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Using the experimental infor~ation on time dependence 
for the delay annihilation events, we reconstruc! illiti~ pop­

. ulations of (n, i)-levels of antiprotonic helium. 
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annihilation events is still problem. Really let us suppose th.at 0Dly­
the circular level with no = 38- was initially populated. It is evidently 
that in this case we shall get for time dept:ndence'of annihilation ih~ 

" '~-'-:: , Recently a new and an ~xtremely interesting phenomenon waS found 
in the process of capture, of slow negative bons and antiprotO!lS in 
helium target [1,2]. In case of K--capture a sufficiently large fraction 
ofstopped K-(- 2%) was found decaying but not being absorbed by 0'­

particles. In antiproton case the delayed annihilation-in approximately 
3.6 % of all the a.nnihiJ.ation events was found. 

First good and constructive idea to explain this phenomenon was 
given in the old paper by Condo [3]. His remark is that via the relatively 
large binding of Is-electron in helium (24.6eV) the Auger-transition 
mechanism for deexitation of antiproton is strongly suppressed. So 

, for certain ~tomic states (n,l) the most probable way Cor deexitation 
remains the emission orthe dipole photon. For the orbits situated not 
far from circular orbits (n, n - 1) ra.dianve transitions probabilities for 
large n are small enough. It provides relatively long timelife for such 
atomic states. The more qualitative estimates of some properties' of 

-~ 1 hadronic helium were given in a series of papers by RUssels [4]. 
Let us consider the case of (jieO')-atom. It is formed when one of the 

electrons of & helium ,atom is replilCed by antiproton. The p occupies 
one of the atomic otbit with large n located in the same space as the 1s­
electron. Under this condition the most probabie orbit has a principal 

,<;' quantum number n close to 

no = (M*Im.)l/J (1) 

where M' is the reduced mass of the pa see, for example, ref. [5J. So 
we get no =38. 

According to Russels [4] the timelife on circular orbit with n =38 
is O.7IJsec. Taking into account the atomic core polarization effects 

j , [51, one may get for this quantity the value I::: 2lJsec. According to 
-the paper [2] the most longly living component decays exponentially in ' 
- ime. 

N = No ezp(-tITo) , (2) 

with TO =(3.04± O.01)paec. .This quantity ~oincides by order with the 
timelife of antiprotoD on cin:ular orbits for large n~ RG. So we got 

~' 
expIa.D.ation for the delay co~ponent. But the time dependence for the 
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function which looks absolutely not like exponential fuactiol'l, observ«l 
in the ex:perimllnt. This .time dependence calculatecl .... the routine 
cascade procedure, is shown in the Fi,gure 1. 

Let us discuss the problem - whether it is possible to '-4'..initial 
populations of (n,l)~ievels, which provides the observed expeuentow 
law for annihilaltion. Consider for the begipning a simplified. chain 
version of cascade equations with transitions between ciNular orbits 
only included 

dNi·dt = -Wi,i-1Ni + Wi+l,jNi+1. (i ... ~2, ...). (3) I' 

Here W.,.~1 are the probabilities oftadiative.pole transitioDB k ­
-k - 1. Notice, that for larg~ Ie 

W.,.;-1 -constllc& .. {4) 

So W.,i-l is monotonous decreasing function of It. It is $11itable to 
look for solutions of eq.(3) beginlling from .the-1~and th~ moving 
up to higher n. As we want to find solution foranniliilaltion froml_· 
level with the given experimentally exponential Jaw, we are making 
substitution 

N1(t) = 1Vtezp(-tITo) (5) 

and tUn get automat.ically N,(t) =N~-tiT,), NJ(t):: 
= N3ezp(-tiro) etc. So all the populations N..(tl depend on ibDe 
exponentially With the same To. It ,To coincidllS With any W~:l from 
the eq. (3), the so obtained set of Ni is finite wi~ all ffj posith~.We 
may call this solution the eigenfunction for the system (3). The typical' 
picture of such a distributioll {Ni } is given in- the Figure 2. 

Consider now the cascade equations with all types of possible stMetJ 
-- . 

and transitions being included, 

j 

'. 
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dN(n,l) = L W(n',l' -> n,l)N(n', I') - L TV(n,l-> n",I")N(n,I) 
dt n',I' .	 n",l" 

(6) 
Here lV(n,1 -> n"l') are partial probabiliti~s of transition n,1 -> 

n',I'. It is suitable to introduce t.he qnantity Wo(n,/), which is t.otal 
probability of decay for level (n,l), 

Wo(n,/) = L W(n,l-+ N",I") (7) 
rlJlJ" 

It will be often lls~'d below. In the concrete calculat.ion we shall 
use for W(n,l-> n',I') t.he radiative dipole transition probabilities for 
hydrogen-like atom, using Gordon formulae [6), see also the monog­
raP4Y [7J. The effective charge of screened a-part.icle was taken int.o 
account as factor which fits the probability (38,37 -> 37,36) to that 

.	 given in the RussE:ls paper [4J. Figure 3 demonstrates the probabilities 
Wo{n, l) of radiative transitions, calculated through the above men­
tioned procedure. One can see from this Figure, that there are links of 
states (n, 1) with approximately the same eigenvahlcs Wo(n, I) . .For ex­
ample the states (51,50), (52,48), (52,49), (53, 47), (54,45), ... , (70,31) 
etc. have total decay rates Wo(n, I) inside the limits Wo1

( n, I) E 

(3040 ± 90)nsec. Notice that one may find eigenfunctions corres.poiHl­
ing to each of these N(n, I) eigenvalues with time dependence for each 
N(n,l) in form 

N(n',l) == N(n',l')exp(-Wo(n,l)t) (8) 

We conclude that opposite to the simplified chain version (3) exact 
cascade equations (6) have set of solut.ions fitting experimental data. 
Any proper normalizeo Ruperposition of th('se eigenfunctions may also 
fit to the experimental data. So the solution of the problem is not 
inambiguous. 

To be more close to real sihlat.ion we are to include Auger'deexi­
tation mechanism in addition to till' radiative transition mechanism, 
Via Auger mechanism antiprotons mil.kp. fast transitions to circular or-' 
bits. In our calculations we have limited ourst"lves by only incusion of 

dipole Auger-transitions, The so ohtained f('gion in the plane (n,l), 
where radiative t.filnsitions play leading role, is shown in the Figure 
1. So we conclude, that studing delay annihilation in hl·lium,' we may 
get information on init.ial populations of levels in (peet)-system for rel­
atively large nand 1. Populations of levels witl. small nand l canllot 
Iw extracted from experiments of types [1,21. The initial populations 
of tlwsc levpis give contrihution to the prompt annihilation events. 

In t.he Figures 5 and 6 we delUOllfjtrate some curvI's of N(n,l) cor­
responding to different eigenfunctions of the eq.(6) with eigenvalues 
Wo(54,56) and Wo(59, 10). Figure 5 gives examples of distributions 
Z = loglO(N(n,l)/N(l,O») for some fixed n versus 1. Histograms a, 
ll, c correspond to Wo(59.40) and d, e, r to Wo{54,46). In the Figure 
() we give the corresponding distributions averagetl ov('r n(N(I}), and 
over 1(1V(n)). Histograms a, b refer to Wo(59,46) and c,d to 'lVo(54, 4f?). 
Distributions N(n) look like that what was got in the chain model (3) 
with maximum not far from no = 38, see Fig. 2 for comparison. Some 
structure 'in these distributions on the left shoulders of the curves are 
connected with the fast Auger transitions near n = 30. Notice, thai 
distributions N(l) have rather sharp maxima at som~ .l.....;,. So these 
distributions do not look like statistical distribution P(l) ,..., 21 +1. The 
maxima of these distributions look also more pronounced than in the 
dis'tribution P(l) ~ I .In(l/Imaz )' discussed in the ref/ [5J. ' 

So we managed to reconstruct from the results of the experiment 
[2) the populations in antiprotonic helium at initial stage of cas«;ade 
process.. 

Up to now we were discussing the most slowly decaying component 
of the delay annihilation with TO = 3.04Ilsec. In the experiment [2] 
the annihilation spectrum for time interval O.4sec 5 t 5 20jLsec was . 
fitted with the four different exponential functions. Notice that any 
superposition of eigenfunctions for the equation (6) is also the solution 
of the problem. So we may fit to the experimental data choosing proper 
eigenfunctions. This was done, and the corresponding populations of 
levels versus n summed over l are shown in the Figure 1· for sevet~ 

different time intervals. The time evolution of the solution is getting 
quite evident from this picture. . 
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As it was mentioned above, there is a series of different eigenfunc­
tions for the equation (6) with eigenvalues Wo(n,l) which all are sit ­
uatedvery close to the experimental number W."p = TOI 

.. So the re­
construcr~ solution is not inambiguo1lS. Studying time dependence of 

'- annihilation as it was done in the experiment [2] gives us no possibility 
to make distinction between different possible solutions. On the other 
hand we may get more detailed information on real populations of lev­
els measuring energies and intensities of del~y photons or/and delay 

. Auger electrons. This will give us additional more refined information 
on initial<populations of levels in antiprotonic helium. 

In this article we presented only simple estimates of real populations 
in antiprotonic helium. The main reason is that we used a simplified . 
hydrogen-like version for probabilities of radiative transitions. This and 
some other improvements is to be done to get more precise information 
on initial populations. It would be desirable to compare the so obtained 
distributions of initial populations with that follows from theoretical 
model for capture process. .­

Authors are thankful to Prof. T;Yamaza.ki and to Prof. V.S.Popov 
for useful diSCWlsions of preliminary version of this article. We are also 
thankful to participants of seminars of ITEP and IAE for interest to • 
the problem. 
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Fig.l.	 Population N(t) of tb.e (30,29)-level versus time arbitrary 
units). The level (51,50) is the only one initially 
populated. Time sc8.Ie is 10-5 seeonds. 
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Fig.2. Distribution Y = N(a)/.N'(l) Cor citCul.rorbite~· 
,. (in wdts 107). It correspond.te ~tial·~ 
law with slope To =.304OrNeC=...-1(5J.}•. Anow iadkates· . 
ptlIlition of maximWL' 
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Fig.3. The dependence o( probabUiti~-~f radiative transitions 
Wo(1&,0 on (n,l) plane. Integer parts of laglo lVo are 
pictured. Results are summerized over squares'3x3 'in 
(n,I)-pl~ , 
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Fig.4. Marked part of (n,l)~plane sho~s pOsitions of (n,.l),.levels' 
". wjth leading role ohadiative transitioDB. 
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a	 920 b) 40 n 29 d) 49 n -Fig:7: Examples of time dep;ndent distributions N(n), ~hich 
reproduce experimental spectrum of the experimental spectrum 
of the ref. [21' for time initial O.4nsec ~ t ~ 2OOOOnsec. 

Hg:6. Distnoutions Y(n,i) = N(n,l)/N«(Ora~~rag~(f	 Fit by four exponents used in [2J is reconstructed by four 
eigenfunctions containing circular orbits only. Curves 1-5 over 1 and over n in units lOS 
correspond to time 0.4 nsee, 5 nsec, 40 nsee, 400 nsee, 2000 nsee. 
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