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. character in the impact velocrtng - qua51~fractal" | f

‘antlkink-kink CKKKszStem wa ; SPace the bound state fbrlkink;
s found in \5\ Here numerically for
antlsymmetrlcal KRK systems it was examed the initial klnk ‘”f,
velocity interval 0.05¢ Ykg<Q.8. Tt was found that the bound
state of KKK System has taken place for the lnltlal Velocities &
| VkKK <0. 72 and for 0.72 < VKKK<O 764 there were found the
rasonances structures smllar to the KK scattering
 For nonsymmetrical case and for more or equal than fouri}ff
séatterlng there is the Arnol d dlffusion has taken place whi

stochastizied the process of bound sta%e formatlon _ '«~ '
- In the Appendlx it is regarded ‘the example of three~soliton

*bound state for the et theory.
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1. Introduction

Some numerical and theoretical results of resonance

KK interactions in the classical one-dimensional space k¢4 theory
" are known \,2\. More careful investigations show that whether a KK
interaction settles to a bound state or a two-soliton solution
depends “quasi-fractally” on the impact velocity \3,4~.
Here it is continued the systematic study of multikink
resonance interactions in the nonintegrabie A¢4~field theory.
The modei is defined by the Lagrangian density:
2x,)=1/2 3,9 Fg-1/4 (%-132. (0
As it s well known (see e.g. reviews \B,7\) among solutions
#x,t) of the Euler equation for the Lagrangian dens1ty (D
Bit oy b 4 30 @
there exist two vacuum solutions ¢,=t1, and the static kink (K
and antikink (KY solutions: C ;
| deo=tth zxp~2l (D
they are stable topologically.The multikinks interactions are
" described by following initial conditions:
$Cx, 0)=th{ (x-X) A1 -th(X 2 +thi (z+xpA] , (42)
#,(x,00=-V@ [CthL(x-x)BNE-CLhl (x+xdAE) , (4D)
here V is the kink velocity and p=[2 (1-V®)1712 (see Fig.1a) and
for four kink interactions we have:
¢ (x, 0)-th[(x-xl)ﬁ1] th[CX*xo)ﬁO]+th[(x+xo)ﬁol-th[(x+x1)ﬁll+1 (S
here  fy=(21-v 1712, g —r201-v91712, vy, Vyare initial velo-
cities of kinks and antikinks (see Fig.1b).In the problem (2)-(8)
the energy is conserved: )

2

E=f dx Wx,t)=fdx [ |32t [2r+|aprax (BascB-102A4 1. (5b)
' 2. Mumerical results and theoretical discussions
Earlier investigations of the KRK bound state have confirmed
\5\ that there is the one in the impact velocity region
V=0.75:0.03 (in light velocity units).Here numerically for KRK
system it was examed the initial kink velocity interval ;
0.05¢ V <0.9 with the step AV =10"* and it was found that the KRK
bound state has taken place for V < 0.72. For the region 0.72¢ V «
0.764 we have resonances structures similar to ones which had

been found for KK systems.For this purpose it was computed the
eq.(2) with the initial conditions (4a),(4b).It was used the method
of characteristics \8\ earlier it have been applied in “8\.The
computed results are shown at Fig.2 as the dependence on
V. the energy flux F() through the plane xp=15 at the t§=130. The
rest kink mass M is equal to: ‘
o
s dx[1/2(8¢K/6x)2+1/4(¢E-1)2]=m. @

It is seen at Fig.2 that the flux is less than the rest kink mass
for the V <0.72 so we have KRK bound states with well detected
radiation flux. There is no monotonous dependence of the flux om kink
velocily at the interval 0.72 < V <0.764. Here we have the
resonance structures similar to ones (see e.g. Fig.3) discovered in
\E,2N. The “quasi-fractal™ structures are also presented here as
much as in the KR-scattering (see Fig.4). It is seén through
computations of’eq.z that the KKK;scattering is similar to the



. 3
K(KsRo1)-scatlering as it is shown at Figs.5a,b,8 for V=0.7600,s0
it e possible to discuss "quasi-supersymmetry™ here having taken
inte account that a kink has the “fermion number” which is equal to
the value : :
Sx= [pglead=gp(-o)1sd. N

The kink escape to the infinity can be detected from .the
Fig.7 if we conpare the monotony of the erergy flux for the
three-kink bound stcte with the juip of the flux when the kink
_ passes through the plane X Here we have for comparison of the
_ resonance structure with n,=7 for V=0.7600 (Fig.5a,b} and the bound
state which is situated at V=0.7530 (see Fig.7a,b). '

Earlier the bound state of KKK—syptem was observed in the
paper B\ at V0.75%0.03. We é;n suppose that it was one of the )
" long lived resonance struétures such as it is shown at Fig.8 for '
the initial velocity V=0.7648,here the strongly perturbed kink
escapes to infinity. -

Here the computed results of typical four-kinks interactions
are shown at the Fig.9 for init1al conditions Vip =0.99 (we used that
the KK-interaction had taken place and the bound system XK
interacted with such other onel. There is no KKKK-bound state because
it is not stochastically stable due to additional degree of
freedom if comparing with KK- or KKK-systems bound states “the same
eﬁplanation is correct for multi-kinks bound states ).For
estimating the time living of the §ound states we use the time
living formula of the Arnol'd diffusion \10N\

0~ wala_lexp(f:—a), e:)

here
a=2/(120+3N+14) , [ 2NCN-1) 2
and: © a is the function of degrees—of-freedom number N ;
wy is the frequency of unperturbed oscillations Chere we
suppose that it is equal to the one of KK- oscillations or
KKK-oscillations or multi-KK ones J;
& is the parameter of perturbztion for the energy,(here
we can Use the ratioc of the internal K-oscillations energy to
the energy of interacted multi-kinks ). .
The bound state is stochastically stable if the degrees-of
-freedom number is less or equal to two and the resonances are not
croésing over\O\. It is fulfilled for the KK-system far from the
critical velocity V.~ 0.259 (see Fig.4) and . for
anti-symmetrical KFK-system it is far from the Vcrx 0.764.But if
we' exam the KEKK-system then there are three or more degrees of
freedom always and so such system is =iochastically unstable.
(Here we must notice that the crystal-like structures are
stochastical;y stable because they can be described by one degree
of freedom-lattice parameter). _
' T3 Acknowledéhents
The author thanks to  B.S.Getmanov,A.E.Kudryavisey and

A.S.Schwarz for useful discussions on problems of this paper.

_ 4. Appendix

If We regard other nonlinear equations, for example the
rlgl" theory.(n=4,6), which have soliton solution then it is
possible to have stochastically stable bound states taking into



ccount the Arnol’d diffusion.

Let us regard the Klein-Gordon nonlinear equation of type
A1-15% . _

Py AB-Fo 0B by o 16120 . (AL
There is well known soliton sclution for this equation of scalar
charged field: _
¢,=vz/“(m2— 2?1/‘3 e'imch'l[!!(me— 212y, (A2)
here @ 1S athe frequency of complex field and the stable solutions
are for 1772 € w £ m. The soliton charge for (A2) is:
o B e | (AD

If we <change ;.hém, sign of Ll}g frequency e e then +the

anti-soljton - cﬁ-rge \i be '
U=l -

As Rt ts ‘shown in ‘paper \6N ‘there is exist the

soliton-sfliton bound state (8S) for )=w;=0.95 and their
interactidn velocity Vy=-V5=0.25. Here we demonstrate that it
is possible to have the three-soliton bound state (SS8) for

w0y =00, 872 and Vg q=-Vg3=0.70 V=0 (see Fig.10b).For comparing
it is shown nea_rby the evolution for Vg y=-V 4=0. 78.V52=Q (Fig.10aJ.
The possibility of existence of multi-solitons hound states

with four or more solitens will be regarded next paper.
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Fig.1a The tnitial condition for KRX-system. Here 1t is shown

right.. part of the system, the Jert tne is the
anti-symmetrical continuaticn to axis x < 0.
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© T formula (Sa) = kink-entikink bound

— T te—e

.F;g.lb The initial Condition for KKKK‘system; Here th; left part
of the system jg symmetrical continuation o axis x <0
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Fig.2

The flux of energy through the plane x.=15 at the time
At=150 for KXK-system as function of kink initial velocity
V. Between points A and B the region of rescnances s
situated The dashed line is the full energy of KRK-system
at half-axis x »0.
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Fig.4 The flux of energy through the plane x<10 and At=200 for
the KK-system as function of kink initial velocity.There
is shown the region of resonances accumulation point near
Vep=0.2998... (as the resonances “windows" are too small
= they are replaced by the dashed 1line).
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Fig.5a The flux of energy as a function of time  for
" KRK-interaction for Vg=0.7000.There is well shown resonance .
structure with n =7 and the jump of radiation equal to Fig.5b The energy dené'ity of KRK-system as a function of time
rest kink mass M . | . for Vg=0.7600 at the point x=0.
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Fig.6 The energy density of K(K+K+1)-system .as a function of

‘time for VK=-VK=O.7GOO.The resonances interaction of such
system is similar to the KRK-one (see Fig.5b)
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Fig.8 The flux of energy as a function of time through xr=15
for long kiving resonance structure KKK.The escaping Kkink
is perturbed very much (see oscillations of f{lux).The
inttial kink velocity Vy=0.7646. "

Fig.7b The energy density of KRK-system as a function of time

for VK=O.7SQO at the point x=0 (center-of-mass point ).

“ ¢

e

']



‘\ ' :.; " ~ . g‘ \ -\ ' !
17

m') i i : .' - . - . . ‘v V' . -
‘ u% - éré . 4 o5t £=0.
e . ‘ o ~ ‘ .

‘”wa" . k2o . a- 0. 20 3lx

l’oﬂ» . [72 20 ) L v ’?l : ) ... )

_ . » . I N £

" o o5t |
i = R AVAe

fol |

wv}/—\.»——-——— ) é-;lf

. - 'a .
+3r T asv =6 Y
w . . _
P\ b o . » A
:\ e : g‘ D20 30z
' ‘;?j 1Y ¥ éﬁﬁ |
NN '
“t re ” L3
] : . K o a , ” .
ng - .
| — /~f—-—;a!qkr ‘ | _ Wit fo 20 j3zﬁz _
“ i T S  ty
SR : : ' S .o ast s
p SO VA _ -a l/0 R S

Fig.9 The four-kinks interaction evolution in time .As inttial Fig.10a,b The Formation of three~solitons bound state for

condition was taken the KK-bound state instead of (5a).The the case of V,,=0.70 and «j=uy=w3=0.972 (b) and V,=0.78

4
initial velocity of the KK-system is 0.9. (a) as compairing for Lhe ?‘-l¢! theory.
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