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1 Ihirbductién

" The moduli space of flat G-bundles a Riemann surface is the classical phase space for
Chern-Simons gauge theory and thusit is in a sense the classical limit of WZW conformal
field theory. This means that quantizing it one can get a guantization space which turns
out to be isomorphic to the space of conformal blocks of the corresponding WZW theory.
This statement has been checked by several authors (cf. {4],{13]) by different quantization
schemes mainly for the case of Riemann surfaces without boundacy. Moduli space of
flat connections has many similarities with the space of projective (W-)structures {5} ,
quantization of which is believed to give quantum (W-)gravity. Apart from tlis modul
spaces of flat bundes as well as closely related to them moduli spaces of holomorphic
bundles (cf. (8]) attracted much attention from the purely mathematical point of view
" This paper consists of two parts. In section 3 we discuss in detail Poisson structure
on the moduli space of flat bundles on Riemann surfaces witl holes. Then we consider
by analogous methods the moduli space of projective structures. As a by-product we
get a more or less explicit construction for coadjoint orbits for complex Virasoro algebra.
In the section 4 we construct a Poisson structure on the space of graph connections in
such a way-that the action of the graph gauge group is Poissonian w.r.t an appropriate
nontrivial Poisson-Lie structure. The considerations of this section are inspired mainly by
constructions of refs. {10, 1, 2] where a discrete analog of current algebra was suggested
andinvestigated. Then we prove that the quotient of the space of graph connections by
the gauge group coincides with the moduli space of flat connections on a Riemann surface
deteymined by the graph. The quantization of Poisson algebras of functions on these
manifolds and related generalization of Turaev’s knot algebra {13] will he considered in
a forthcoming paper. It will be shown there that the corresponding quantum algebras
have the spaces of WZW conforinal blocks as their representation spaces.

2 Ciliated fat graphs and Poisson manifolds

The moduli space of flat connections on a compact Riemaun surface is by definition a
subquotient of a topologically trivial space of all connections. This description is useful
also since a nontrivial Poisson nanifold (which i the moduli space, ot the orbifold to
be more precise) repre<ented as a result of a reduction of a trivial symplectic manifold
(see sect. 3) for details. The latter has plenly of convenient parameterization unlike
the former. The only disadvantage of this description is that the space of connections
i8 infinite dimensional. In this paper (sect. 1) we consider an alternative description of
the moduli space in which tne role of the space of all connections on a Riemann surface
is played by a finite dimensional mauifold. ‘Tl idea is quite (amiliar hoth from lattice
gauge theory and from Cech cohomology. Naniely consider a triangulation of a compact
- Riemann surface S (with boundary, in general). Then we get a graph formed by the’
edges and the points of this triangulation, By a graph connection (or lattice gauge field)
we mean an assignment of a group elenient of a gauge gronp G to cach (oriented) edge.

»»ﬁ’vrhe_gmup of lattice gauge transformations G- acting on the space of graph connections

» )
See also A.A. Beilinson,V.G.Drinfeld and V.A.Ginzburg, Differential Operators

an Moduli Space o)" G-bundles. preprint.

2,

it a natural way is.simply a produet of several copies o 'G, one€ copy for each vertex (,’:f the
graph. A flat graph connection satisfies the condition that the monodromies arousid all .

- the faces of the triangulation equals to 1 € G. (The monodromy is the product of group

elements corresponding to three or mare edges of & face. whatever shape of faces is used.
One has only to_account for the orientation of the edges in an obvious way.) Now,itisa
standard assertion that the moduli space of (smooth) (at connections on § is isamorphic
to the space of flat graph coanections modulo graph gauge transformations. (This is in
fact nothing but the statement in Cech cohomology that this space is represented by
HY(S,G).) If we deal with a surface with holes than ope can say that some faces of

. the triangulation are left empty and one does not have to require anything about the .

corresponding monodroinies. It is important to note that if a graph [ is obtained from
a triangulation of a surface §. it can be endowed with an additional structure which
(together with the graph itself) contains all the information about the topalogy of the
surface. We suppose that § is oriented. This orientation induces a cyclic order of the
ends of cdges incident to each veriex. A graph ! with a given cyclic order at each vertex is
called a fat graph. I[.§ has at least one hole the most economical way is to consider a fat
graph with all the faces empty, what is always possible. Conversely, given » fat graph }
the corresponding surface can be restored by replacing edges of [ by strips glued together
at:vertices respecting the cyclic order (cf. fig. 1). Summarizing, in order to describe
the moduli space M of flat connections on a surface § with holes we choose a fat graph
corresponding to § (this choice is not unique) and consider the quotient of the space of
graph connectiotis A by the action of graph gange transformations, M = A/ /G
[Having deactibed the moduli space as a manifold we are interested now in describing
its Poissort structure. Let us forget for a moment that we can defin a Poisson structure on
M by reduction of the space of all (smooth) connections on-S and try instead to define a
Poisson structure on A' in such a way that. it can be pulled down on M ! We would ke
to have such’a Poisson structure on A' that the projection A' — M will be a Poisson
nap. This can be achieved if G' will act on A' iu a Poisson way (see ref. [10] for the
definition of Poisson group actions on Poisson manifolds). For this aim we have to define
first a Poisson-Lie structure on G! itself. The group of graph gange iransformations G
is the direct product of several capies of G one copy per each vertex of L. The Pdisson
structure on G' we define to be the direct product one built from Poisson structures
on each copy of G in G'. The latter can he defined independently at each vertex. (To
define a Poisson structure on G one has to choose a classical ~matrix.) Now we look for a’
Poisson structure on A'. The requirement that the action of G is a Poisson one is almost
sufficient to determine the Poisson structure on A'. The-ambiguity amounts in fact to
choosing a linear order of ends of edges at each vertex. Therefore instead of fat graphs we
have to deal with graphs with linear order. Let us <all such graphs cifiated fat graphs . A
ciliated fat graph can be considered as a fat graph with an additional structuie (the fat
graph underlying a given ciliated fat one is restored uniquely), This additional structure
{linear order at each vertex) can be represented by picturing the underlying fat graph on
a sheet of paper in such a way that the cyclic order is everywhere, say, counterclockwise
and by placing a sinall cilium at each vertex separating the minimat and the maximal end

PAs it will be proved in sect. 4 we obtain in Lhis way the same fqiuon structure as Tdeﬂned by the
A 'Y .
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incident to tl.nt vertex, As it was mentioned a (at graph efines & nhmul surface, that
ix an oriente] surface with holes (lig. 1); a viliatey fat graph similacly delines an orieated
sieface with holes 2ud with scie points marked an the houndary (hg. 2. I hars for every
ciliated fat graph we have au associated Poixson manifold; namely the space of graph
connection endowed- witl r-matric Poisson structure, ft may happen of course that two
- different ciliatedd graphs give isomorphic Poissot manifolds of graph connections. One
can show however that the xomorplism elass of arising Poisson manifold depends onty
on the diffeomorphism class uf the correspunding ciliated svrface,

1t ity e worth mentioning e distinguished examples of graphs and coreespording |

manifolds. The Poisson inauifold coreespouding to a graph convixting only of two vertices
and one edge (fig. 3a) cotuciles with the Poisson- Lie group G pro\ul«-d the p-matrices
chosen at the vertices are related hy the u|u mtion of pernmtation of tensar factors (
iz ry ). With the same condition on ‘r-atrices, a graph consisting of two vertices
and twa edges cannecting them (lig.- W) gickls the manifold 6 x G vudowed with a
Polgson-Lic structure coinciding with that of the double D_ ~ G x G. I we take the
xame r-matficés at two vertices we get D, as our Poisson manifoid (sce ref. [10] for
definitions of deubkes). Finally. the gmph consistieg of one vertex and one edge {fig. 'k)

 rorTespan !s to the Poissan manifokd G*, the dunl Poissou-Lic gronp.

7 The following operatioms with %‘pbﬂ are iportant to discuss: 1) crasure of an edgv
(fig. 1), ii} contraction of an cdgeifig. 5), and 4if} gluing graph(s) (fig. 6). The linear

orders at the vertices tonchal hiy such an operation descend from those of the original .

graph iK @ mote of less obvions. way {cl. figs. 4.5.6). We have to mention only. that there

are in fact two ways ta contract an cdye which differ in what happeus to the cilia. The

.. operation of gluing descrves some explanation. Given two vertices on_a graph with the
" rame avpiber N of enda of edga incidenit to them we can form a new graph by erasing
both vertices and_ gluing together thus fberated edges. (The k-th end liberated at one
~ wer tex is to be glued to the (N ~ k)-th endrat the other vertex.) Note that with help of

- this cperation one can glie together two diffcrent graphs obtaining a single iew one.

" For the-aperations on graphs just described there. exist natural maps between the
eorresponding spaces of graph connéctions. These maps are in fact projections in di-
rection» shown by the arrows in figs. 4,5,6. A pleasant feature is that these maps turn
. aut Lo be Pomson maps. More precisely, in case of gluing one has to reyuire that the

" s-matrices at two vertices to be glued are related by permutation of tensor factors. Con-
.sider for instance a map ¢orresponding to gluing together two simplest. graphs {fig. Ta)
each of which represents the Poisson-Lie group G (an edge with two vertices). The

rewilt of gluing is again the graph of the same shape while the corresponding map of

- graph connections, G x G — G is simply the group product which is known to be a
_Poisson one. Similatly, gluing together the graphs representing D. gives the Poisson
“map D. x D. — D_ (fig. Tb) corresponding to the group multiplication. Contracting
" one of two edges of the D. ‘graph (fig 7c) one obtains the Poisson map D. — G*. As
a Poisson manifold the dual group G can be identified with the coset . /Gy where
G, s the diagonal subgroup in D. = G x G (ef. ref. (1 |). The isomarphism of G°
with the coset D_/G, shows that there is a Poisson action of Do ou G*. i.e. a Poisson
~ map D x G* —~ G which again can be describied by gluing grapha (as shown in §ig 7d).”
Ladking -at tbepwm_nbcwgumntﬁcbhmngmaﬁm of the notion of a.

- . ’ ’ 4

donble. l\auuh we can-define a mem—llu- group, called u gmoml a polynble®, by the
ciliated fat graph consisting of two vertices and several edges conneeting them (analo- -

gucmh to the case of the double the r-matrices at two vertices shonld be related by the
speration of permuta ton of Lensor factors, while the order of énds should be opposite; -
fig. 7). Axn smnwdiate gservation is Lthat on the space of graph connections .A' for an
arbitrary ciliated fat graph { thereis a Poisson action of a polynble P(n) ad‘nslcd to
cach vertex n (sev, fig. 7). Thus the space A’ is a homogencous space for the group P

wliich ix the dirret product {in the sense of Poisson groups) of P(n)’s. Note also that the -

group of graph gauge iransformations G' which gives us the moduli space M = AYG' is

a Poisson- suhgroup in P4, {Any individual polyuble P, disregarding for the moment the -
Poisson structure, is a prodact @ x ... X G and coutains the dlagonal subgmup uluch’ .

turns out to be a Poisson snbgronp. )

Finally, it is worth mentioning thatsome particular cases of Poissan mam[olda defined

by graphs have heen considered in literatare, Namely Lhc Poisson manifold of graph
connections on a graph corresponding to the boundary of a polygon was suggested in
ref. (18] s a discrete approximation of current algebra coadjoint space. (See also refs.

[1, 2] where this (lmcretn appmxunn_llon was u-n'd 1o investigate WZW conformal medel.)-

3 Pmsson structure of moduli spaces

T this section we shall dicribe a Poisson slructure otni the space of flat nounectms
modulo gauge transformations an Riemann surfaces with holesby means of a reduction of

the space of all sinooth connectionson them. Then we shail give m analogous desmphon .

for tlie space of projective structures on such surfaces.

- . Let § bea compact Riemani surface with hales, Let A benspweofﬂl G-connectlons .
‘on it (where G is & conuplex Lie group with Lie algebra g possessing a nondegeneﬂte .

invariant quadratic form which we dencte by tr). The space Al is: m a mtunl way 3"

mplecuc maanifold mththesymp!ectn: structure O : e
' natrjMAM LTy O

whereAeAlsag-vaiuedHormonS Enmenemddnﬁerenlulonu tflstbe.

Killing form on g and A is a shorthand way to denote the wedge product both on 4 and

on 5. This symplectic st.mctme is well knewnlo be iBvariant mth respect to the gaoge ‘

t.ransionunmns : ‘ .

AmgiAg il e

where g is 8 G-valued function on S.

Now let us try to define the momentum mapping for ﬂm action, Oneuu mly ched: .

that infinitesimal gange transformation e.is generated by the Hamiltonian function -

.

"We dedicate wfm_mdudummv.mh )

=f'/e(u+AAA)+tr/ A ' . (‘?_)_
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The Hamiltoninn generating a g?ven trapsformation is defined only up to an additive

constant and therefore the Poisson brackets between them in general reproduce the -

commutation relations between the elemients of the gauge algebra only up to a cocycle:

(s Ho} = Higp + oler, €0)- (4)
In our case

. e =tr | ade )

Orne can prove that this cocycle is nontrivial and therefore we can define the momen-
tum mapping not for the algebra of gauge transformations itself, but enly for its central
extension by the Maurer-Cartan cocyele (5).

Let g denote the algebra of gauge transformations centrally cxtended by (3) and let
@ be the corresponding group. The space g is the space of pairs (e, z), where ¢ is an
elemeut of the gauge ’algebra and z is o complex number. Let us consider the space

§" consisting of triples {R, B,z) where R is a g-valued two form on S, B is a g-valued

I-form on the boundary of S aud z is a complex number. There is a nondegenerate
pairing <,> between § and §”

<(R,B,z),{e,2) >= tr/seR-&- tr/”eB-i- 2z, : (6)

The momentum mapping {or the action of g-can be defined now as a mapping A ~ §°,
given by curvature and the restriction of connection form to the boundary.

A (dA+ AN A, Ales, 1) Q)

Now consider the Hamiltonian reduction of 4 with respect 10 (g, the group of gauge
transformations equal to the identity on the boundary, over the 2ero value of the corre-
sponding momentum mapping. The reduced space M, is the space of flat connections
on § modulo gauge transformations from Go. This space can aiso be considered as the
space of boundary restrictions of flat connections. It is well known that the space of
G-connections on a circle can bé identified with the coadjoint space of the affine Kac-
Moody algebra with the standard Kirillov Poisson structure. The following proposition
shows that these two Poisson structures are related:

Proposition 1 The mapping from the space Mo lo the Kac-Moody coadjoint represen-
tation space sending a flat connection on the Riemann surface S to its restriction to a
component of the boundary is a Poisson mapping.

Proof. This mapping is essensially the momentum mapping

lor the action of gauge
transformations, C

_ Now let us consider the quotient of the space M, by the whole group G {the group
G acts on Mg because the group Gy of gauge transformations equal to the ideritity on
the boundary is.normal in G). ‘The quotient space M is a finite dimensional Poisson’
manifeld. ts symplectic leaves are in one- to-one correspondence with the coadjoint orbits

of the centrally extended Broup of gauge transformations which in tuyn are parameterized
by the coujugacy classes of monodromies around the noles. Thus we have

&

Propogition 2 The space of all M-G«onnutim ‘module gauge transformations on

o Riemarm. surfoce with holes inkerils o Poissen structure from the space of all G- -

connections. The symplectic leaves of this structyre are parameterized by the conjugacy
clasaes of monodromics around holee.

As an example let us apply this construction in case whén the Riemann surface S s
an annulus. Its boundary comsists of two conpected components and therefore we have

two Poisson mappings g13 : Me — k* where k' is the dual space to the Kac-Moody

algebra k. ‘ _
Propasition 3. Twe Poisson mappings gy and 4y are dual.

Here the duality means that the spacé of functions on My commuting with all the
functions pulled back by one mapping is just the space of functions PuUed ba.ck by the
other one. Dual pairs are useful to describe symplectic leaves of Poisson manifolds h)
blowing up the puints (see {12} for details). 1n our case it means that every symplectic
leaf of k* can be represented as pap;i{z) for some z € k" i.e. they are the sa_.s of all
connections on one boundary component of the annulus which can be extended in a fat
way to the whole annulus giving a fixed connection on the other boundary cmrtponeut.
‘This gives, of course, a well known anawer thal sympiectic leayea of k- are just the
gauge orbits. We have considered this trivial exaraple in order 1o illustrate an analogous
construction for the Virasoro algebra in whicl case the answer is less trivial.

Now let us proceed to the generalisation of the above constructions to the case of

moduli space of projective structures and discuss possible genei'alizatim?s to the spaces
of W,-projective structaies. This was done in [5] for the case of closed Riemann surfaces

{i.e. without holes). Briefly, the relation between the space of SL(2,C) connections

and the space of projective structures stated in [5] is the following. Let us call an
SL(2, C)-connection A to be nondegenerate if for any real tangent vector v the el.emx?nt
in the upper right cotner of the matrix i, A is nonzero. ‘Then the space of projective
structures is isomorphic as a symplectic manifold to the space of all nondegengml.e fat
connections modulogon strictly lower trisngular gauge transiormations and diffecmor-
phisms, This statement can be easily generalized to the case of a Riemann surface §
with boundary. Consider the space Py of all nondegenerate flat connections on 5 modulo
diffeomorphisms equal Lo the identity on the boundary and lower triangular gauge trans-
formations. boundary. One can check that it is a symplectic manifold with symplectic
structure inherited ffom that of the space of all §L{2, C)-connections. Note that a non-
degenerate connection 1-form modulo gauge transformations restricted to the boundary
can be transformed in a unique way by & lower triangular gauge transformation 1o the

form -

\ | a=(2 1) ®

- The group of ol diffeomotphisms acts on Pp and analogously to the situation considered

in the first part of this section we have to extend the diffeomarphism group in order to

define the momentum mapping. On the Lie algebraic level this extension is given by the
Gelfand-Fuchs cocycle;, . ) )

(Ho By} = B+ | mBlon -®



ore vy and ¢y Are two vector fickds on 8 (angent to the boundary, z is 3 courdinabe on
the bonuslary and the Hamiltonian funclions are given by

= . (18
A, /”.,‘r.} | {10y

The momentum. mapping gives us a set of mappings Po — Vir® where Vir is the
Virasoro algebra.  For the case of § heing an anuubus we get a dual pair of Poisson
inappinss allowing us (o construct Virasore symplectic leaves. The answer is that a
symiplectic leave is a set of all comrnertions of the form (3} such that they van he extepded
in & flas pondegenerate way from one honndary component of the annulus to the whole
annnlus giving a fixed connection on the other buundady. Note, that this construction
gives the answer for cumplex Virasoro coatjoint orbits, where the standard methods do
not work because the complex Vigasoro group does not exist {ef./5/}.

Note that this construction could be generalized for the W, algebra case. The only
© problem is to formulate. an appropriate notion of nondegencracy.

4 Graph connections

In this section we shall construct a Poisson structure on tle space of graph connections
A in anr a way that the laitice gauge group endowed with.nontrivial r-matrix Lie-
Poisson steucture acts on A’ in & Poisson way. i

Let I be a ciliated fat graph homotopically equivalent to & Hiemann surface S with
holes. Denote by E{I) the sei of ends ofedam of f and by N(1) the set of its vertices. Each
element of N(I) corresponds to with the subset of E(I) of cnds of edges incident to the

given vertex. In what foliows we shall identify elements of N{J) with the corresponding -

subsets. A mapping which sends an end of an edge @ to the oppositc end of the same
_edge a¥ is aninvolition of the set B{I). The citlated fat graph structure of 1 defines

an ording incide each n € N(I). Que can easily see that such data - a set divided into

ordered subsets and an involution of it without fixed points ~ unambiguously define a

cilinted fat graph. Let [a] be the vertex containing @ and [a, a¥] be the edge linking

and a¥, . . : -
Call & graph connection on a graph { an assignment of an element A, of a group &

to each a € E[l) such that . T

TAgy =AM (11)

The lattice gauge group G' is a product of finite dimensional groups G ~ one for
. eah vertex of the graph. The group G' acte on A in a natural way:

Aumglheg T2

The space of graph connections can be considered as a quotient space of the space of
flat connections pn a surface 5. Indeed let us blow up the fat graph in order to obtain
- a surface § with the graph drawn on it. Then for 2 (smooth) connection A on § we can
construct a graph connection ou.! assigning 10 a ¢ B({) the paraliet tragsport operator
along the-edge linking a* and a. This graph connection does not change if we trasiorm

the connertion 4 by » gauge trassformation equal to the identity ai the vertices. It:

8

;e e S~ .

M-
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g -
- ™ -
is clear that every graph connection can be continuously extended to the surface and
therefore the space of graph connections A can be represented as a quotient

A= {A€AMA+ AN =0}/, ‘ (13)

where &, is the group of gauge transformations equal to the identity on vertices. OFf
course thix representation is defined unambiguously up to the action of the graph gauge
gronp and therefore the somoephisim between the spaces A4 anil A is canonical.

" A priori the space A has no Poisson structure, while the space A'1G does. Our aim
is to introduce a Poissont structare on A compatible with that on A'Y/G and with graph
gange group actjon. R

Let us fix [or each vertex n of the graph a solution #(n) € g @ g of Lhe Yang-Baxter A
ognation: ’ : )

) [ras(m), ia(n)]+ [rialn), ras(m)] + fraain, raafm)] = 0 (14)
such that _ . ‘
‘ ra(r) + ra(n) = ¢, . -(15)
where ¢ € g @ g is the quadratic Casimir:
t=Y ®e, : ‘ ©(18)

where {e;} is an orthonormal basis in r2
~ Let us define a biveetor field B on A"

B= Sn) X A XP 4 L TP ()RR A X
'-GZAf:(l)(aﬁs_;-;:aar (’1)’ : ¥ +2n§e:"? (n)X7 A XT) (}7)

where Xg = [? - R Le and RY are respectively the left- and right-invariant vector
fietds corresponding to the element €; € g on the group assigned o a € E{) and ri(m)

is an r-matrix chosen for the vertex n written in the basis {e;}. Note that the vector
fields X7 are cliosen to be consistent with the eg,(11). o &

. Proposition 4 o) The bivecior P defines & Poissen structure on Al $) The group G

endowed with the direct preduct Poisson-Lic strytture acts on A' in o Peisson way.
The proof can be obtained by a st_raightfoiward check. - :

Propasition 5 Let [a,a"] be an edgs and n e & vertex mkmag;x Suppoee that .

[a¥] € n. Then the quotient A'/G(n) in isororphic to the Poisson manifold A", where

Visa groph obtained from | by contracting the edge {a,a"} and such that the masimal' -
remasning end at the vertez (oY) become the mazimal one for the new verez, . -
The isomorphism being evident from representation of graph connections as quotlent
of all connections..the proof can be given by a direct coordinate check of coincidence of
two Poisson strictures. . . .
Let us proceed now to the correapandence between spaces of graph congections and -
spaces of ordinary comnections. - . . o




?‘x

_Proposition 8 mmﬁéu!oftbemce ofwvebwﬁawby:the graph gauge group

is isomorplic as o Poisson manifold to the quotient of the space of oll fiat connettions

" om the coffesponnding Riemann surface by ﬂ_lc-gcuge group.
Remarh, Before giving the proof let us pote that this statement shows that all -

ambiguities in the construction of the space A' - such as choices of ordering and of
r-matrices - do not influence the Poisson structure of its quotient by the gauge group,
though it is impossible to introduce a Poisson structure on .A' compatible with that on
the gauge quotient without fixing nontrivial r-matrices. Note also that as topoiogicailys
these moduli apacess are always isomorphic to a product of several copies of the group
G modulo the overall G-conjugation, though they- ace not isomorphic to each other as
Poisgtrn manifolds. For.example a sphere with three holes and a torus with one hole give
topahg\caﬂy the same spaces, (G x G)/A4G, while tHe Po:sson structure is ¢rivial for

“the former case a.nd nontrivial for the laiter one.

Proof. First of all let us describe a linear basis in the space of all functions on &', Let

- us assign an irrep xy of G in a space V, to each a € E(l) in such a way that #,v = 7, and

assign an intertwinap C. € Inv(®,.c.V;) to each vertex n. We can consider matrices
from EndV,; a8 belonging to V = @.em,,v and the intertwiners €, 2s belonging to its
dual V*,

Let us call the data {Cy,, .} the coloring of the graph. Define for further needs an
operation of contracting an edge of a colored graph. The coloring of a new vertex of

the graph with the edge [a, a”] contracted will be « C'M @, Clav} >a» whete <, >, iz a
patural pairing between V;, and V.

For each coloring we can deﬁne a function ¥ on A _
$({Aa}) =< ®uCa, Batz,(yal(Aa) > (18)

where Ex(l) C E(I) is a set of ends of edges containing exacyly one end of each edge The
ambiguity in choice of this set is unessential because of the condition #,v(Aav) = TalAa).
The set of such functions determined by all poasxble colorings evidently forms a linear
basis in the space'of functions on A4'.
Note that given a graph drawm on a surface S each colormg defines also a function on
the apace 4 of G-connections on § and on the space of Aat connections modulo gauge

transformations M in particular. For the latter case the set of functions determined by .

colored grapha forms in fact a basis in the dpace of all functions.

Now we shall caiculate Poisson brackets of such functions on A’ and on A and show
tiat the results coincide.

Let us start with the space A'. Rewrite the bivector (17) in the form

. - B=(rm)X n) @ X2(n) + T (me A X? @ XP), (19)
» aden
- ) 1 a>f
where X‘(n):):,e,,X' and (n,a,0) = a=0 .
-l a<f

Thz vecior Helds X "(n) just generate the gauge transformations. Thus in calculating
the brucket.s between gauge invariant functions we can drop the first term in (19) The

ﬁnalammforbn:ﬁsmﬂbc _
I$,9'} =< C ®C", r(nen') > . : (20).~

where C = @aCa,0" = @nCl, 1T = Ruemt)TalAa)s I = Buemt?a(Ad), ¥ aad ¢
are the functions determined by colorings {Cn, %} and {C.,7.} respectively, T =
T penarp i and t28 is the Casimir element represented in the space V, ® Vpand
hence, natura.lly, in V ® V. One can check that the value of this exprewon is inde-
pendent of the choice of the set E,{J).

This expressian {or Ponsson brackets can be represented graphically as iollowe Let
(1, {Cn, 7a}) and (I', {C}, %,}) be two caloredgraphs and let & € E(}) and a' € E(I") be -
some ends of edges of,the corresponding graphs. Define a colored graph (1, {Cy, Ta})Uaar
(F,{C,*.}) to be a graph obtained from I and I’ by glmng together vertices [a} and
{a']. * The new vertex is to be colored by (Cle) 8'Clay)t™* and the colors of edges and
of other vernces remain uachanged. Thus we have :

{¢.¢'}= }: 2 (m @ 8)d, {C..,r.})u., {C I’p}) 2y

- Now let us procesd to the €alculation of Poisson brackets in M restjng on the defi-
nition of this space given in sect. 3. For this aim we shall ca.lcula.te the hirackets in ths

- space A of all connechons w.r.i. its Pomon structure,

. v = ()

[&b &

and then restrict the result to the space of flat connections. The Illowing proposition

gives an expression for Poisson brackets of functions'on A given by a colored graph deawn®
on the surface S.

Proposition'T Let (1,{Ca,7a}) and (I', {C',’,,r‘ D e two iransversal coloved pmﬂn h
drawn on a surface S. Than the Panmm bruckets of the corresponding functions ¥

" and ¥’ are given by. the expression

)

B9} = I ()", {Cn, 7} Vatermte *.1c. A e
zetru

where aiz) € E(l and a’{z) € E{T) ore such ends of edges that z = [a(w),a(z)"] n
(), ()] and sign(z) = 1 if the oﬂeuted edge [a(z), a{z)"] intersect the oriented
edge (a(z), a(z)] from right to left and —/ otherwise. '

One can check that the r:h.s. of (23) is well defined i.e. it is mdcptmdent of the chowe
of a{z) and o). .

This formula is inconsistent when applied to functions which are determined by the
same graph. However as {ar as we are interested only in values of functions on- flat

connections we can deform one gra.ph in'the surface to make them transversal and:pply '
the formula (23). .

3We hope there will be ‘mﬂﬂc
identify two vertices. ) . ®

P oighm( discae mlu.lhm-m -
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Let us describe now a particular deforration which will give an expression for brackets
in a form_which can be compared to eq.(20). We rotate each edge slightly around its
middie in counterclockwise direction. Then we place vertices of the deformed graph
between the greatest end and the smallest end at the corresponding vertex of the original
graph and connect each end of the rotated edge with the corresponding shifted vertex
in clockwise direction as shown on fig. 8. For this particular deformation we have
one intersection point Iy, qv) at the middle of each edge with sign(zja,av) = 1 and oune
intersection point z,4 for each couple of edges ncident to a vertex n and such that

s> 3 with sun{zg g) = —1. Thus the Poisson brackets for coincident graphs can be
expressed in the forn:

W(".{Cn,n}),i//(l.{c.‘..ﬂ‘i})} = z ¢((I|{Cn:x1})Ualm,‘vl.x{;‘,,vl (l,{C;,ﬂ}))—

. ag & (1)
. ~3 Y B {Camy}) Uag (L {Ch 2 D) 24)
. ' " afEna>g - .

Then using the idéntities

?"(U- {Cm 7r~}./' Uaa “’ {C:" "'~})) : ’1’(“) {Cm”‘v}) Ua"ﬂ" (17 {Cyln "«’y})) (25)

and

(L A{Ca 7 Uaa (b {CL D) = 32 (L {Cam}) Ve (L{Chm}))  (26)
S€loldva ’

—

we come just to eq.(20) T,

5 Conclu&ing remarks

In this paper we have considered only the case of 2 complex group G. What’s is about
its real forms? Tf one wishes to get a real valued Poisson structure on the space of graph
connections * corresponding to a real group then one has to find a real solution of the
classical Yang-Baxter equation {14). For some real torms. e.g. 1or SL(n,R), tus iy
certainly possible, while for others. like SUin), for instarice, it seems to be not the case.
One possible way to deal with such real forms 13 to consent to considering quasi Poissou.
manifolds with a definite vioiation of Jacobi identity, whieh under quantization must
lead to quasiassociative algebras. .

All the above considerations have been performed to prepare to define and investigate
properties of the quantum roduit space of fat bundigs. [t is expected to be an aigebra.
irreducible representatious of which are the spaces of conformal blocks. Some evidence
for believing that it will be reaily so-one can extract just from classical consideration.

For examplie conformal biocks of WZW theory are labelled by irreaucible representations |

v of the gauge group G, which 1n turn are in correspondence with conjugacy ciasses of G.
.Here we have observed that symplectic leaves of moduli spaces of flat bundles are tabelled
just by conjugacy classes.

“Though it might be only the moduli space for which the reality condition for Poisson structare is

essential ’

v,

12

The space of graph connections was introduced mainly to simplify the consideration
of the moduli space. Topologically it is simply a product of groups, instead of the
modnli space which a priori has no preferred parameterization. The next step postponed
to a forthconing paper shoull be to quantize the graph connections spaces by ere
moditication of quantum group techuique and then obtain quantum moduli spaces by
taking quoticnts on the quantum level. Note that the consideration of the space of
grapli connections gives the moduli space of smooth Hat connections on Riemann surfaces
without taking any continuous limit, Nevertheless it still would be interesting to consider
a continuous Yimit (cf. [t, 2]). In the classical case this limit is helieved to be a space of
all connections on a surface modulo gauge transformations and its quantization would
give a universal algebra connected with the space of conformal blocks with any number
of punctures, 1t is to be mentioned here one more interplay between Kac-Moody algebras
and the space of connections modulo gauge transformations. A generic (0,1)-connection
on the complex plane can-be gauge transformned to zero by an unambiguously defined
gange transformation equal to the unity at the infinity. Thus we can parameterize the
space of all g connections madulo gauge transformations equal to the unity at the infinity
by (1,0)-connections A{z). The Poisson bracket induced by the symplectic structure (1)

is

) A(z) — A{lw) | &F G .

, - ' ; . 27
ARGHA =t | T T |5A() FAw) 7

This is a linear bracket and thus it defines a Lie algebra structure on the space of linear

functionals on- A: ‘ . )

. Af(w)

(), A = )

w

A

. (28)

where f*% are structure constants of g. This Lie algebra is quite similar to the loop

. algebra with r-matrix bracket (cf. [6]) and contains it as a subalgebra generited by

holomorphic A’s.



Fig. 2 Exa.mples of ciliated {at graphs and correspording ciliated su:fwes

7 Fls 1 Example of fat graphs and surfaces corresponding to them. Cilia are indicated by small strokes at the vertices. :
: The cyelic arders at vertices are understood to be counterclor.kw:se ' The graph (a) gwu ‘the disk with two. holes (). )
The graph (a) gives the disk with two holes (b). g : The graph (¢) gives the. torus with one bole (d).

The graph (b) gives a torus with one hole (d).
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Fig. 3 The graphs corresponding to
(a) the Poisson-Lie group G,
(B) its double D & G x G,

© (<) its dual Poisson-Lie group G™.

Fig. ¢ Operation of erasing an edge. The shad

the. remainder of the graph.

d region rep t

Fig. 5 Operations of contractions of an edge. .

‘ L and R are the two different ways of contraction. _

L corresponds to factoring by gauge transformation at the vertex ng
R corresponds to factoring by gauge transformation at the vertex ng

{

Fig & Operation of ging graphs.




Fig. 7 Some particular casel of gluing graphs which correspond to natural

operations in Poisson-Lie groupa:

(s) mukiiplication in @,

(b} multipheation in' D,

{c) projection D' — G*,

(d} action of Don G*,

(e) multiplication in the j-uble, .
{f) action of the 5-uble on a-space of graph connections.

Fig. 8 The particular way of deforming a yaph- drawn on a surface which
gives two transversal graphs; the original graph is shown by the -
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