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Dubin A.Yu., Kaidalov-Ach, Simonov Yu.A - Ho. 1993 - 3613.

Starting from the QCD Lagrangian we derive the effective action for
massive quark and antiquark at large distances, corresponding to the minimal
area low of the Wilson loop. The path integral method is used to quantize the
system and the spectrum is obtained with asymptotically linear Regge trajec-
tories. Two dynamical regimes distinguished by the string energy—momentum
distribution are found: at large orbital excitations (I > 1) the system behaves
as a string and yields the Regge slope of 3 1 -, while at small I one obtains a
potential-like regime for relativistic or nonrela.tlwstm system . The problem of
relative time is clarified. It is shown that in the valence quark approximation
one can reduce the initial four-dimensional dynamics to the three-dimensicnal
one. . .
The limiting case of a pure string (without quark kinetic terms) is studied -
and the spectrum of the straight-line strizg is obtained.
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1 Introduction

This is the first plpé of the presumed series devoted to the quantum di«nun.im

-of the antk-anﬁeinuk system at large distances. Our starting point is the

formalism of vacuum correlators, developed previously (1] (for a review see
{2]). It allows one to represent the gauge-invariant Green’s function of the
quatk-antiquark system in a form, where al] dynamics is contamed in the

averaged Wilson loop operator.
We simplify our problem by disregarding effects due to the quark apinsg a.nd

. additional quark loops (ses quarks) havmg in mind to come back to it in later

papers.
In this way our sxmphﬁed problem is that of a scalar quark and antiquark

~ without additional quark loops in the confining background field. -

~

~ the Wiisen loop ?

One of the most important point of the paper is to identify an explicit

. mechanism creating the QCD string and to find the properties of the latter.

- Even the question: what is it, the QCD string? is not trivial. Usually it is
associated with the Nambu-Goto string action (for review see [3]) describing
the open string with active degrees of freedom all along the string including

the ends, where massless quarks are presumed to be described by the proper

bonmduy conditions. This standard picture is plagued by unphysical fea-
tures in 4 dimensions aund needs d = 26 or supetsymmetncextennona to be
consistest [3].

The picture which emergea in our paper and based oa the QCD Lagrangian
and the yacunm correlator method essentially differs from the standard one.
F‘mt, the string appearing in the gg system has a world-sheet coinéiding with
the surface appearing in the area law of the Wilson loop. This area law is

- a natural consequence of the cluster expansion for the Wilson loop [4], and
. the surface bonnded by the Wilson contour appears also naturally in the

formalism.

'An importaat pomt is what kind of surface appears in the area law. of
* Since the whole cumulant series does not depend on
the shape of the surface and has no degrées of freedom on it , we come to

- the conclusion that this should be the minimal surface which enters the area

law and therefore defines also the shape of the string, condecting quark and

mﬁqﬂdh Wemhm Mthswnmmﬁmnmm’ nd‘«, 8

xtwdmmﬂeuuﬁmmeb&hﬂmdtbwmmumnér&ﬁy

mmmmwmiywmmammmm,ﬂ)%‘
* where T, is the so-called gluon. cerrelation’ length, which enters s a. scalé
‘for the vacrum cogrelators [5,1,2]. MMM;VB&‘
estimate T, ~ 0,25-0.26fm [s]mdthete{ozeumapplyouﬁomhmcM"
to the ground state mesons (see (2] for & dincussion). We approximate the "
_minimal area law surface as the world sheet surface of the straight line string '
congiecting proper positions of quark and antiquark.. Weaﬁaﬂmmﬂu,_-
next sections the validity of the straight-line approximation,

We consider the string tension as bemgrenonnahudlndx isvognr :uﬁiw
rections including perturbative gluon exchanges and &mﬂf addi
“quark loops, since our aim here is to concentrate on the main dynamic
gredient - the interaction between quarks cotreapondmg h;ﬂn is
law.

Therefore in tlns approximation the minimal string w:m
cxtatlons), and oscillate longitudinally (streching and expanding). -1
type of motion is not possible for the standard Nambe-Goto st

After these introductory words about the deﬁmumafm QCR
can outline the purpose andthephnofthepaper

We shall quantize the system comstmgo{ammn
antiquark connected by the minimal string. , ‘

We shall extensvely nse: the method cxyluted M

path mtegral over tn;ectones of g and Qpatamtnmd ,by
loaps, is replaces by the minimal ares h* (3} Tﬁiﬁ;

pmper time parameter. (4) The pmper—txme Hmhmu"'
rid of path integration and obtain instead differential equation.. (5)
approximation is made in the method (2,7] to expand the Nimbu-Gato.
term in the action in powers of some mdmw(vlmh is
expansion in powers of relative velocity r’) ;

"This assumption is equivalent bm-mbnwd&lchn-aihhthqw
any m-mtkmmvdu&omhtkiwm@h R ) o
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Due to this expansion dynamics in relative time is free and one integrates

. it out, regaining in the end three dimensional (relativistic) dynaniics with
dynamically generated coastituent mass.

This approximation {1, 2,7] appeared to be simple and practical, yielding

masses and Regge trajectories in terms of oaly one parameter - the string

" tension. In this way light mesons, heavy-light mesons (8], baryons [9] and

glueballs {10} have been considered. The accuracy of the approximation for
masses was estimated as ~ 10%.

As a result (7] the slope of Regge trajectories was obtained to be (85)~! the

same as in the potentxal mudels [11] in contrnst to the Nambu-Goto string
slope of (27xc)~1. :
" Iu the present paper we aba.ndon this approximation and treat the effective
action of the system exactly, using the formalism of auxiliary fields to get
rid of the square root term [12,3]. As a result we shall not only improve
the accuracy of the a.pproxmm.txon but shall obtain a quahtatwely different
" dynamics, which has not been present before in the approximation [2,7].

We shall find that there are two regimes of g4 dynamics distingushed by the
ettergy- momentum distribution of gluon fields, — for large orbital momenta
! the resulting spectrum in the leading approximation coincides with that of

. ‘s pure string with a slope 1/27x0 , while for low values of [ (depending on* -

the masses of quarks) the dynamics is described by the relativistic potential-

. like approach,close to the one obtained previously [8,2]. For the heavy quark
system the potential picture is valid in a large region of  and it joins smoothly
the string pictuxe for very large L.

The limiting case of pure strings (without kinetic terms of quarks) is con-
sidered in detail 2. The straight-line Regge-trajectories, corresponding to the
spectrum of the rotating straight-line string is obtained. This i8 in an agree-

" ment with the results obtained in [14]. Note that in our approach the string
picture has not been assumed but it was derived from the QCD-Lagrangian
under rather general assumptions. :

The important issue of relativistic dynamical systems is the role of the rela-

" tive time of g and §& To make our straight-line approximation for the minimal
surface selfconsistent we have to integrate over the class of paths without
time -backtracking of quarks (in the c.ms,). This constraint corresponds te
the valence quark approximation to the problem and allows one to rigurously
-reduce. the initial four-dimensional (4D) dymmncs to the three-dimensional

A short vezsion: of hcse resulis is. reportad in ref.{13]

LY v

-

_straight-line string with quarks at the ends is obtained and in twe limiting . -
~ casesl~1andl > 1the analytic form of the spectrum. is established. . =

4

(3D) one. As a result the quadratic 4 tD kmetlc terms are trmsformed into 3D . -
square-root-type terms.- We have the Lorents invariant effective action with
the constraint, which can be formulated in a Losentz covariant forns. Se the
calculation of the spectrum can be performed in an- arbitrary frame and for
the sake of convenience we work inthe meson rest system.

The plan of the paper is the following. The Feynman-Schwinger represen—
tation (FSR) for the ¢ - Green’s function is given and the cffective action
for gqg-system is obtained in Sec.2. In section 3 we obtain the approximate
explicit expression for Wilson loop at large distances. In section 4 in the
valence quarks approximation we integrate out thue-components, so that-we
reduce the 4D dynamics te the three-dimensional one. Gaussian representac
tion: for the obtained action is formulated in Sec.5. The method of nuxiliary .
fields [3],[12] is used in this section to get rid of tbz square root term, whith .
determines the siring action. '

The case of a pure straight-line string thhoutquduattheendsud:s-' B
cussed in Section 6, In Section 7 Hamiltonian for.the general case of the

Incondusmnswesummanzemnmamresnksandmnbmﬁpwmhﬂ
those in literature. - - .

Appendices A;B,C contain technical detaknfthedenwtnon nfﬁomlas, LR
mthetext. : '

2. Green’s function of the quark—anhqwk system in-,
teracting with gluon field. :

In this Section we use the Feynman-Schwinger representaﬁm for the quark—

antiquark Green’s function to obtain the effective action forgf systemm terms

of the Wilson loop [1]. :
We start with the initial and final ¢ states defined on space-hine surfaces - K

in a gauge-invariant way o
¥in(y,8) =0T f-(yrﬁ)“’(i) ‘ )

© Wou(2,E) = W) Tz, 2)u(Z) o @)
whete Tin, [ont contain a parallel transporter @ and some vertex with definite

e, onsk doA



) o 'muﬁouofopermz

T : Lunﬁm'f.,u.

. r.--(y,m'«.,v)srnm['m.) - (a)f

' udtkmﬁrl‘u.‘ruwbees'nmm Theopmummth
»th'MdA,(z)ahqthpthz,(t) The Green's function G(z2/yp) is
vobtﬁhdbym&epodm’hi;omanqunkuddmﬂd&
Mmmwn&ﬁemﬂmm ‘

. Gls3/yh) =< f-(r. 9¥hu(2.2) >ea (@
mmmammummmmmm '
-~ (for & nonzero fiavour chanuel) - |
L Glaa/yh) =< D2, D)2, )E@RSG, D) >4 (5)

wth(é,g)u&nqummm&edmciddA,,ndtlen‘u-
mmdmﬁd&mmdnd«dnthqu&dﬁmnﬂ(wtuﬂys
pmdmddetmuusomaﬂﬂsm) '

< B>.= [ DAc*WB(A) naec(m 3+ D{4)) (o)
&rmmw“hmw&mmmmm
Sck'ﬁ-su representation {1,2,15} ~ -
R S(a,y) =< e | (m+ 13(4»‘l ly>=
=<z |(m=D(A) [ dee D) |y > )

= (m - D(A). [ dlDze“'lz(zm)

uhmthe&ﬂwmgmuhmmnnd | | |
L K=whalifaee =220 @
#n(a,9) = (Preap(g || n..F..(z(t»a»f(z, y ®

‘ lndE,, =.‘-‘-(7.7.-7.1,) Thopum&mrethemerordered
dongthsyuth (for & discussion see [18]).
h-mionof('f)mto (G)nnmed:dly gives [8,15] ,
- G(s2|ph) =
[’ dse™* D [‘ d2e7E D1 < 2,800, 8)(m ~ DA 1) ()
x7-’(”’)(m b(“))l’!(”’) >A

- nomperturbative, which we call Wy. .

mudthmu(u-mm&-nmmxtmbm
by(m+§2)mmm«mmw»wnmm-w'*
mwmmmmmdmmmm -

mwammam-mmmmm
phated.FuththeMmt* dependence and,
mthemﬁmgdymamthoutspmﬁe*mdmmmm
loops, Mmmdshﬂwmmd\lﬂdmeq.(ﬁ)byl Thisis
hhvﬂmdqwmmmdmhmmhllm o

expazsion.
TheruultmgGmnlfnehanut&mh-&M

Ga2|3,¥) = F"f“"“M<W(c; g
'MW(C)!&GMW‘MM*‘. e

paths z(2),2(D) otthequudanﬁqwﬂl- o
It is convemient introduce as in (2] the fallowing 'm“j_f ‘

. B= ———(—x«)+—ut»

s+ ¥

"u = ‘(') ’(‘)

R»(') R-(“) = T'- "‘u =1
and r,(s) = ru(6) are also ﬁxed

asymptotical states of the system. htbidmbondmwméa»
mpondstotbetotﬂmomentnmolthem? ~u,,

3 Evaluation oftheWilmhaplt llrg@ dista

hthnsectmmMobthwfw<W(C} 4 «.
lugedlltmces. ’ :




7‘ B
Usmg the cluster expanswn we can represent < W(C) > ) as [4]

@

< W(C) >= exp g ('9) [d,,(x) do(k) € FQ)..F(k) >  (13)

where cumulants are irreducible averages [16,17] and we omit Lorenz indices .

in do,(u(i)) and F,(u(i)).
" As shown ‘in (2,18}, there ate three possihle rcgtmafor < W{C) > de-
pending on the refation between the sizes of the loop. C and the correlation

- length T, , defining the decay of cnnmhnts <& F(1). ..F(z) F(§): . Pk} >

emp(~ ety

: Hwerepmntthelmp@usmdugnhrofﬁmethandspm~
width R, then we have (omitting pmmeubtypztmﬂw&ysmmmgﬁmn,

the qnark—mass renormalimohon and exchanges) 21 ‘
i) <W(C) >meap(-aSLED T, T>T, ()

. n) < W(C) > exp(~T(aF + R + ~)hR€T,T> :r, (5)

) < W(C) >A!¢sp( L ;‘;‘"’ 2 (P RCT,T<T, (1)

Eae&kmamdthemﬁcemdetheemtonﬁ which we take a8

thmmmalm&ce,m<ﬂf(6’)>doumupna&u~&ewd&v

surface [17]. -

‘Thus we sce that the area law (14)mdtkemnguﬂngmaw'-

onlyutheuymptehc:egmefothtgecontom,whﬂeﬁormaﬂatnmow

loaps the area lsw (and the. QCDﬂnng)usbnntmdmuMbyamch.

weaker interaction.
_ In what follows we concentrate on the regune (14), i.e. we shall com:der
~ only large loops, B, T > T}

' WenotethatmtlmMonteCarlocalcnIatmmthmIawhubeenmmthe
vndetegmno{R 0.1 < R < 1fm [19] also in the presence of dynamical quarks

(thedetermmtaltmnm(ﬁ)) {20]. From those results one could conclude

‘ thatT,uumllenongh mthnnhcregme(u)iadominmioﬂightqm&
‘.lyttem.

Independmt Mmta—Cuhdculatim [ lmecmﬁnnedtht T %02+

ummwummmthwmmw

and orbiting time R ~ T, = 1fm for light quark system (2. Thus we.can

conclude that'the area law (14) is & reasonable approximation for light quark
m(mmmm)ndhmdmdmm

8‘

The "minimal arca law” implics thenegledofglnomexntaﬁnmmbmthe
_QCmen,whchmuHMwueﬂcwmxmmmmﬁcsm; A
l, ted by the c. - .

Mﬁ@thMeWythe mmundm&m temdapm
contour C, defined by quark and antiquack paths.z,{t) add Z,(#).
Any surface can be parametrized by the Naubu—ﬂmlotl s

- v Safer ‘ﬂ{'&'#’ (M’) alﬁ ‘; _ \(17) 2
~ where w,.(r,ﬁ“) mthecoordhmo{m,mg,.g""ﬁ md L :

6- ) 6'* ;
c,a 8r’." 8]3 ._

. %mmwmmhnmmwmhﬁmmmﬁ,
z,(f)ndctemedbyoq(ﬂ) mthu,pmkgwﬁmmh‘
' pmmz,(r)mdl.(r)mththmr,m S

)= 5i)- ﬁnmu -h. H#-ﬂ oy

.demmmm%MMMWwwwm.
 the minimal area § in all cases; we note that this approximation is valid im.
two limiting cases which are of special interést below: .in the case [ = Gone:
can exploit the flat dynatnics-of quarks and in:the imit { — og correspeading
mm@mammmuwdw«mmw o
type; for which the minimal area indeed is fosmed by the straight-lines: In -
'whatfollowsweshaﬂmeeql. (IQTJG)uuw(W(C))mmd‘

.Mcoouhmﬂm
. | 53{"»3} ‘ !d(ﬂi&t.ﬁd’, c,bav,ﬁ T (200 |
- 5= [l _. Gy
PR




mmonmz.(t),z.(i}ud its physical interpretation (in the meson rest
sysiem). Thmintmm(ﬁdimﬂmthtepmhthenmdmmhc

- theory in general is the theory with unconserved number of particles. Even

Wummdﬁwmummmmm
to the proper relativistic structure of Green’s fanction. Second the fact, that
the interaction time is smeared out, generates a need for the integration over
__mmépuﬁdumthepmmmthﬂmm:ppm-

mﬁonthemhdmmaﬂpuhthech-olthemmmthout
ba&uehngoft:me-eomponmts,mufymgthe condition (in the rest system)

A ‘—‘3‘—>o M>0 ‘ ) ~”'(zz)
-mﬁg:tmthewﬁaﬂ!ylmu—mﬁm o

thuaP is the total 4-momentum of the meson.
Qcckhacﬁngthemmmﬂmrhcewhchappemm<W(G)>obvxmmlym
‘mtbem:pptmmudbyoummghthnem This procedure

‘ %thmdnchonofﬁ - mesonic states.

namical ones () , m(r) without derivative terms by nmgthe pmmetnm-

ton for which _
; "‘n=(7' D g=(r, 0 . (34)
Themtegtwmwtkuemvmablesfo:thapmknqnnbupu-

&hnthnmhonoﬂhemreteimof( W(C)>ktuemduﬂn‘
?‘ i} nle)mtddedhthefoﬂwmgpbmm First, the relativistic qgaantum .

in the case of » free pacticle the backiracking of the time-component which E+E ==/ (,.)+l‘x("){1 +z'(rm+(% +M+xx+£(+)}n(m)’% -

' Wehumdmdtbmmchmmmua, ﬂs,. <

chggutthafolbwingnpproachtothpmblm Atﬂutahpwenpante /

(P* dzu(m)/dv) > 0, (P"d!»(ﬁ)ld'n) >0 (@

Thnemtmnthutobaimpoud bmmtuthttujectmumthmch' S

& to&emﬂvdmeqnuhappmnm;ﬁonandmthehnme .

< _ umponmmmthuthsmmnmbewwwﬁe‘
ﬂithtﬁneomkmddngxmthetnjectonumthbacktnchngmaponds : ns di

_In Appendix A it is shown, that for the trajectories without time-back-
ttw.'km& the vagiables z(71) , Z(73) can be transformed into the new nondy-

MMWWWMWMMMywﬁem@V

L v gL amemenT e oy e e g e

- v'MdmmﬁdMumxt(z)numg,_ m.- ‘-'?, L
, -..nnmw(mmwmm-,,,_ pendent of the time- - -

) = etatr) > ) w:-(

vnhthedotMngfuthmm BMM aned
mmmnonmq.(znm«mcphm '11» ndition i 4

- ' Rl(')”fr Mf)gﬂ

Mﬁlmﬁu&cmmdthm mm

" validity of our approximation of neglecting (iu the straight-line

for the minimal surface) of backward in titne irajectogies in the rest


http:�.�.....�

iv)_me 4_ |

IT.

_ para.meta in the action which can be identified with the cm. time. The
~ physical. meamng of 1, 443 can be most easily clarified imposing an external

em. field, e.g. in calculating the magnetic moment. Then it can be shown,

. "that p; enter magnetic moment as the constituent mass of a quark. The same

bappens with spin-dependent forces (to be published). Therefore we shall call

’ - 4% the dynamical mass of the quack i. In the approximation when u does

uot depend oa 7, this dynamical mass has been: introduced in (2,7]. As we
shall see below this approximation works reasopably. well - accuracy in the

\detemnnntzon of mass ;smu.wd 5% ( see e.g. Table 4 of (2]).

E 5 Gaussaan mpresentstmn for: the eﬁ'eetwe au:tnm of

quarks and the string.’

.Y'-.Combmmgthemultsoithoywiomudmnnmtheiotaleﬁecmr
. :jlm ) . ) ..
, | © A= K‘+E’+c«[ dfﬁ dﬁa/ (29)
mm:ahnﬂn’totheommmdnedmtbm[lsl where the

straight-line string without transverse excitations has been considered. How-
ever in our case also kinetic terms of quarks K' 4 K' are present and the
m&mwthmchoﬁﬁeatmmmththevdmtydhghtnm

A direct p:ocedm ofqnantmahonoi(zs)mdxmmlt due. to. the-square
mttmmd“mtheannharyﬂddsapprmh@]togﬁndoht In the

‘Appendix B ‘we give a detailed derivation of this procedure , while here we
‘,-'pt?mttheﬁndgaummntahoaofmm S

A= .L*"f i m(,))+2ﬁ+(r)x'+z»(r»J+ o

-—w’+<w)’r’ - g+

k) =)+l Nf)—%

md the condmcm (24) for z,.(r) 2,.(7) is assumed. Since only extremal values

of pi(7) and pa(r) contributes one can’ inigrate in our symmetric case over -

. (:wjthuﬁ:lhwmgcxpmhr(;

-where we restors them

' extrernum value of 7.

r . oo
restricted. ciass of. functions p(r) = (r) {7 Hm v(r.ﬂ) 2 0 sad -
7(7,8) are two auxiliary fields, which- should be mtegtahd out ig: the. ﬁdl{ :
pathmtegmimpresenhtmiwa : o ‘ S
| G = [ DRDrD#DnDue4 R R
' In order to prove thé: equivalence of the dynamics. M the -,
tions: (29) .and (30) it is enough td show that after proper msegﬁcm wn'
#{r,8), 7{7,B) one Feturna from: eq. (30) back to the-initial one (29). R
Actually-after the gaussian integration omn(r,ﬂ) wennt.unms%u& n{ cq. '

6= ,f Daurvmp(-x' K'mox (32

| nwu ol

I"orthemegral aver 7, as, it ia. ahavn m-A
sure can be constructed and the e&'ettwe m u d ,

Innerhngthnexpressonfnrvmtnth&eq.@”mm‘ wmm
(29). E
%mpm&atummvm”mw“mwwp_
replacement of them by their extremum values. R
Thmnhmsatm(@)wqwdr&cmﬂ,,r,:dmh' -
mttenu(hmm=m=mﬂh "'z=ﬂ) .

o [ ) 2 ) - ) ] 4

wlmewehmuedw,.—ﬁ,.«!—(ﬁ llz)r,&tomﬁmtmd&i We~ '
hmmtmdnmdthefuﬂmum&aﬁm .

eqr-a_(ldﬂ(zﬂ-i-'), ae=[ dﬂ(“-!—(ﬂ-;)’*')

I

o, =-r,. s

W—(w’w” o '_ N _(aéi._?. -



""’”“v{ )

",mmmmwn,m - Byf0) =T, e,
o [ DR~ [DRIT #rempa, [(B < i) (38)

mdnhﬂlbemmted onlymtheeﬂechnachonintheexponent In this
mxhwegnﬁngout DRasin (36)weobtlm

% f ér{z(Au) + %‘:: + ——[(aaax - 03)" +Hearas - ozax)(")

ofthn pure strm;ht-line string

¥ p_mthtmﬂna appromhontothefuntheoryonedbm'tneedtom

) thespechmoﬂhnparﬁcnhrqm

qurdﬁ(ﬁ 2)», qnfﬂu-{-g’#}"-" {35) g dem&uﬁsa&ﬂh ofiectiv

:'M‘m

T M&m&dt&e&ymcﬁmgdmntyin&eﬂmg Since only R,
- efters the-action then it is convesiient to integrate over DR taking imto -

. ﬁ(ﬁ}amvuubh,

‘ Walhllmumtmllydmegndmwhtfononthepreexponenhdhctnﬂ ‘7

‘ , . .. enter thie action as an integral over. 8 with functions
; G~ /D"HVD'ID#“X@(—A)' (37) . : :luea of th::mct:n v(ﬂ),*']m:h are m nie
: "ms) mtn‘batuhthcuctim. Snwnhﬁ 7
- fumctions v(()(taﬁ~l), which axe: mmn&;__‘
Sl A  decotriposs. ‘“Wmﬂ(ﬂﬂj mﬁmﬁﬁmﬂ _ , . o
: 4 (041 = ) + 20s(06) - 20i(r) ~ V) @ ,Mtv(ﬂ) '
!«h mﬁx we preserve the explicitly Lorents- imvaciant form of the -~ : .~
sition, with-the conditions Ry = 1,7 = U being implied. It spparently
Jmumwmeq.(ss)dmox&mmmuﬂ. by the. = o
,_jﬁlﬂﬂﬁmd‘mel)&(f)‘ Tkenprmon(@)ﬁnrtbancﬁon:iﬁmathebaﬁu"'_;’_ “mfwﬂ(ﬁl

‘htﬁlsecﬁmtbmd&epmmmﬁnemmwmhmﬁed. B

“(Bﬁ)dynmcaﬂymdumthmmnd:ﬁon mshanahoobtamh.“ SR

kwlmﬂbutwh A Whm

»-g;»;““febfﬁg ey
@(-[drla—-(w'ﬂtﬂ)'ﬂ‘)r’*h(vm

'ighﬁ(ﬂ)bqn;mdepndutmf o e
bmumthepummnu;

“@iﬁ(ﬁ}

‘h‘d‘ plays the role of an effective energy Mﬁ ﬁ*ﬁr'\j

Lt us first consider an integration: oves: D,/

) ~zrm.fr; e

mmmmmamm u-&

e R mer
B0 = (5= 120 M (A,

mm(sajmbewmqmmdﬂfl!*

lf'ﬁ’(“"""‘”’f 1_“3§g.ﬂ;

L= ﬁ(n)@:(r) +x’n¢+ﬁ(h)l
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with A being replaced by iA. | -
- The function ko{7) enters only in the 4th term in this expression and an
integration over Dko(r) = NI, dko(T;){(N — o0) gives the factor proportional
. to aproduct of §-functions; - I

[ sr(r) - (45)

Thus only the components of 7, transverse to the direction of A, which
plays the role of t.he total momentnm P, should be ta.ken -iato a,ccount and

we have
/ DHré( ,\r)e:tp[ 8} - / D’r exp[—8] : (46)
- After the integration (46) the dependcnce of 5 on A has a simple form
T( — + 2i{Au)) o 4n

' and the zntegral over k is saturatcd in the case T — 0o we are interested in
by an extremum value

Meigm=h (48)

Integrahon over Dk, withn > 1 leads effectively to the followmg expression
o B rbirwenl=} [ drige+ 7 - Dl [ o )
Itis nmportant that we have obtained the follommg constraints -

T e~ (eP)=0 (50)
(rR) =0 ' (51)

whemP,.rsthetotalmomentmofthzstungmd ‘
R R R S )

utherehhnmmentmoftheltnng
o Theaecondconstmnt(ﬂ)memthatonlytmmmmhofp
" enter -the action. The same censtraints appear in the canonical quantization

. | 0{ the straight-line string [14] .

' Consider the rest system of the meson u, = (1,) and transform the ex-
pressions f:om the Emﬁdeu to the Minknwakx space

d'rj-*td'rg : ' | (53) -

‘mmmmmmmmwmotmbmm

16
B 3 foIlows from eq. (49) that the hamiltonian of the problem s
£ dﬁ :
- Lenads
whereﬁ—(rxﬂsstheopemtordthzmgdumommum. . ,b : §
This hamiltonian docs pot cantain the radial part of the kinetic: 'aenp »0- .
that the field 2 is not a dynamical one. Noticing that the.integral over #has .
the form {A.13), one concludes that in the effective action only the extremim:
of i* contributes. So that after solvmg the equatma of motion (l'or a fixed’
value of ortntd momentum) ’

we arrive at the final expression for the humltomm follows

T!ta Ium:hon #(9) has the form. w{m:h ymﬂu mma&umoithnhmdw
B (1+:n-m 1
eyt i

Eg__.gz,,w 5 - (m

wlnchag:eu with the resultpbtme&fortb W&mmn&lwﬁ-

jcad formalism [t4). -

Expression (57} could ﬁephfsaﬁy mmw xmm ki .p;_
rameter: :

wpy=28-y2 8

plays the role of the velocity of the corresponding elementary piece of the -
gtiing. In this way formula (n}mheummnmm_mmb




So— S e PR = - Ve ey

- 'Mg:(m)‘/’mpumhthrMdetydmm
o mthu-t&um
' %mdwmumlaummmndmwﬁﬂnm

. portant for the dynamics of the pure straight-line string. The givan realization

- of the string, so that there is no physical exchange along the string. Because
" ;dﬂlﬁhctthmnmneedﬁxthemtmdnchonofrdahvehmdmmms

‘f? ThegeneralcaseoftheQCDatrmgmthqunrkx

“effective hamniltonian for the general case of the straight-line QCD-string with
 quarks and shall find the spectrum of the problem. As it has been done in
“the previons section, we integrate over 7)(t; ), expanding it in orthogonal
‘pdinommh Py(B) with weight (7, 5) After this integration and integration
o ovih\mthec.m systemu=0vmobta.mfor the equal mass case (jy(7) =
e} = ()

9= fdr(M e )+—{ﬁﬂ‘f

W IRV Ly L I

— Mvm&mthobunofomfnnhnﬁxmm
Iﬁﬁoddhsttmed,thutheabuenceotthedzpendmceantherelwve
‘,timnr.(r){theso—ca]]edmstantanemmmtuxhon) doesn’t mean of course
".wm.mumumdmedwwemmﬁmbmmm
fm&uingumﬁmtelymnﬁmemm

© " Actually, we have managed to tranform the integration over ro(r) into the
mmy(r) And it is the peculiar property of the considered interaction
. thet' after this transformation one can (under the approximation discussed
”qbove)unveatnlooalthree—d:mensmmldynamms. '

(61)

"Mwithlmaemg&omf @ tol=o00.

*  of the string doesn’t include internal interaction between neighbouring points

,m:stkecentmiputofompaper In this section we shall derive thi

Weuhannwmmderﬁmthecmofhewymandthznuhtnxy :

""'fat:amt(m),wlnchshmthm(mthsxutm&m)therdstxwtmnmxm— o

T&mt& m%ﬂ}ﬁ,w“ ,
u~< »>)<r > ’ }‘
Anmemalmfu,,(,.) S
gives after tahns mo aceount ammm e t’; : o
Fer - Y m
the mPle solntwn in the leading oeder SR BRI

From the ext;eind_cmdiﬁon- for u(‘r;ﬂ) -

W l+(ﬁ‘-—-li A1

mobtmmthela&ngmdu
wa, ﬂac\/—

andﬁnanythuachonmthemapmmn
anonemexpectfmmthemybm ‘7‘ »
The general case. Themwhon&qnthopdmhﬂndm -
tothestnng__zxgmms . , ool
W.estmﬁththecm-lzﬁnd,ubimmv-kf- N
y(rx?]‘::ﬂ :
Onco&mﬁom(ﬁ)mtkthhdpoﬂ(ﬁﬁ)

1
N T

F= [dr{ZaM-

PO S ]
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S= fd‘r[ +p(r)+ﬁf’+ [7]] (70)
In the Minkowski space-time the action (70) yields the Hamiltonian
Z=pr)+ X 017y (m)
and the extremal condxtlon for p(r) is
s =VF R . m

.Therefone we arrive at the following Hamiltonian in the case ! =0

y B A =20F +m +o[F] (@

rwhueﬁ‘ (irj’/i’ =p!

This expression is widely used in the context of the so-called Prelativistic
quark model” [11). As was discussed in [2,7] the ‘cigenvalues of (73) differ
only a little from the approximate version of this Hamiltonian used by one

~ of the authors. There eq.(71) has been used with s independent of 7. As

& consequence, the procedure was to find first eigenvalues of (71) E(u) as a

_ _Ennctmnofp,andthentonnnmm&'(p)vnthreapecttop,l.e tofind g2 = g
~ ‘from ‘“=0 and to calculate E(js = pt5). Asican be seen from Table 4 of [2],

the eigenvalues ¢, of (73) and En(g,) differ at most by 5% for lowest states,
while calculations of E(pq) are much easier to do; espectally for many-quark
and gluon sfates. -

Let. us discuss how the potential o | 7 | obtained in the rest frame is
transformed under Lorentz boosts. One should keep in mind that 1t is induced

" by the area law of Willson’s loop, which is a Lorentz scalar. Therefare it is not

difficalt to verify that this potential is a Lorentz scalm‘ also and in arbitraxy
&ammt can be represenied as

otk - —LW'

' wkexe P is the total 4-momentum of the hadron .

In the case of small values of [, the string contribution to the kinetic part

. of the actmn (and ta the total orbital momentnm)

- Je- 1/2)’ (ﬂ)dﬂ L1/ (ray -

LT

20
can be treated asa pcrturbntmn of the Hamiltonian (73) (mee {2} for a discus-
sion). If the Hamiltoniau (73) (valid only for low { ‘and strictly- lpca.kmg for
[ =0 ) would be used for calculation of the spectrum for a:imnty values of
[, one could obtain {11] ) _

M? = 250 (20 + ——— Mﬂ" 22+ §(n,, 1)) - (753"

whereA(n,)-—o4whenl> u,md&(n,,l)mtheamaﬂcormnonloranvdm,
of n, and I. This formula gives a geod approximation of the spectmmfouwt _
large L. FortheReggctta;ectotyathtgeloncwouldm :

M?*=30l
However this-approximation gives = 25% deﬂectmn fmm thn ‘cotrect w)u,

- we shall demonstrate below.

Now we obtain the Hamiltonian of the system for athltrary I. Separating-:
Iongltudmal and transverse components of 7 with respect to-¥, we: abtain o

P
mdthehnebcpaﬂdtheaet&on(ﬁl)mbnm' | .‘ :
A L

2(#(7)(-.7 +(1‘(r) + f(ﬂ.. 1/27%(8,r)df) - (r ] ") Exa (m .‘

For the longitudinal and tra.nsvem compoments of the mmntm one gets I
respecnwly .

B -('“)'(m, I ()

g= Ok +f(ﬂ—lf2)’v(ﬂ

'Thcstandarddenmtmnof&"&omthnactxonmtemeﬁhnemwanh:
ylddamtthmkmhnpuwme

H(Pvrtuai‘)" (%"’M"’"‘ S (m)
L .
Erie- uz)w}*f +[wie)
‘@
. 2 - > " - -
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. | =efm*=p4f - e
Mummﬂuqmmwmmqmmmmmm&
anh

Poatpemng\conmderation of thiz general expression to fature papus letus
_mconbentrateontbetranaitmn of the dynamics from the potential case for

. omall { with the Hamiltonian (73) tothecaseofhrgel which we call the
: mgdynumcs .

Intlulimtt-roomemupandthepotenhﬂpanoftheﬂmﬂtonnn_ |
oy s o
X G TE- 1/2)3.-4,9)*[ a87) (82)

amnndtheattemumm{ 7

T =0+ 1/ (/2 + [0 -1/2) i) - [ L (83)
Kupmgonlyqnadnuctermsm (r—m) onegets instead of (79)
1arm1,.lz{"z e+ m? +zp(f~)_+ [rvd8+ @

. M2
(I(I+1))I 1 0%
oy 1B =ijmrap) 4] S980F1 -}

- Let us'show that in. thehmxtl-*cothcdynmcalmmeapandusm
_thcoanditmn _

[N

L <p>e<es h (aa}

| hthmmqpundmgeq(sa)mp/v,wdmnobtmnthestnngdynuma-

‘ mg;meu&ﬂxe leading Regge trajectory of the Nambu-Goto form
 MPotamd (88)
Nwwepmvethatthedtemauvexemc .

R - <p>> <> | an
f'mmmv&wm&mumwwm,

eq.. (&)mmmplyestnnatethat theregme :

<u>}<v> o (88)

xS

| 'wmmhmmﬂmm-‘mm-ﬁa.m

<n>~<r> _ o o -

) whdmmspm&ﬁtheaﬁﬁxon%mknthwmm

of the total emgy{erhtal mcmentum) mmpmblonﬂltheatﬁum
tion.

In this case one can treat thatetm.f(ﬁ m)wm; shttmc

with the \ralnerx . .
f(ﬁ~tfw~—~ o
Onemtnmtotho H&nﬂmm(%) MM&&;W ‘
MWowtel s

mthahrgammfetagiﬂn!thanmeq(m Thsdemomﬁntﬂu

relativistic potential regime is disfavoured, as compared to-the "stning™ ome:
Wemebacknwmthemgdymmrem(ﬁ)mmav

the ends carry only small part of the total eneigy (orbital mp ;

* the hadron. hmmwmmm;mdm“ ofdar

longtndmalcompomtamm

ﬂ”‘f( /"‘ﬂ (j'ﬁ;_,-«, 2 (93)

' The extremal value of v, ) = 5 ”hwﬁwwﬂ»m"'

of the pure string (63) .
e )
{(8) = : l.a‘”uﬂm uz)'r"’ e

mﬂ-w
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-nmnon

¢s Conclusmn

" 'We have apphed in this paper the path integral method to quantize the qu— -
antiquark system interacting nonperturbatively. We have argued that the -

' = lstter leads to the appearence of a minimal string between the quarks at large
S “distances, R}T;, where T, = 0.2fm is the correlation length in the vacuum.
- As @& result our starting Lagrangian consists of kinetic terms for quarks

" ; (melmiing the relative time term) and the string part. Using the méthod of - -

suxiliary flelds one gets an effective action quadratic in coordinates and its

. derivatives. The auxiliary fields are participating in the final action and the

oo mtegrahon measure for them is found.  We bave shown that for the spectram

.+ . the integration amounts to taking the hcal extrcmum of the action in the
vduuofanﬂhqﬁelds

"~ .One of the important problems dealt mtb in the paper is the queshon of

" the relative time. We have shown that thxsquestmuresolved for the case

.. of the pare straight-live string due to the zeparametnzahon invariance of the

. . actiom. o »

S 1t leads to the constraint (Pr) = 0, which comeponds to the condition

" Ry=0in thetest system. We argued that for a string with quarks the same

" conistraint should be used in order to make the straight-line approximation for

.%W!%onmtent. It corresponds to the choice of quark trajectories

without ackward motion in time and defines the valence quark approxima-

’  tiom. . For this class of trajectories it is possible to eliminate the relative time

o ﬂmgﬁmrepnmetmatmnmvaﬂmeonhesmgtemmultmginaEmﬂ-?
. -touian with vaciable dynamical masses (7). This leads to the transformation
o&ﬁpmqmmﬂmmwthqm mdmnm C

'<#>~l" a>0' I~ o0 CF v,f(gs)f_-.zi;

the quantttauve results are out of the. accunq of the straxght-ﬁne appmx :

The corrections to- the ©q.(92) are considered in Appendix C. It shoulﬂ ln“,v -
- stressed that while the qualitative dependence of the dynamxca.l mass < s > S

- variables connected to: the dynamical suasses. of quarks. (ﬁ(f);)
- effective dynamical string mass density w{r, ). ‘

o{fraedom (do.£)’ l&khhﬂbﬁemd%%ﬂﬂ" ;

L. regitnes.” We have obtainod:it. analytically in: two Limiting. cases.-

. with the tnta!mguhtmem-zl = 0. Here in:the kinetic
'~actwnonlytimqwkdeymof

" .. only the inert part; samely, the exacily lineas petentinl: The Ham

: ‘wpmhkqndhthm&”mmmwmi

-:hmeKumiftem[Z;?] where gy do not- dupek

jithatttjr‘:ddsonlysmanw{o. 3
| wa.lly(Zu‘)" ‘the usual string’ slape, and it 'diffess

" as was obtained long ago in the so-called refativistic quark
- [11} and in [2,7}. R-should be stressed, that the string slape

_ quantization was performed numerically. Theauthm (21] aho hnwm.t.; S

Thuwhawobmcdthe&mﬁmmmddymm ‘

The spectrum depends on tkemhnnmhdthe:wmurﬁg

freedgim contribabe while the stcing

uggnvahes«imdewithm thcumwydmmddmlhm&&

relahmuc regnne (when thz s&rmg wrieeo-ly am&M%

‘M is gratifying to note, that the Regge slo
would get from the potential regime (i). Thé Wdope&igﬂﬂ‘ .

favorable as compated to the potestiddone. i
The meof&epmﬁtughbﬂmmlmwm‘ﬁ'
been treated in detail in Section 6. Resulis here coincide with Ghose obbaiite
bythecanomca.lqu&nﬁummtkod{ﬂ[. Thhmmwnﬁhm '
(ii) of I — oo of the previous one. =

One should note also, thatm:md&mmw:gmemmﬁthw;; :
quantization of the same quark-string system, dnneam!.[zll %ueth - Y
stantaneoudynamahubeenmumedfmmthe e

twolmxtmgreumes;thuoilzﬂmdl>l.
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MA

AWWsmmwm

U Weuhllobtunbdcwthe@um’afumhonoi:puhchinthm-
fiedd under the comdition =L > 0 for its motign. This condition implies:

that. the only trajectories into account are those without additional
.purmn&mmﬂupondmghthebackmdmthhmamﬂon%(&.
Tdnﬂuiutethexdecmﬁtﬁmmdertheﬁnoiaﬁuepuﬁchnb;eﬁh

| | CUION @

mwm&%h&mGMGWh!&m

: Gla,y) =< 2| (-8 +) [p>~ [ D0 x (A2
x expl— 1 —<~ - i) = /:"atespH—--ww)’sm

cmmthemmaﬂmmm&mmdh hthe
mmunumspweGhuthefom

Gl p1) ~ s~ P 5 Cowy

Ommupamhm(A.z)themmudmofmpctonuwﬂhut

. backward motion {A.1) as follows: For each trajectory of this class one ifiakes
. mamqnemthzchmgeoimtemhonpummdybyﬁ

| o = (A0)
ndthoupomi‘n,(A.Z)mberwﬁtmb ' '

e w[—tf—(—---‘-:‘)] l—f[‘ﬂ(-“‘*‘“ = (a8

= expl—i j MW‘PE"‘(’ X1 - z (7)»}

b

Tanemea@ow®) T
h: tﬁcdﬂi@d’mn& pmm (A.l) the mtut ﬁmﬂn% ﬁ
mtngrmmdiﬂa.todp(r)mb :
pr) = i ) (A7)
huamngulnhnobeu,weﬂhmmmtbmﬁw[ﬂl
D) e eapfri T / Ve

wbmlovlknth&nhuvniaeut-oﬁmter mmmsmmaf
aco&chnmdmham{n(r)},m&m(&’l)mm -

“(A8)

‘ . : - 3=*[d!‘n(1') . . ‘ (M ..
GM(A.M)Q:M&WGW&WGW&M@ :

dm(&.ntﬁemwmgm

&= [ DRANDH e oupl—i / L esn-FeN ()

Msm&mdmgdﬁewﬂi{r)um Mwmth
»mmmﬂuﬁp(r)h ' «

1 —'»‘z;(s")_',;‘ " - ‘(@n)

alr) =



. o gt | - \

b/ \/.e:l:p 'E(t +1/t)]= 2(--) > (A.13)
'N s for l a:ga]< %/2, we are to choose (taking into account eq (A. 8))
el DM ~nGRT  aae

. Affer the integration over p(r) one obtains for G
) a:/nz(r)ppap[‘/dr(px-Jf+ mi)] (A.15)
vkmmexponutwmenbytheextremmvduotp(r) ‘
PR W)= FOFR (A

Theexptesuon(A Is)uthenmalcmomcaheprmmforthequmtm
"lmdlamal Gtm fanction with the Hamiltonian

T CH=JyPim

hthcmmmnpmuummhnmwddeqmﬁ)

:‘

Thnlth:cuntnb\mmofthemjectonuwnhontbackwudmhmueqmv-
alent (for a free particle) to the separation of the positive frequency part from
‘the relativistic propagator.

Weuhnnvthemeofapuuclemthemdﬁeld.d In an analogous
'uy&omthemdndformofthecmnfnncuonmtheextemnlﬁdd

~ G(z,liAp) / —Dz,.ezp{--t / d'r( (——-u“) gz,A“)} , (A 18)

oneobtuumthedmdtmje:tonea(AJ)ﬂnfoﬂmngGmfmcﬁonm o

‘extcm!lﬁdd

| d...(z,le.) ~f D»(vwz.,mm{—a [ M—( e )+»(v)(1 z’))—gA.z’n

Lo o m.:s)v
[f » "’ ,-

G, p) ~ PG -R)E—VAT™  (AID)

- -

In. the same way as it h.u bm done for the free pamcle transfdﬁn~'_
eq.(A.10) into eq:(A.15) , one-can prove.that.the expression (A. 19)1:0:!& tq..'f LT
usual relativistic Hamiltonian of the particle in external ﬁel& S

HF 2 4)= -gA.(z,r)n/(pwﬁz, rn=+m= . Mﬂ? :
Appendix B T
To deveiop a procedure ofqmgmcmo:(zs) we mthemnhry

formalism, as is usually donemthestﬁagﬂim !3.12}.
» Lctnsre\mte (29)

G= /DrDRDp ap[—r«mpmp(—o.fm;ﬂ (sx)
NCUR ue))a fnr Mm_s- j m‘aﬁ—-c. / fwa

- / m*uexa%[ Jix*o.a.w‘ ‘

where S

_ d’&":dv‘ﬂ a=v, &=40, ksdw\. B2y
: htherﬁmsmwhmthemwmmMmm(BJ)-~
is invariant under reparapyetrizati "7"’1'{7,:3) , "’4".-‘—“;: e

: "n("hﬂ) - "ﬁ(f (Taﬂ) ﬁ) ¥ bll(?:ﬂ) -'("'*Ybu(frﬁ), s,
hur,8) (—I-)hn(f,ﬂ) . kn(*r,ﬁ) - ha(f,m

 with the fanction 11,8) sainying the conditions

| f(ﬂ‘ﬁ)ae,ﬁl,ﬂ) fg,;ﬂ - By
. nwwbewmwmlm o B
x‘(g) m}u‘(ﬂ SRR © EEEE
, R ~*‘ o
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A m,a ,psg‘-xrs
mwm)uhmh ‘

- : q{-[(c. uﬁ)«/ﬁ'a'
o -wp!‘{ﬁ{(a(ﬁi"u‘)a.v.&")fa

.,';nphcdbythenmmmh«a

m(&)mm&a Ma(f)uaanht while!‘(é)inu
‘ Olemmtea(f)mthnﬁm

, a(a«a(e»uwe» - ®9)
ﬁam«({)nawda mcmaputl

; whmﬁ;(f)kmmmh&emM&mmm&m
. with a magnitude much Iarger (as we will sliow below) than a characteristic
vlheotlh{f},nthatonemmdectantermamptthﬁutm

swudinx to Eq {B.7).
[ Dnt-n mm Drt) m(- / dya(r)E)erp(~ [ am(f’ +r)dy) (B.11)

Wemadtbdfacmeumonofa('y) The&mdnmﬁegnﬂon mDR('r)
yxdds

) we-mmmmthmmmnma(amf‘mmu o

<a(e}>-»a ,<f‘(£)>—~e (m;‘

<ol >=dtaR(O .. (B.10)

“To simplify the problem we neglect the dependence of hu on ¢ and put
" hat(€) = 6. Intkkmenmcuﬁuen:tomderamddmblcm corre-

. : , de [g-B)PF
- [%“ﬁ-ﬁ)la%%- L

g wmxm TR I

of transformation.

where £7 = £ =8, £(0) = £D) : a-tmﬁ-h

G [ drafy)(® w’)* [ a(’z)t’(‘r)-I- {M)

Mﬁ&mm
| -—»-—t%lr“
doamdepndoaah). ’
Mmtbmmmmobhﬁhmh&ﬂ" et
&omthz&uttmm&enh.&dmﬂ ‘ - C

WA [P
'mmq&m&f{ﬂ,uém&
expression (A.16) is unimpostant. .
m&eﬁddah)ucumdhbctnﬁmﬁamﬂﬁﬂdﬂ.
ht&m&v«&—»mu%a{m}
hwmwmwmwhmmﬁhm,&(ﬁ”' ‘

m-Aff'*z | (54’!




the collective mode #(/3) and the field f(v,3), satisfying conditions (B.4)

31 .
Therefore we have justified the equality (B.8).
Alfter that we obtain the following expression for G:

G = [Dr DR Dy Dy Dho (<K' - B')-  (B.20)
j Vhd®t] - exp|-a / VRA®0,w,0u"d* ]

with the new action which is quadratic in w, and contains the new auxiliary

fields has.

Let us first consider the case of the pure string. The invatiance (B.3) makes
it convenient to introduce the new variables #(8), f(£), n(£), separating out

ezpl—~(a0 -

3f (7, 8) 2

Ly (B:21)

- and making a simple rescahng of A,

3f(7.

Palf) = 222 = af”)('rn(v,ﬂ» (B22)

: whex'e T enters the boundary condmon Taking into account the fa.ct, that

Dhyy Dhy Dhyg = Dh Dhyy bl Dhy (B.23)
and using the well known formula [12] .
t
~ eapl- 2T ~= [ VA Da(8)Df(1,8) (B.24)

wheré 1/e ~ A is the u.ltraviolet cut-off scale, we arrive at the following
expression after change of the integration over dy by T'df(v,8) = dr

G = /DthgszDRDf)Df’(ﬁ)

const

) j haz f)v(,ﬂ)drdﬁ]

-eapl- [T ar [! dﬂ =(( 6,)’ - 2ﬂ(—r) +((#0)* + 1')r?)]
where trivial rescaling z,Z — (5)"/2z, (& )‘/’z together with a proper renor-

-exp|—(og — 2& +

(B.25) °

malization ofma,: in K, K has t been done.

t Al #’ _ . &)

32 .

At first we notice that the action doesn’t depend on f (y,8) which refiects
the invariance (B.23). So that the integral over D f(r,3) can be xactored out
and it is equal to the volume of the reparametrization group.

In the standart way [12} we have.introduced the physical quantity o, whxch
entere¥ our expression (B.21) .

‘ t
o? = a(og — 2& + cons

) g (B%)

In the general case (B.1) the invariance (B 3} is lost so thd.t we are ie{ o
with a dependence of 7 on 7,8 and have to restrict ourself instead of (3.2
(B.22) by a simple rescaling

A= _’:; = (Toi(r, B))?
b= 32 = (Tolr,6)

After that in ‘the same way we arnve at the exptessmn for G

) G= [Dr DR Dp DhanDﬁ(r, B8)
xezp[—K' - f(’]ezp{-—(dg ~ 28)a [ haa(§)(r, B)drdB)"

xezp(—jdrjda (57 - iz, r)+((ua)+17) N .
which d.\ffers from (B.45) by three points; (i) changing factor (og — 2& + et }
by (o — 2a) (i} an explicit dependence of #(7, ) on T (m) by the pwsence ‘
of kinetic terms.

Finally after gaussian integration over hy; > 0 we obta.ln for the case of the.
pure string o , _ T

G = [ DR, Dr, Dﬁ(f)dq(r,ﬂ)e;p[*Aml )
where : B - |
A,.,. /drfdﬂ—[w + (a'v) v? — 20(air) 4 7Pr?] -(B.31)
and in the general case (B 1) , -
G= [ DR, Dr, Dy D¥{(r,B)dn(r, A)ezpl-Aw — K"~ K]~ (B32)

T

T
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Appendix C

T this. Appendix we detive the effective Hamiltonian for the longitudinal

excitations, calculate the corrections to the string -result (85), and oonmder
the bebaviour of the dynamical mass u as a function of I.

It is easy to prove that after taking into account the longitudinal dynaamu
‘one obtains a small correction to (93) of the arder of

F_-lﬂt—ﬂt

at | — ca the field (7, B) separates and is governed by its own purely string
dynamics, only weakly perturbed by the dynamics of r*(r) and p(r). The

 Iaster are "living” in the external field v(g).

We now comtpute the longitudinal contribution to the energy of the system
ta the leading ozder in (1/7). To this end one can use the nonperiurbed value
(o) (93) and make an expansion in (83) as follows.

_ 2(£ +021(' + 1) fﬁ% )1/2 ( "2’(1 + 1) Iﬁ‘ )1/2 + (C.l)

KB ~ 1/2y0dg 18 ~1/2)%0dp
s (GBIl +1) 1 F)V g (P11 +1) 5 H)2
HstE-1amode ) GE - e

Insertion of 1A%(8) from (93) into (C.1) yields'
3-v2

whae A ig an effective Hamiltonian for the radial excitations of the
hadron.

% i is weakly growing with [, as we shall see below, one concludes that

(@rott+ D) -2+ 2 oa (o)
and finally one gets
| ‘11' 1 7;"2 +2(2xa)1/=(1(1+1))"“+ (€3)
li p’ ‘ 12\/— e — ro)?.
YR+ DA A e =
=EP + 8

e %W Rt st S

p

TPEE Gy, e TORAOE NPT AR ST S s
e
N Y

o d >

Cew N Y

PN
, A T . :
Aﬁerinmﬁnn'inthisemoitheww;dp L ,
p= (é-—~——+ mz)" ’(W‘ ©co .
weﬁnanyobtmfmmmcmmmw
B = SV ) V(g 4 e - " (cfsa -

where the substitution (I(1 + I))I/2 — [ has been made in the hmitl o, . “.'f
Let us consider the case of massless current qlmtks : ' .

m=10 L (c‘.s)
Introducing instead of (r — o) 3 MEW dimensionless vanable z - ,
(r —ra) —3*”1"”(-—)"’: ©n e

we represent eigenvalues of the Hamiltonian (C. 5) in the ﬁnl!(wmg W E
B =130 atm,) (©

where a(n,) is the eigenvalues of the new chmeamnnkas Ha

B9 = (g + ). © 3

In order to obtain the approximate value a(n,) we consider oq: (C 3) fw tha v ;;\"fr\
restricted class of functions u independent on r. Such m in, M :
gwesa.ccnracyabout5%forlowlymgstates lnﬂns\nymm P

a(n,) =

Substituting this expression into eg. (C.8) we arrive at the final & :
for the total energy Ei,, of the hadron and: have for the maes aqumd

M, = 2z0(l + conatl'/®(n;. +1/2)V®)

=27 3—3/‘-(n,+ 1}‘“

- {C.n)", a
whxchushghtlvdlﬁ'erentmthocasel—»oo&nmihepﬂestﬁngnmﬂt(ﬂﬁ)




References

1] Yu. A. Simonov/Nucl. Phys. B307 (1988) 512
[2] Yu. A. Simonov/Yad. Fiz. 54 (1991) 192

[3] M.Green, J. Schwarz, E.Witten, Superstring theory/Ca.mbndge Univer-
- sity Press, Cambridge, 1987.

(4] B.G.Dosh and Yu.A.Simonov/Phys. Lett..B205 (1988) 339.

{5] H.G.DoschfPhys. Lett. B190 (1987) 177;
V.Marquard and' H.G.Dosch/Phys.Rev. 035(1987) 2238
Yu. A..8imonov [Nucl.Phys. 324 (1989) 67.

[6) M. Ca.mpostnm, A. Di Gxacomo and G. Mussaxdo//Z Phys. C25 (1984)
173;
A.pi ~Gia'como and H. Pa.nagopouloslPhys. Lett. B285 (1992) 1

[ Yo Stmmovﬂ?hys Lett. B226 (1989) 151, '
[8] Ya A Simonovlz Phys. 53C (1992) 419 S
[9) Yu. A. Simonav/Phys.Lett. B228 (1989) 413

10] Ya. A. Simonov, TPL-MINN-90/19-T;
 Phys.Lett. B248 (1990) 514

{u} J.Caxlson et al/Phys. Rev. D27(1983)233
* J.L.Basdewant and S. BoukraaZ.Phys. C30 (1986) 103

- 12} A.MPeiyakov, Gauge field and strings./
Hamod academic publishers 1987.

{23} A/¥u DubinfJETF Lett. 58 (1992) 545.
. [14]-‘%c.1il=mn’kn A.V Razumnov/Theor. Math. Phys. 1983, v. 56, p.192.
[151 H.G.Dosch and Yu. A. Simowov, HD-THEP-92-23

[w) N G.‘ Vm Wnl?kymh 74 (1974) 239;
' MM‘MC (1976) 171 -

IydeE A.D. nnp.

/

[20] E.Laermann.et al. #Nucl. Phx&

?

A Hommcaso X _ITBYATH 2&02.33 o @cm:
Yex.-med.x.2 25. . Yu—mx.l,&




