9-a(N)gs 7 (1)(0 < b < a)
¢ () = (g — ¢7)g*** 9o (V) gy~ ( m)(a,b > 0) (49)

for B, and

Ui ) = q7'0a(Nga (1), WENu,A) = —(g—¢7"),06(N)gi ' (u)(a + b # 0)

PP (p,X) = go(X)g7 (1)(a + b # 0), p"*Lgga(N)g—a (4 )

_a+btl for C.
#(a,b) - s | —a A _ -1 q n b
g (1,2) = (¢ — ¢77)9-a(A)g-s (u){ 1 for D, (a,6>0)

W= (p,A) = (g = ¢7)g-a(A)g-a " (1) { 8 i:ifi)) iz g: . (4.19)
for C, and D,. ' “
Setting
G\ u) = (—l)lnR(Aol‘)’ m= (-1)1/2(9 - q-l)
q~*" for B,
L= (=173, A={ —¢ ™ for C, (4.11)

g~ for D,

from 5th equation in the relation (4.4) we obtain
IO.p) =3 9s(N)g5 " (1)eaa @ ens (4.12)
a,b

Substituting (4.11) and (4.12) into the first equation in (4.3) we derive to E(\, u) in
the following form:

EQp) == eaepVamg-a(A)g-s~ (i) €ab ® €—as (4.13)

a,b
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where ¢, = 1 for B, and D, ¢, = 1(a < 0) or —1(a > 0) for C,, and

Y= (4.14)
a+1/2,(a <0)

a(a =0) for B, and D,,éd = { a—1/2,(a <0)

a+1/2,(a > 0)for C, (4.15)

o
I

a—1/2(a>0)
By the direct calculation we can prove that the matrices I(), ), G(A, g) and E(), )
given by (4.11)-(4.15) satisfy the algebraic relations (4.1)-(4.3). It is shown that the
R()\, p)-matrix associated with the fundamental representations of B,,C, and D,
admits the structure of the BW algebra with colour. *

14


http:4.11)-(4.15

Discussion In this paper, we have derived new solutions of the YBE (1.4) associated
with the fundamental representations of A,(n > 1), B,,C, and D,, and constructed
the BW algebra with colour. It has been shown that the R, ) for B,,C, and D,

admits this algebraic structure.

It is worth notice that there also exist solutions of the YBE (1.4) associated with
other representations of Lie algebra, but which can not give rise to the BW algebra
with colour. This situation will appear in the high dimensions.

We would like to point out that starting from the R(), u)-matrix we can construct
"second” Yang-Baxterization prescription to generate the solutions of YBE (1.1), if
we regard the parameters A and u as the colours. In this prescription, the solutions of
YBE (1.1) will satisfy the initial copndition, the unitarity condition, etc. The details

will be discussed in a following paper.
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