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Starting from the QCD Lagrangian and taking into aécount both
perturbative and nonperturbative effects, we use the method of vac-
uum correlators to derive the Dirac equation (rigorously for the Coulomh
interaction and heuristically for the coenfining potentml) for systemn
consisting of a light quark and heavy antiquark.

As a result the coufining potential is a Loreniz scalar, and the
Coulomb part — a fourth component of a 4-vector. The energy spec-
“ttum of the Dirac equation is considered for zero mass particle interact-
ing via these potentials.. Numerical calculations of energy eigenvalues
E = E, . and eigenfunctions are performed and some exact solutions
of the Dirac equation in the case of E = m = 0 are found. ,

The coanection with experimental spectra of D and B mesons is
briefly discussed. )
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1 ' Introduction

TB_c qnarlt-wztiqu#k systems consi§tihg of one heavy quark (antiquné‘k) Q
and Tight antiquark (quark) § are the GCD analogue of the hydrogen atom
and similary to that arc of undamental importance.

. ' interest both in the analytic and Mounte-Carlo QCD studies {1].

- From the theoretical viewpoint the intcrest of heavy-fight systems lies in
several aspects. First, in-the limit of one iofinitely heavy quark mass ope
hopes to get a dynamics of a hght quark in the external field of the heavy

. oue. That would be similar to the picture of the hydrogen atom.

Second, since the exernal field is tim&‘mdepcnumt oné may hope to
obtain 2 static potential in QCD together with spm dependent forccs. a8 it
was done for heavy quarkonia [2].

An important issne . this conneetion is the Lorentz mtu.e of the con-

" fining part ol the potential, arguments in {avour of its stalar character are
found in the form of inequalities {3}, and alsc in the form of spin-dependent
terms {2,4].

Tlurd in the heavy-light syst.em one may study ho“ the chiral symmetry

" breaking {CSD) affects the spectrum. When one quark mass is vanishing, in
the chiral symmetric case the spectruemn would consist of panty doublets, and
the CSB lifts the degencracy.

Forth, using Dirac equation we implement explicity relatwlstlc. dynamlcs
and may study relativistic propertics of the spectrum, e.g. “in the case of
vanishing quark mass, and akso relativistic spip splittings in the spectrum.

In particular, in our case the spin symmetry widely discussed now (1] is
present, since the spin of the heavy quark is decoupled. Hence every state
of the Dirac equation with a given § antd parny corresponds to two a.lmost
de&,eucrate statcs of t.be {9Q) system with } 7 and the heavy quark spin §= 3'
sddinglo J=j+ 1 N

OQur final pomt is that the Dirac equation deocﬂphon )lelds & dynuu—
ical framework {or the heavy-lisht mesons which can be used. to calculate

" meson, matrix elements and form factors to cowpare with experiment and
semiphenomenologico! approaches widely used now in this context [1,5].

Uzre we attempt to derive explicitly the Dirac equation for the heavy-
light quark system starting from the QCD Lagrangian aud incorporating both

- o . Recently the issue of the heavy-tight bosons has become a topic of a vivid

.appeam\ce of the static scalar confining potential, but we give strong acgu-

‘level rcaches the value £ = 0. ‘We note an anajogy of this problem with = - Lo

=R
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pertarbative #nd mpatnrhume eﬂects in the framcwork of the Vu:mzm .
Correw.or Method (VCM) {6-8).
In the course of derivation we-use sume appmx:ma.tmns wlnch are deuy

stated at ench step, e:g.: neglect of virtual quark pairs (quenchmgapptox .
imation), keeping the lowest {quadratic} cumulant io the cluster expansion

- and the limit of Jocal dynamics” [2], T, — 0, where T, is the gluomic vatuum

correlation length. We discuss phy: mcal nnphcahons of Lheac aypmnnutm .
in the main text below.
Even with those approximations wé are unable to prove ngorously the

ments in favor of it. The situation is much better for the perturbative part,
and the existence of the external vector potential in the limit of one heavy
quatk mass is expiicitly shown. .

At this poiat westart with the Dirac equation containing a vector Coulomb
part. and a scalar confining part and gtudy properties of its spectrum. For
a comparison we have also consi two other cases: i)a vector confining
and the Coulomb part; ii) both parts of potential transform as scalars. 'We
are explicitly intercsed in the limit of & vanishing hght uark mass and spxn
dependences of the energy eigenvalucs.

We show expixcxtly that reasonable sp=ctrum occurs on!v for sm.h.r con-
fining part. In this casc the scalar potential breaks explicitly chiral symmetry
- and the states with opposite paritics are not degenerate. Tnthe case of vector
ciufining part only qua.swt.atnomry states have been found.

" We have written down poesible genrral symmetry properties of spectral
states and in particular cases of zero scalar potenha.l md zero vector pcten :
tial, and of zero rmasa.

We also fmd some exact a.nnlyhc soluhons of the Dirac equation which .
occur for E = m = 0. This enables us to find an equation, defining the |
value of the Conlomb constant { = {u, for which the (njl) discrete energy .

the relativistic Coulomb " problem of an electron in the field of the heavy Lot

supercritical bucleus with Z > 137 [8-11}. - .

. The paper is organized as follous. In Section 2 we use the Feyuma.n—, : o

Schwinger repmcnhhon of the quark-antiquark Green ﬁmcnon to denve

the limit of one infinitely heavy mass. .
* In Section 3 we compare this limit with the Dirac equatlon md (hscuss -

Ihe Lorentz natige of the confining interaction. :

L P
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In Section 4 we discuss the properties of the spectrum of the Dirac oqua-
tion. : . :
’ In Section 5 we discuss symmetry propertics of the spectrun, in particular
- chiral properties.
In Section 6 we discuss numerical results for the spectrum of the Dirac
equation in the limit of vanishing light quark mase. - .
In Section 7 we investigate t the exact amlytlc solutions of Dirac equation
which occur for E = m = 0.
. In Section 8 we summmarize our mulu and eompm t.be Dirac spectrum
obtained here with experiment and oth«-r approaches. This enables’us to
ducual also heovy mass corrections.

2 The Feynman—Séhwinger representation for

- the heavy-light Green's'function'

) Conndet the quark—antuqmrk system of one heavy anhqmu'k (vmh mass ms) -
and a light quark of a much smaller mass my, which we m-glect in some cascs

) The Green's Innctngn @ of such a sysiem vnth quarln mmany lt points
" 9, # and finally at points z, & is given by the path integral over fermionic and -

gluonic fickds and is written down in Appendix 1. Performing fermionic inte- ‘

grals and neglecting the ferntionic determinants (quenching uppmxnmauou)

. for axmphdty, one arrives at the amplitude, depicted graphically in Fig.1,
where A; is the quark Green's function with quark mass m, md P helong

’ to the initial and ﬁna.l wave—functions: . : ’

: 4 'l'(n 5} = i(r)l"(m a(¥)
and malogoudy for ¥(2,Z). Thus we can write .
Glss | 78) =< IT(E, )l 9)04(5.8) > )

The angnln ‘brackets here dcnote the mtcgratlon over. gluoaic ficlds. This
integraticn we perform using the cluster expansion [6, 7). as discussed in .
" detail in Appendix 1, and we arrive at the following expression invoiving

~
L

4
proper ti’uF and path integrals l'm" quark (s, 2} and antipark (3, 2)
Glez | y3) = [ [ ap:pze=-t @
tr{lu(my — Dyl (g~ DY),
K =m{a,+ Ef":"'"

"""’41‘ ddr

ln (2) l'., 'y vefer tothe Lorentz structuares i in initial and finai states, D).
" should be expmnml as in (A.15) and 9,y is given iy (A 14), which. we rewrite

here in the form (in the lowest order of cluster cxpansion, where perturbative
and nonperturbehvu contributions factorize {8}, ace cq.(A. 13))

Au=enpl-L 6‘-(-)4!.&(-')':?-&)1"»(-):'}
where

and < F F > is the gluonic cerrelutor wbn:h can be split into perturbative
and nonperturbative part as in (4.13). -

H(v) = daufu) - iolldr 4 a'cmdf L ny

Note, thatoneﬂhonldhv?ﬂwpmpcrordmgofspmmdnmmderlhe )

. sign of tr in (A.16), c.g. spin indices of g jn s entertotbe!cftdf
while those of p to the right of T, -
No.wedncnsstheﬁmxtdoneheavym,m,—aoo.hthume,whmr

my is nmch lacger thian the interaction strength, the pasticle 2 s mom;
along the stnaght line tmjectocy :

~

H-h=T; -i-' = Oy ;P = ;‘%: ;

_ i*zﬁ_z&—podtion.ii‘xmdputidel




Oneunue tlmt in thin thost :he spin intetaction ofpamdez (t.erms p"’
- li‘)un-O(l/mg) and ¢ra be
" The pwtntbatlve part of ﬂie cumuhm (A.13) can be written a5~

¢ f do(s) [ doals) € FaW)FALS) > o= B

=fja.ju<A.(z)A,w>>,,..= ®

-y

. where' Og is the quaduhc Casimir operator, Cy(Ne. = ) =$adCis
the cloeed contour depicted in Fig.l.- The integral in (6) is divergent and

is regularized by the insertion of the.Z factor in frout of the exponential in
(3) and introducing the minimal dmamx- §of the pomu 3 and 2’ in (6), for

*_ details sce (14].

Therefare we can now study the ntuatum when un}y pemubnwe inter-

' acuon is pmcm. and the Green's famction looh tike -

Gles 139) = - [ sDse” ~'”‘fé*"'tr(r.(m.+-.)x (7)‘

. xk-r(-a’ ju-,m + -«"w-..(-o & Pt} >}
.. ‘ Tl =30

'wm“mwmmddﬁmdmml
' Ouplmmtomnetheexponenhn(ﬂmtheﬁnn

L I LICT L WO S
- " where we {a sumlu dcma!.m for QED was- done in [13]) have dc‘lncd fol o
N ‘l-m-s(ﬁ) ‘ )

(x):ug[(&,(x)A,(x’)>&' “j(‘ i R (9)v‘ -
=l o

. x| F-R|

: ‘tbn.

" one obtains from the Fcynmm ynge propagator (6)

| < A,(:)A,(x’) o= g3 e s
Bcnce we can \mtp the L Gmur’a Inuc’uon hu!plng ody )umbmw inter- ,. .
- actjon as ) .
' : G(zihi) = Ml‘.G’(a. or ,m(l -'ra)l : Sy
where we have defined - ; ’

G(G, y)= [dtD;(m‘ - D(A))e""'"’ In l’#ﬂrwrh".*,

o acs /' &(m‘-D(A))c"(""(Pmﬂl’>s Sy
=<l ma DAY > DR

mdweoboerve that G(:.')wmﬁathe D\nceqnnm

("Y+ D(A))o(s,’) = “’(x ,) ’, - (14)‘ B
" fn the next nechon wedn.ﬂsmdv the e&d of. mnmm jntecac- -

3 Conﬁmng force and the Dirac eqnation

" We now turn to the’ nonpcrturbumre mteru:tm, wlnch provides confinement -

due to the presence of the specml (Kroned:a) structare in the quadratic -

* cummiaut [6], Neglechng again the selfinteractioh of hight' pacticle; we have
ftheaamrbrmo(equatmum("),bntweabouldaddthento(?l‘),m
also the nonpemlrbmve part € F F)....,..., whickmbcvnl\cnu [6]' .

< "m(')’h(") > (5~‘-x - 5»&5)9(" ¥)+ - (15)
.+§( (0= b= 0= Vb b ppes 1l Bia= )

A P =84, ~ &.J. . 19
’Onecandmthe&lhntﬁmthuplmtummbr(!?),ﬁ,whd




. [dsmin) /JJA(U')<Fw(”)P.x(l') > [l (8Maa( AD(x=w) 4.

T

It was shown fﬁ 7] that only D (and not D,) yiehls confinenent (the area -
law: of the Wilson loop), and we concentrate first on this lvnll. '|IM‘gan||llg )

abso thc spin termn a(‘) in (l) We have

(16)

Using the same argmnen(s, as in [6), one can sce that we get the am—hv .

exponent in (7), namel} fnr large arca we have

. ez2p{~aSmin )0 = 2/fqu(s) (1_7)

where Swin 15 the minimal area inside the contour formed by the straight-line ‘

" trajectory. of the licavy particle and the path z(r) of the light one.

We are now facing a fundamental question: i) whether the term (17) can

" be associated with a local potential V, acting on particle 1; ii) what are the

Lorentz properties of this potemml - does it transform as a scalar.or as a

vector? .

- systém. The mtfg;al in the exponeut of (3) is over the surface inside the quark

. To answer the quﬂtltm |) we' shall follow the argumenta given in [2] and
therefore we must turn-to the exponential (3), defining the dynamics of the

" and antiquark’ trajectories; the chapacteristic Iength of these tra)ectonaa i

T, a period of quark orbiting.

Being at somc point z(v) on the !r:uvrtory. quarL is’ mﬂucnced by the .

) ﬁeldn and through then by his partner. The radius of nonlocality of the fields

is given by the corrclation kength 7. deﬁnmg behavnour of < F(u)}F(u) >
i.e. by humctions D('-:—). ('3‘.-"5) o

Therefore the criterion of local dynamicsin Ty > T [2,16}. ln the opposlte 7

" case, Ty < T, the quark "feels” all the fields md also notioh of antiquark

during all his history. This is the nonlocat dynaniics, which can be treated
by thé QCD sum rules [1T): Tl lattice calculations yield T, ~ 0.2-+.0.3fm

: [18], while Ty both for light and hcavy quarks is Ty > 1fm. Therefore the

realistic situation is closc to the local dynamics.

Regarding the first point, we shall proceed as in [8, i2), fonmng the
minimal surface via the connection of y = $. wheret = £y < .

In this cas'e-combining all exponents in (19) and (28) we obtain

B= / (.t "‘r'(t)’w[«w P )

t_1_4¢

(iS)

where we have defined as in (19,8 : - ] o : .

wult) = (OB + EKL = ), By = 2w,

) (19)
ruft) = 24(t) — 2.(8); 28y =T/a.
Taking into account (5‘)- we have :
oill) = K(@)-F+ RO ~PRmemat  (20)

: wty =ze{t)- B+ (Fa+ 8)(1-8) .
E(e)- 8 = 4()- ﬂ. wisidt)-f+1-8 "

. Following thc same procrdun- as in [19,8] we obtainAl'mm B {comsidered as

W.(i)

an action) the proper-time Hnmlltoman, depcndmg an the, dynumul mass. . ‘.

[ 2l

mp.)-a+ > (21)

'lhe Pigcnvalue of H(pl) is to be: mlmmlud \vlth r!-sped, to gy, wlnch :

+'l'|+-—(— -)

defines thie final value of ;.

~ Thus. we sce that indecd the nollperturbahw correl.;tor < FF >....,.n
yields a potential-type term in the proper-time Haumltonun. pmulrd T, is
small [2] and the expausion of the aqum—root term in ﬂ i’ done as in [l!)l
which amounts te ~10% accuracy.

It is more diflicult to answer another qucstlon — about the Lorcntz nature
of this potential, since cq.(21) i writtef in the c.m. system and we do not -
know how this expression transforms under Lorentz boosts. To get a partial

un -m;nndin; of this point, let s’ compare how vector and scalar potential - -
_enter in the Feynman-Schwinger repiesentation for the Green function.of a

scalar quark (i.e. neglecting spin term ~ g1 in (19)) .
We can write for the scalar case .

N

c(m)~ [wmp( /' V(zm)dr —ml /' —av) R
whﬂefo:thevectorcasewehwe :
a G(z.y) /szup(—ino— j' Zarsi [ v,a;_) @) |
I4
N L XL
L L% X




* The main differcoce Lies in the fact, that trajectories of the Z-type de-

picted in Fig.3 (virtual pair creation) give different contribution in scalar and
vector case, For the scalar case the proper time intervals At, Any and Any
are positive and add to lg«:ﬂﬂ‘r to supprﬂs thus the pair creation, while in the
vector case Aq ,Az,,I and A.. strongly caucel each other, making pair
creation easy. In other words, for the scalar potential all parts of a trajectory
ald arithmetically, while for the vector one should takc a vector sum of all

"intervals.along the trajectory.

Looking at our prototype of Lhe potential, the last, term in (18), one can
see that iu Lhis case ove.actvally adds a scalar quaatity adl\/ {we remiud
that ¢ is not the fonrih component of vector, but rather the proper time dr,
whicli is scalar). Tlns we scem to be justified in trentln« thc conﬁmng {orce
as ascalar and not veetor.

There are additional arguments in favour of this a)nclusnon

First of all, in the nonrelativistic derivation of syrin--dependent forces'in

nonperturbative QUD 2], the sign aud maguitude of the spia-orbit term

depends on whether the confining poteutial is chosen as scalar, or as a vec-
tor {1]. In the Appénix B we quote the spin-drpendent. terms obtained in
{2], for the case of two nonrclativistic quarks. One can notice the asymp-
totically dominant contribulion coming fromt VY, which contains ouly scalar
contribution and yiclds the negative tot-ﬂ'mcut of the spm—orbll. tern L5,
charartcristic for the Thomas precession.

esalts obtained in {2} using the elnster expansion and area law unamhb
giously predict the spin-orbit force coreesponding to the Thenas precession
term, which was also introduce previously wsing the ﬁtrmg picture [20}. All
Lhat coreesponds Lo the sealar coefinement.

Second, there are fudependent argimchts in {3], leading to mcqnnllt.ws.

whicli ate satisfied for the sealiar confining potentid, and not satished for.

veetor cage. Finally the cector confining potential is believed to cause the
Klein paradox (10.11] . 1n Chapters 4 and 6-we study hoth scatar and veetor
corfining pohni.-.l and indeed show analytieally xud mumerically that only

_in the first cd% onc obtains a physically onsistent spectrum, corresponding

o confseneat while.in the second vase ong hes only quasistationaly states.
This sitnation is related 10 the po-calkd Klgin paradox [10,11}. Thus we give
stroug arguments in fasour 5f the scator confining potehtial. Unfortunatcly
at the mwoniewt we are still unable to derive from the Schiwinger-Feynmau

.
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representation tie Dirac equation with the scalar petential, in the way we .
have done it for pertucbative Coulomb interaction. . -

Therefore in the next Sections we simply postulate the Dirac equation
with the confining poteatial of the scalar type (or vector type- to check its

. mconslstency)

4 The propertles of the spectrum of the Du-ac

equation

As we have shqwn in the fast Sections, the color melomb mtcmchm between
quarks is of a vector type, and 'we have argued that the confining inleraction
is a scalar. Ik is ifistiuctive, nevertheless, to ¢ id both . possibilities of
interactions, scalar U and vector V, and study properties of mlntions of the
Dizac equation in these cases. ‘
Assuming spherical symmetry, we shall look for solutions of t.'he Dnrac :

equation in the form . .
' af Gir)ax .
1 v .
re ( iR | .(24)

where { + & = 2j, and Q- spherical zpinors {21).
. Equations for radial wave functions are

e

i te- [E+m+U(r) V(r)]r.—.b E (25)
%-—-FHE m-Ulr)~ V()G =0,

where E and m are the energy and mass of the light partlrle {(m =14 in the ‘
notations of Section 2), & = ~({ 4 1) for the states with j = I+ 1, x = ! for
j=i-4 80 that } s |=j + 1'= 1,2,... We consider thmecholoes
a) Assume
‘ ¢ . _
Ule) = Mo V() = —-;,M o
. Puttingm =10 and introduciug, dimensionless variables:
2= Mr,c = BEfM, we arrive at

@420 (e+a4(-sIF=0, e




.7 < rg — in the same way as in QED with the charge Z > a™?

F-SF4(e-z4¢ a6 =0,

{(hereafter the prime denates the derivative in z).

Let us find the asyinptotics of radial functions at zero and infinity. For

z - 0, juserting the expansions G = Az¥ + .., F = Bz* 4 ...
obtain : .
v (6 (N AIB = k7 (= )Y 1 23)

The wave function is regulae at zero for ¢ <} & |= j + 2. while for
¢ > j+ 1 there oveurs a well known in quantam wechanics “collapse to the
center™ [22723), The difficulty is actually of a formal character and can be
removal introducing a cut-off of the Coulomb potential at small distances,
= 137, see
tefs. [0-11. 24.25],

* The behaviour of wave functions at infinily is more complicated. From

- 27) it follows that G, F ~ exp(+12?) as z — a0, and the solution with a

positive exponent is clearly not mlmlwble
We accordingly write G, F as

into (27), we

G~ Alexp{~(az’ + be)}a(1 - ';—' +o), : (29)

‘ »Ft B’eip{—(a:’+bx));’(l - E;l' +...).

Inserting these expansions into (27) we find after elementary (however
lc(lions)' cnlmlnlions'

‘--B'a—I/Zb 0[3-—£ cx--(C——I/’)ec ~-(/'+ )c. (‘30)

Thns the wave fi nchons {w.f.) falloff at. mﬁmtv mostly in the same way
as in the case of harmenic oscillator in nonrelativistic qguantinn mechanics.
The solution satisfying the conditions obtained above, (28) and (29), exists
ouly for some definite values of € = £,(¢, &), and the w.f. is normalizable.
Therefore forthe Dirac equation ouly the dwcr(‘te specteunn exists.

"T'his conclusion holds for any seclar potcn_nal which grows at infinity,

GVFC) ~ eapl= [[UNrhr 200 (1)

12

Even for the logarithmie poteutial the w. f decrease asymptotically fasicr
than exponentially: -

G .. .W,~erp( griur) for U(r) glnr . . {(32) -

b) When both interactions are of a vector type, i

U(r) =0,V(r) = ~(r~' + M, - (%)

the system of radial eqnations is _
G'+.Ec.':(e}'§- -2)F =1, , {31)
PSP+ bone=0
e - z
In this cave at z - 0. )
b= (67 = (O 418 = s+ (6 - (1))
while the parameters i the eq.(20) assumie the values

ie,f = ~i{

"Mlere we chose a solntion s;xti‘:fyim, the Sommer{cld radintion condition,
i.e. having an otguing wave at 7 — o0, Thus for the interaction {33) the.
discrete spectrum is ahsent (sec also the curve b in Figd} and all solutions

 A=iBLa=-if2b=

.of the Dirac cquation, if apy, are quasistationary. n the special case of the
- rectangular well one can obtain an exact analytic equation for the spectrim

[26]. The width-of these quasistationary states defines the probability of the
spontancous pair creation in the potential (33). This phenomenon is closely
connected with the so-called Klein paradox [10,11]. Physically it means that
the problem:-is now of many-particle (.ype but actu.ally the Dirac equation
is still applicable.

c) Lomldor for rmnplctenmq also the case of punlv scalar mtf'ractlons,

K U= --vCr'l +A!’r, V=0 - A (35) .

In this case we have at r —+ 0 instead of (28)

v = (& + O, A/B =[x~ (& + ()¢ (36) '

“
'




Thus the "collapse to the center” does not occurs for arbitrary large values
of the Coulomb parameter {. At infinity we obtain the behaviour which is
analogous to (29): G, F ~ ezp{-1M?r?), thérefore the spectrum is discrete.

Hence the character of the energy spectrum depends crucially on the
assumption about the nature of the confining interaction M3r (scalar ot
vector). :

The reason can he understood qualllanvrly using the method of the ef-
fective potential [25,27).

The system (25) corvesponds'in the quasnclassncal approximation (neglect-
ing spin—orbit and spin-spin forces) to the following relallon between energy
and momentum

pir) = (E V() - (m+ U()? + k¥ = 2m(E —.U,"), 37 .

where E an(l U.” are cffective energy and potential in the nonrelativistic
Schrodinger equatlon

1 x?
E= 55;(3’ —m?), Ugy = 5 (U =V 4 U 5 sy (38)

In the nonrelativistic lmit (B ~m and U,} V |<€ m) we have: U,s; =

U+ V+(1+1/2)2mr*. Therefore, all three cascs (a) — (c} correspond the

‘funnel potential Vig(r) = -(/r~! + or, which is often used in QCD.

" However for large U and V, the sitnatiow is drastically different for our
- cases a) - £} This can be understood from Fig. 4, where the qualitative
behaviour of U, gy(r) is shown.

'8 Symmetry pmpertxes of the spectrum of
the Dirac equatlon

Here we discuss syminetries of solutions of the Dirac equntnon for particles
of zero niass.

‘It is clear that in case when both m aud U are zero the Dirac equation
(and the corresponding term in the Lagrangian) are chirally symmcrnc ie.
do not charqc under a global transformation:

1 2% sk TN 2 T I £ )

T

R L L ] < ‘1:’-‘

~ From the point-of view of the spectrum the chiral symetry means that alt
states are parity degenerate, i.e. masses of the states 0* and 0~ (or 1+ and

* 17) are the same.

It is easy to demonstrate that the system (25) with m = 0 is invariant
under even more general transformation when U #£ 0:

E—oE,u-a—n{Lfa—U,Vfo", . (40)
G(r) — =F(r), F(r) — G(r).

It follows from (40) that for U = 0 the spectrum is degenerated with
respact to the sign of the Dirac quantum number «, i.e. it depends only on
the total momentum j, and not on the way [ and s are ooupled (the chiral
degeneracy). :

Another symmetry of the Dirac equation is

B—»-;-E,n-v.—n,U-—oU,V-O—V, (41
G(r) & F(r},

which in contrast to (40) connects the statcs with positive and negative
energy. In pacticular, for V = 0 (scalar interaction) there is a douabling of
states with a given | B, |, B, = +.| E, |, and we can always consider E, > 0.
In the specific case E' = 0 (zero modes) there is , at the first sight, a chiral
degencracy of states. However, it is easy to show that the degenerate states
with ¢ = 0 do not exist at all. Indeed, pultiplying the first eq.(25) by G,
the second — by F and integrating tie differcnce from r = 0 to r = o0, we
ohtain an identity:

[' (G + F’)"r—' =27 /:‘ (E - V)GFdr (42)

{we have used in the derivation that G and F vanish both at r = 0 and
r = o0). From eq.{42) one can see for the purcly scalar interaction, the
absence of solutions with zero energy. S

8 Results of numerical calculations
Here we report our results of nimerical calculations. In Fig.5 is shown the

dependence of cigenvalues €n, = E,./M on the ratio ¢/ | x| lor thie potential
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. (26) ( solid.lines correspond to the lowest states of a gnen value of 8, n =
1; the, dashed lines are for the first excited states, n = 2). The energy
eigenvalues decrease monotonically with the growing Coulomb paramcter [
and for ¢ —| x | they have a square-root-type singularity. The latter is
characteristic for the potentials with the Coulowbic behaviour at » — 0 and
is connected to the phenomenon of "the collapse to the center” {10,11].

In Fig.h one can sec that the levels with & > 0 lie much liigher than those
with x'< 0 (for a given n). The physical meaning of this cffect becomes clear,
_ when one remembers that the centrifugal barrier is proportional to x{x +1)
and e.g. is absent for x = —T imcoutrast to the case of x = +1. The energy
of the levels are also listed in the Table for several lowest levels. :

We note, that the singularity at { =| x | can be removed when one intro-
duces a cut-off of the Coulomb potential V() = —(/r at small distances:!

V(r)= { ir;(;;r:)ro <r<r T ' (4‘3)

where rp is t.he cut-off-radius and f 0) < 0.

"~ 1In case of rp € M~ the influence of she cut-off on the enetgy levels is.

. essential only in the nearest vicinity of the point { =| x | Here the level sinks

“t0.the bounduy ¢ = 0 (it corresponds to a boundary £ = ~m for m #.0)

at some value ¢ = (ne >| % |, which depends-both on rq and on t.he concrete
form of the cut—off function f(r/ry) in eq,(43):

With the further increase of { the level goes on down to the reg'on of - ;

negative values of energy, but the spectrum stays discrete (this is in contrast
to the Coulombic problem with the vector potential (10,11]), which means
that the pair creation does not take place.

7" Exact solutxons for E=0 B .

In QED the solutions of the Dlrm: equatlon simplify conslderably for E =

+m, which corresponds in our case (m = 0) to B = 0. Egs. (27} in terms of

linear combmatlons 4 =G+ F,0 = G — F assume the form (¢ = 0}

o cnnoﬂheleleltlﬂd-mthu<0.focvhui¢(n)-—»0m ‘bclunn(—-'{xl(uef

Fig.5), this nn;nlmty can be derived analytically — see below eq. (46).
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A+

v —zu+ v=0, v 4Ty 4 — =0 ‘ {44)

At ( = —x the first equation can be solved explicitly, u = Cczp(i;-), wlhich
yields C =0 and hence G = -F = llv. "The normadized wave functions ave 2

Gle) = ~F(z) = =Y ezp(~2*/2) (45)

Using the perturba.hon theory in the parameter (k3 - (3)/3 € 1, one can
define the hehavior of the energy near { = =x:

)= (46)

(for details see Appendix C) Computations' confirm this asymp'ohc expap-
sion — see Fig.6.

Note, that the solution of the type (45) exnsts only for the states with
x < 0. In case when ( = & the equations (44} have a nonzero solution
G = F = const ezp(2?[2) which is not admissible because of the exponential .
growth at infinity.

These results can be generalized to arbitrary values of ¢ md x. Solving
.in (44) for one of functions u,y, we come to the equation

. i l ,’-5’-‘C2 '. . '~. . . ‘ . ‘.
‘f’f w+—w’-[i2+z +-—-—-—]u=0, o ‘(47)

where the upper (lower) sign con-esponds to the function ufv) We shall
consider the case { >| x|, when the cut-off of the Conlomb part of the
potential is essemtial. Solution of these equations for » > . decrcasing At
infitity, can be expressed through the Whittaker functions (28],

“=Ct=°lw-1/z.i.(=’), ,°=sz"W1/z.-,(=’), ’ ,‘ o (48)

where g = (¢ - x3)}/3 > 0, and C,, Cy are some constants: : :
- Insertion of (48) into the first of eqs (44) y.xelds the connectmn bctween

CI,C: ' , ol )
C: = 2(" +00 . : (49)

("Thu result can be emly geneulind to the case m # 0 and arbitrary scalar potentu!
U(r)




"\.

5

17

In the internal region, 0 < ¥ < rg, the Dirac equation should be solved
with the cut-off potential {43}, where one can neglect linear potential because
ro € 1/M. For the simplest case f(z) = 1 (a square-well type cut-off)
the solution is found analytically and can he expressed through the Bessel
functions with halfﬂnteber index.

The energy spectrum is found from the natching of the internal and

external solutions at * = ry. In case of the Dirac equation one can match

the ratio F/G instead of logarithinic derivative.
As a result we have

2+ OWorj2ap(#3)/ Waprsal23) = €, (50)

where £ = w(2o)/v(2o) is defined from tﬁe internal solation and depends
on &, { and the cut-—off model. E.g. for the states with x = FI in the
square-well-cut—off case we hnw .

1-¢(1 + ctg()
L+ ((1 - ctgC)
The equation (30) can be solved numencally and it defines the dq’scndence of

thé Coulomb constant u., for the n-th level sinking to the boundary & = 0,
on the cut-ofl radius #, (for a certain choice of the cut-off function f(z)).

Ctk= —x)-—l/:(n—n (51)

8 Discussion and conclusions

. In conclusion we discuss the structure of the resulting spoctrum, bru‘ﬂy con-

pare it to the experiment and suimarize our resolts.

We start with the nonrelativistic spectrum and use the formulas, given in
Appendix B, which yiel the spectrum shown in Fig. Ta. Here the splitting
between the § = 1 and § = 0(L = 0) levels is due to the hyperfine interaction

and, as is seen in Appendix B, is proportional to (m;m;)=!. When hoth
masses are large (m; > M =

- spin (0((mymy)~') and spin-orbit, which contains terms 0(my 1), 0(11;,")

and 0{{mymy)™*) which one can denote as (LS),, (LS); and (LSha — see
‘Appendix B. :

In the case when 1 m; > m, ~ M, Fig. -’b the intervals o{ {LSh become
the largest aqd the spectrum transforms in such a way, that the coupling of

-

V%), all splittings ace small including spin- .

2
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the spin of particle 2 becores very weak and in the limit m; — oo it finally
decouples, which results in the Wise-Isgur symmetry (3], Namnely, the states
can be classified by the total mnomentum of the light particle j, while the

. states of total momentum of the system F=7+ S, are degenerated with

respect to the direction of S.

This is what one observes in the Dirac spectrum, see Fig. 5 of owr nu-
merical calculations, and Fig. 7c, giving e schematic description of the Dirac
spectrum. Here the degeneration (Isgur-Wise symmetry) is complete.

This-should be compared to the experimental picture Fig. 7d, where for
the charmed mesons the order of the levels is the same as in Figs. 7b, Te,
but the splittings are still large. For B-mesons the splitting of lowest levels
is 3 times less (52 MeV) as it should be, since the mass of the c quark is
2 3 times smaller thah that of b quark. We also note, that the experimeutal
splitting AE ~ 450M eV between j = 1 and j = states, is reproducible in
our results, when one takes /o ~ (. 5GeV and ( ~06+0.8.

Thus we can conclude, that the Dirac equation yields a reasonable qual-

* itative description of the realistic spectrum. We hope to discuss this point

in more detail in future publications, where we also give predictions for the
Dg. B and Bs mesons.

Summarizing our results, we have derived the Dnrac equation from the
Feyninan-Schwinger representation of the quark-antiquark Green’s function
n case of the colour Coulomb interaction. ‘

Assuming that the confining interaction can be introduced into the Dirac
equation similarly to the Coulomb interaction, we have clarified the Lorentz
structure of the wnﬁmng interaction consecting a light ‘quark to a heavy .
antiquark.

The analysis of the aoluhons of the Dirac equation shows that the growing
at infinity potential yields confinement only if it is the scalar and not the time
component of the 4.vector. In this aspeet there is an essential difference from
the nonrelativistic case.

We have also studied the dependence of the charge ( in the critical mgxon,

¢ ~} 5 |, and found its dependence on the cut-off of the Coulomb potential.

" We have computed energy eigenvalues for several lowest levels and hlwe com-

parod it with ponrelativistic spectrum and experinvental results.




Appendix A
The Feynman-Swinger representation of the qu‘\rk-—anthlmrl:
" Greeu’s function.
The probability amph\ndo of quark and antignark unh-nilv at points 4, §
iu the state W(g, ¥} = Y(¥)ly, 1) ¥(H) to reach the points =, % in the state

V(z,2) = Y(2)l(z,2)W{2) is given by the path nm-gml in the Buelidean

¥pace-t l"](‘

G(rr[py):‘l/mfu‘wm* PV, (A

w heu we have omitied tor ~|mplnm g.‘mqrhh(mg and Faddecy -Popov terms,
Nis the nnrnmlwntmn factor and the Fuclidean action is

§= /d‘rftr + Dy 4+ m)E, + ¥ (D + ma) W) (A2)

Performing the fermionic pact of path integration we obt.am

G2z | y¥) - / bAe-’"“)det(Df +m) - det(Dy + m).q:[ - 1;[) (A.3) A

where

‘H(zr: [93) = trl(zn)Ay(z2)tr T (y, ) Ao(30), (A

H(:t | y§) = trP(2x)A 1(: vI0(w, 9)A2(9, 2), : (A.5)

and Ay(z,y) = <zI(D+m.)“{y> .

Note thaf []; is nonzero enly for my = mgy and in the singlet- ﬂa\our
channel. (1, cmreapomh to the disconnected quark-line diagram Fig.- 2,
which describes the OZ1- forhidden processes. while ﬂ, contains one quark
contour in Fig. 1, and describes the 071 ailowed processes.

AL RN NCRTIN G R X dety, dety, [T, [1; should be r(‘wularm‘d and we shall
* discuss this procedure explicity below.

The determinants in (3) correspond to additional quark loops; this con-

. tribution is suppressed ip the linit of large N and neglect of it (the so-

called quaenching approximation) seemns to he a reasonable approximation

A
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in Monte Carlo sumll:umn- Therefore in W'lhl follows we dmcgnrd the de-
terymnants in (3) ! :

Now we are interested in the case wlwn my and My are different {(and
morcover, my — oo while my is fixed or vauishing). In this case [}; vanishes
and we are left with the [Ty averaged over gluonic fields, as in {3)

G(z# | yy) =< H(ﬂ ] n) >a , ', (A-G)

We now turn to thv qlmrin. propngator A(z.y) aml nse fur that the I-eynma.n
brhwmg«w n‘prmcut,a.lmn {11}

Alz,y) = (m - D)/ dae” (-0 _ (Mi
(m =Dy [~ doDze™" =3 K20, (2,3 | 4) |

where s sometimes js called the proper- tfme‘ however this name should be
rather given to the parameter 1 in the e-xponent of {A.7).

e 4) = Qe Peepl ]' do-fise)y (A

flay) = (3, TR - 005, oz, y)sPew{ig'/' Adn} (AD)

Note that the phase mtrgrals ‘b are taken alnays along the quark Lra;ec—
tory z(r).
We have denoted as in {2

'ﬂaF(z):y_{ #8(2), ‘"5(”'] )

#B(z), FE(2),

- and B, B are color-electric and color~magnetn: fields."

We now take into account that T{z, %) (and analogously I'(y, y)) conta.lns
tho phase factor ®(2Z) along a fixed contour and therefore [, contains an
integral ® over a closed contour, depicted in Fig.1. Spin interactions have the
form of_insert-inns of gL F at some points of the contour. Also the projectors
(m; — D;) appear at the final (or initial) points z, % as additional insertions

_in the contonr. Without these insertions {neglecting spins of quarks) one

o

o st A Tt st i st it ndl A M WY e et
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obtains’ that the ] Green ] funchon is’ propomona.l to an avenge of the,

o Wnlson loop::

_ where the contour C is depicted in Flg 3.
) We can use for < W > the cluster expansion [6-8]

< W(0) >—ezpz(9) /dc(l) da-(m)(F(l) F(m)> (A12)

3

where the integration is over the mmlma} surface inside the contour C, and
© & ‘F(1)..F(m) » are the cumulants of the order m. For simplicity we
shall keep only the lowest cumulant, m = 2 and take into account, that in

this approximation perturbative and nonpertu.rba.tlve coontributions enter -

' addltlvelv 18l

N
=< F(2)P(y) pers + € P(2)F(3) > onpert

Now one can take into account spin degreu of freedom in the terms - Ta»

‘ eqs(7,8) using the formula from [12 13] and keepmg again only qua.drat.xc
. cumulant

qus< Ni:n.(z,y |46 3| AR 2am (810
meapl-L f dow(n) + 1 amaf c(')af] x. i
o x[da,,\( )+ —v")dr] < F, (u)‘F,,\(u') >}
j ‘where c,.,»= -—’-(7,7., - %), and the superscnpt i referes to spm van‘nbles
of the i~th particle.

~ Finally, we must include i m (14) aL-o faczors (m. D ). Usmg [l?]'one hns
the correspondenee

Dn(z)—'-'l'tn(f) ST ,(A-ls))

" G.(z: I w) ~< W(G') >4§< F»trPezp{tgf dz,.A,.} >4 | (A1) ‘

< FOF) 3= L < Fase PR > (A

2

. wherﬂ 2, is the denvatwe inr of the coord nnte ot the pa.t.h Assemblmg all
T terms together in (5-6) we obtam '; o ) -

(_"-IW)‘ /‘h/‘daDzD' """-'-’!-1 [,'éaf-g-_{:_m,_ x : (A 16)' .
~ R xtr[r {my + Z)‘h;F (‘mz+ ~z)|

“ In (A16) T, and T, refer to- the Lorr'ntz stmctura in uutlal a.nd fmal

© states, T'(22) and l(yy) e.g. for the pseudoscalar channel T, =T,



'A‘ppe.udix B

The noure ldfl\lstl( speectram of two particles with all spia interactions
taken inte account can he obtained in the perturbative way (1 /m expansion).

L GE\ 1 de  1dvi .
; no PR B.1
mp{m-;+1'(n)-i‘<n|(ml +—= ) lrdr > dr 1)y (B)
o “F L1 dv,
Graglidy | &d oo

“2mymy v dr 12mymy

1
+ (37 - azn - alrr,)‘ A(r) | n >
2mym,

C outnbuhons of the scalar interaction U(r) == or and the vector interac-

tion V(r) = —‘—‘—‘!‘ into thc spin splittings are
de o dey 1, o 1, da
rdr r 30 ! ror f 3
.an, (3) 1a,
= B.2
R (B2)

Tln: main dlﬂ'er(-m‘c appears in W whcre only scalar interaction enters.

Neote that the overali sign of «pm-—or‘vt terms due to the scalar (or) and

vector (—3a,/r) potentials i different.

¢
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Appendix C

[11 ws study Hu hbehaviour nf energy l('vnls withn =1 and x < 0 in the
lintit ¢ -+ —x.
Assuming

b= (L= (RN 0, = oY), ()
C = exp(~2Y )1 + pglz) + .1, F = —exp(~-z3/2)[) + ufiz) + ..
after jnsertion into (27) we olain
e g - P-of = (zime W - g e (€2)
From(25) it follows that for 2 — 6 ’
9= =Klnz + 1/24 o f = ~(xlnz +1/2 4+ ) Sy

‘where omitted are the ter ms Vunmng at z = 0. Solving cqys. ((‘ 2) with initial
conditions (C.3), we get

e = (ke ah), f:—-%(k-lrnh), "(Ca)

_‘
2
where

: E(:) =7z, /:, e YL )Vt = r‘.flzqu(z’)f'{IIZ. z’), (C.9) v

Me)=2 [ kol

and F(a ) is the incomplete gamma function [28] These functions fall off
when z — oo, .

k(z) = 2 V27 4 0(z"2), Mz) =202 +0(zY),
and forz — 0 . _
k=1-2r"2+ ., h=2nz-4x""z4.. .

From (C.4) directly follows ¢q.(46).




! .
a \1 » ) : L ] ) v
29 26
At i A . ) ¥
* Note that ' ) ‘Table I
) : x=-1 k=2 =-3 x=1 =2 x=-1
PE FG’dr/rF’ r=1- 4'-”"‘/¢ -"k (z)dz + o= B < n=0 =0 a=0 n=0 n=0 n=1
4 ' S . | 00000 | 1.61944 | 3.12652 | 2.56927 | 2.20408 | 3.70440 | 2.60263
= 1 - i" ¥ 0(#2) i (C.6) - .o 05000 | 1.56569 | 2.10095 | 2.53977 | 2.25085 ; 2.67234 [ 2.55970
’ -.10000 § 1.51089 2.Q7305 2.51009 | 2.20663 | 2.63602 | 2.51585
- The fact that p is close to unity tells us that for energy ¢ 2 0 the motion of ' . -16000 | 1.45497 | 2.03579 | 2.48022 | 2.16123 | 2.60714 | 2.47102
the particle is essentially relativistic. The expansions(46) Mld(( .6) help to ) ) : 20900 | 1.39787 | 1.99816 | 2.45017 | 2.11470 | 2.57397 | 2.42511
check numerical, calenlations for the values of ¢ close to -x. . 25000 1 1.33949 | 1.96017 | 2.41992 | 2.06677 | 2.54040 | 2.37802
¢ = tx, wehave: g = 0 in ey, (15) aud [28] : 30000 | 1.27974 | 1.92179 | 2.38943 | 2.01734 | 2.50842 | 2.32063
. . . .35000 | 1.21850 1.88301 | 2.35881 | 1.96626 | 2.47201 | 2.27960
_ Wirssolz) = e=2Y3¢, (), ©n 40000 | 1.15663 | 1.84382 | 2.32800 | 1.91332 | 2.43714 | 2,22837
. ; . 45000 | 1.09008 | 1.80421 | 2.29695 | 1.85829 | 2.40130 | 2.17512
where . {(2) =1, X ‘ . 50000 | 1.02434 | 1.76415 | 2.26568 | 1.80085 | 2.36507 | 2.11951
: -55000 | .95548 | 1.72364 | 2.23420 { 1.74064 | 2.32062. | 2.06211
o ey o [ty Bty an : ,.60000 | .88407 | 1.68266 | 2.20251 | 167717 | 2.29273 | 2.00i61
$-(z) =2 / e (1+2)7di= e T(0,2) : £5000 | 80971 | 1.64118 | 2.17058 | 1.60079 | 2.25526 | 193778
.70000 | .73187 | 1.59919 | 2.13842 1:53769 1221718 1.86984
If¢=—«k, then O, =0, see eq {49), and (' = ~F reduce to the clementary .75000 | .64976 | 1.55666 | 2.10603 | 1.45930 | 2.17847 | 1.79673
functions (45). On the other hand, at ¢ = & the functicns G(z), F(z) - o0 .80000 { .56223 | 1.51357 | 2.07339 {-1.37292 | 2.13907 | 1.71676
at z -- 0, duc to the presence of W_, f20- S0, the Dirac equalion in this case I 85000 | 46736 ! 1.45990 | 2.04050 | 1.27508 { 2.09896 | 1.62712
has no physically adiissible solutions with zero energy. ’ 90600 | .36154 | 1.42560 | 2.00736 | 1.15918 { 2.05808 | 1.52224
The results obtained ahove are easily generalized to the case when Vir) = © |l 95000 | .23570 | 1.33066 | 1.97396 | 1.00811 | 2.01639 } 135773
-—(/r and the scalar potential U (of an arbisrary form) grows at infinity. For | .97000 | .17354 | 1.36249 { 1.96052 | .92573 | 1.99947 | 1.31539
example, we have 98000 | .13684 | 1.35337 | 1.95378 | .87366 | 1.99006 | 1.27001
' " i ’ .99000 | .09209 | 1.34421 | 1.94704 | .80561 | 1.98241 j 1.21107
£ = o + vy c= {2/ ezp[__g / U(Ti)drlldr}-l (C-t") . ) . L 1.00000 .00000 1.33503 | 1.94028 64007 1.97382 1.06895
" . o ( . "

E.g. for U(r) = gr¥

8 e V2 N _ o o ‘ o
=GP G (€9 ; : _

For N =1and g =1 ¢q.{C.9} yiclds the previously obtained value (C.4). .
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