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1. At present 1/n-expansion is widely used in various quantumn-
mechanical problems, see e.g. refs.[1-10] and references therein.-

We consider below the version of the method proposed in {7],
which is applicable not only for discrete spectrum, but also
in the case of quasistationary states (resonances). The en-
ergy eigenvalues which are complex in the last case (Ey =

E, —iT/2), can be represented in the form of expansion in

powers of the "small parameter” 1/n,
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where n = n, + [ + 1 is the principal quantum number, { is
angular momentum, ¢ = 2n°E,; is the "reduced” energy of
" nl-state, €' = n°Cy and k is the order of 1/n-expansion.

The behaviour of the coefficients € at k > 1 not only
presents some theoretical interest, but is of considerable im-
.portance in calculating energy E. with high accuracy using
expansion (1). It is known that divergence of perturbation
theory series (PT) in quantum mechanics and field theory is
connected with the instability of the vacuum state when cou-
pling constant g chanyges its sign (the so-called "Dyson phe-
nomenon”, established for the first time in QED [11} and later
considered for the anharmonic oscillator {12,13], Stark [14-16]
and Zeeman [17] effects, and other quantum-mechanical prob-
lems).

As a rule, the asymptotics of large orders of PT has the
form:
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where E(g) = SiBig*, 2!=T(z+1) and a>0,3,a,cp,c; etc.
are calculable constants. _

‘In eq.(1) the expansion parameter is 1/n (instead of coupling
g), which does not enter the hamiltonian explicitly, and the
coefficients e*) are rather complicated functions of g, contrary
to the case -of higher PT orders. So, some modification of
Dyson’s arguments is needed, which is given below.

2. Asymptotics of large orders of 1/n-expansion. Using re-
currence relations ¥, we have computed 30 + 50. coefficients
€®); eq.(2) for them was checked at k > 1 and parameters of
asymptotics a,a,.... were determined numerically. These cal-
culations have been done for the following problems: the funnel
potential

V(r) =-r! +gr, 9>0, (3)

the Stark effect in hydrogen and its spherical model (which
corresponds to g — —g in eq.(3}), the screened Coulomb po-
tential, ) '

V() == (2), z=pn, (4)

where p~! is radius of screening and atomic units are used, A =
m = e = 1. These examples embracé a wide class of potentials
used in physics, including the short-range Yukawa and Hulthén




potentials ), the coufining potential (3), frequently used in
QCD, and potentials with a bartier.

In all the cases considered it turued out that o = 1, e.g.
"el®) ~ K. The dependence of the parameter a in eq.(2) on pa-
rameters in the problems is also of some interest, and » = n’p
is the right parameter for the screened potentials (4), with
i = g and f{z) = 1 — z* in the case of potential (3). Fi-
nally, & = n?s"/? = FY? for the Stark problem, where F is the
"reduced” electric field (F = ¢/e,, ¢ is an external electric field
and g, ~ 7% ~ n~* i3 the atomic field in tlie electron orbit
with principal quantum ilumber n). :

1/n-expansion is constructed around the cLassmal equilib-
rium point zo(») in the effective potential including centrifugal
energy. Here we confine ourselves ta thel=n—-1>1 states
with no radial nodes. rI'[he —quaéiclassical momentum is’

o

p(r)--[-w(y,V)l"’. o=y -2y"f(vy)-e‘°’ "‘(5)’,'

whete y = n~2r and ¢® is the energy of a classical particle at .

rest at the equilibrium point, 2o = vyg. The qua.ntltles zo(v)
and e‘o)(v) are determmed by the equations (7] -

7 :cf tzf G(o) (ﬂ!f )2 ‘ f’.’ |c=an | (6)

We assume the effective potential to be of the form shown in
. Fig.1. The width of the highly exc1ted n>l, levels is (mtlun

the exponentxal a.ccurucy)

. b ] -
T\ % const.eap(~20Q)n°, QW) = [loly, )Wy, (1)
o ‘ w . : ) ;

where yo,72 are the turning points, see Fig.l, and o dep'ends
on the problem considered. Supposing the analyticity in the
variable A = 1/n and using dispersion relations in A, we obtain

b m Kokl [ + 0(1/k)), k- oo (8)

e = [2Q(v)]"

" When ¥ — Yo, then p(y, v) = wiygt(y ~ Jlo) +..., where w is .

dimensionless frequency of vibrations ¥ around the equilibrium
poirit zo(r). For sufficiently small values of v this point is real,

orbits occurs, corresponding to the stable (zg) and unstable
equilibrium points in the effective potential. The value », is

-determined by the first of eqs.(6) with = = z., while z, is-a
root of the equation f — zf' —2?f" = 0. It can be shown that
atv— ’ o

w= C(I - vju.)"", a(u) A(l ~v/v, )'5/‘ o (9)-

where

A=l +2f" 3" loma P = 5, _(94) -
o =21 3 M5 = 019967

Note that asymptoncs ( 8) follows from the dmpemon relatlon ‘

® = [”" A A=1/n

and from eq. (7) for the widths of highly excited states with S
* 73 1 To obtain eq. (9) one should consider the integral (7)

.
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“as well as all the coefficients ) in (1). With v increasing the
value v = v, is achieved, when the collision of twe classical -




for Q(v) in the case when the turning points yp, y2 are nearby,

and the function ¢(y, v) is considerably simplified. The details
will be published elsewhere. Another way to obtain eq. (9} is
dlscussed in Appendix A.

At v > v, the cocfficients (¥ and parameter a(y) become
complex. Evidently, this solution has ne direct physical sense
in classical mechanics, but proceeding to quantum wmechanics
it allows one to calculate easily, within 1/n-expansion, uot only
the position £., but aise the width T, of quasistationary state
- (see ref.[7-9]).

3. Some examples.
" a) We begin with the potential (4), where

f (@) = eap(-z) - 21, A >0 (10)

(A = 1 corresponds to th¢ Yukawa potential, A = 2 - to the
expouential potential). The equatioas for z; and w take the
following form:

A+l A~ _ 2y _ Tl = A+ )
[mg*t'+(2- /\)a:]e v, wi=2A B W

?

hence
z.= ,\+'é[(1 + 4\ -1,
v, = 2_1_[1 + (14 ez} tes (10a)

1+4A (1 +4X)V2P/A

A
A=
(A. ‘A.16) and Table 1.

"' CC'C/\

see also eqs.

) Another example is

f(z) =ezp(—2?/B), B>0 (1)
In this case A . -

ot ) =, we (IR

1+
B (R s L 1
A= —LB’ +4+ (8~ 2)(8 + )P (11a)

Here § =1 corresponds to the Yukawa potential, § = 2 to
the Gaussian screening (No.3 in Table 1).
¢) For the generalized funnel potential

. » |
Vir)=——=+2:¥ N> -1 ().
r N

we get (g < 0)

= (N +1)(N +2)~¥, Azg.2—1?/4(N+2)a/4 - ©)

= q (N + 2)/3P,
where a; is the coefficient in eq. (9a).
d) Consider the Stark effect in a hydrogen atom -for the
(ny,nz,m) state, where ny,ny,m are the parabolic quantum

numbers and n = n; + 4+ | m | +1. Using the results of
papers (8,9], we obtain at n » 1:



a= SFL-eEN A I(E), (14)
where € is the first term in expausion (1), F =i, |
‘ "

3P =3 [ B4 - Bt P, (14a)
’ % .

A = mIFZdO)3, B = 4B,F[eW] % and B = Bo(F) is the
separation constant corresponding to the parabolic coordinate
n=r—2z. ‘

Hence, in the region of weak fields’

-

- ang-%\-nz'F]mH'l)F'lnF"'O(Fz) (15) 

The-(0,0,n, - 1) states correspond to circular electron orBité
perpendicularto the direction of electric field ¢. In this case the

and

¥

a= bl—'[z-]- =
T2 T (1 2

- where

e=(1-30)"1-1)", rl-r)=F, 0<r<1/317)
The collision of two classical solut)ons occurs at 7 = 1/3, or

F = F, = 27.3"% = 0.2081, where the parameter of the

ptot.xcs behaves simuarly to eq‘(‘.))

integral J(F) can be expressed th:ough elementary functions

- Arthz]™, | ‘ ‘ (18) - with N'= 1 and the fannel potential (3) are shown in Fig.2 - |

~ when v.—u,. Thus, the coefficients fm( ) shayply grow, and
for v v, [1], and the underying

‘In this region the coefficients ¥} in eq.(1) are complex, thus
“the first few terms of expausion (1) determine the width of a -
~ quasistationary state with a reasonably high accuracy.

o(F) = AF M1+ 6L 4 5 +...), 18)

A=2%.3%.5=05722and f = 1 - F/F, — - 0 (for
calculation details se: Appendix B).
¢) The formulae for the funnel potential (3) can be obta.lm_ed :

" from the preceeding ones when substituting g —'—g,

. v=ay+zj, z=w=][(1+3z3)/1 +t§)]l/2>. (19)

" So, z'> 1 and Arthz = Arthz™' x Imi. Therefore, the asymp-

totical parameter a becomes complex, which corresponds to
oscillations of the coefficients ¢#) with k =~ oo. In particular,
at g — co we have: z — 31/2,

~ afco) = -[3’/‘- ln(2 + 3’/1) +in] ™t ﬂ:(zq)s L

and fa(oo) |=0.1578 (compm with Fxgs 2 and 3) .
The parameters @ for the Stark effect, spherical model (12)

curves 1,2 and 3, correspondingly. Note that-a(v) — oo,

1/n-expansion itself is no longer apphcabh jis region: It
was observed already in- the first. atteny yeri

Fig.2. However, at ¥ > v, the pa.nm«ater a(v) decreases with
v increasing, and applicability of 1/n-expansion is restored.




 Similar results were obtained also for the Yukawa and Hulthén
potentials [18], see Fig.4 and 5.
4. 1/n-expansion and the problem of two centres.
The nonrelativistic problem of two Coulomb centres,
; V() = _._1 - _?3

1‘2

r.,z={p’+(z£R/2)’1*",- p= @+, (21)

is encountered frequently in different branches of physics, in- .

cluding the theory of molecules, p-catalysis, etc. In this case
the coefficients (¥ depend on the internuclear distance R,
where the first term % corresponds to the electron energy

~ on the classical orbit which is determined by the ethhnum

- condition of the forces acting on the electron in its rest frame.
Here we confine ourse]ves to thecase 2, = 2, =1 (the molec-
.ular ion Hy). For the states with m = n — 1;n — oo (or,
equivalently, for n = 1 and D — oo, where D is space dimen-
sionality) the equations can be ?ﬁritién in a parametric form,

. 6(0) = __2(1 - 1.)2‘(1 +1‘),‘

€ = 91 - 2P{(2n; + D1 + (1 + 37) 7~
~{2na 4 1)[1 = (1 = 37)/1},

. R=atR=r0-r)?, (22)
where0 < 7 < 1/3, R < R, =3¥2.22 = 1.209 and E = n-%¢ is
.the electronic term energy, while 7 = cos’a and « is the angle
at Z vertex in a triangle (Z,Z,¢). The pumerical analysis

ahows [10,19 20} that ¥ grow as factona.ls at k — 0o, while

the parameter a = a(R) increases at R — R,, see Fig.6 taken
from ref.[19]. Here we present a few analytical results.
If0 < R < R,, then (ref.[Zl] and Appendix C):

a(')*——(AfthC C)’l = (131 - 1) - .'(235

and 7 = 7(R) is determmed in the preceedmg eqnatxons So,
 the singularity of the Borel transform {20] closest to the: -origin

is at & = 1/2a < 0. The series (1) is alternating in sign and
can be summed up with the help of Padé approximants. In a
recent paper [20] the dependence of 6, on B was established
numerically with a ]ugh accuracy. The values of the Borel
parameter &y, given in-[20], are in a very good greement with
the analytxca.l formula (23), as can be seen from Table 2.

When R = - R., the three classical orbits (stable and unsta- o

ble) coincide, so the rearrangement of 1/n-expansion occurs at

| this point. If B > R,, we have

sR=0 -V - arth gt (2

and

= ( )"2 CR=8r 1) (4], 13 r <L

In thxs casea =1 /260 > 0, so the terms of the 1 /n-expansions 1

are of the same sign. The derivation of eqs.(23), (24) follows.
the same lines as in eq.(16), and is given iz Appendix C. It i is

notable that the singularity of a(R) differs from eq.(9) a.nd is
‘1o longer symmet.ncal in this case: ‘




.n

a(R)~ Ay |1-FB/R. [, R R, (25)

where A, =3Y2at R> R, and A_ = —(2/3)/2at R< R,. =

5. Thus, large orders of 1 /n-expansion increase as factorials
4).’ This explains why in many quantum mechanical problems %
it is necessary to calculate ~ 30+ 50 coefficients ¢(*) aud to use
one of the summation methods to obtain the energy e,; with the
accuracy required for experiments, At present the summation
of divergent series occuring in quantum mechanics is developed
fairly well and, in prinéiple, presents no insuperable difficulties.

The authors would like to thank D.Popov and A.Shcheblykin-
for their help in numerical calculations, and V.D.Mur and

V.M.Weinberg for discussion of the results obtained. One of
the authors (V.S.P.) is grateful to Professor D).R.Herschbach

and D.Z.Goodson for useful discussion at the initial stage of
. this work.
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Appendix A
Higher Orders of the 1/n—expansion

Let the potential be

V(r) = -—f(:t = -p. lo{x), (A1)

where A = m = 1,2 = pur,v(z) = flz)fz,p' = Ris the
screening radius, energy B = £/2n°,n = p+1{ + 1 is princi-
pal and p-radial quantum numbers.The Schrédinger equation
takes the form

113:: + ( ) {e+ 2vv(z{1 +Ea~Y7))~
-1 - 21’: 'y P‘PI i+ En-xi Px =0, (A-Z)

which is convenient when n — oo a.nd p = 0,1.2... is fixed.
Here v = n3u, x = 2o(1 + £n~1/3) and 25 = zo(v) is the clas-
sical equilibrium point determined by the first of egs.(6). The -
variable £, unlike 7, is bounded as n — oo. Expa.ndmg the
quantities in (A.2) mear x = 24, one obtais:

a:g'v'(:co) =-v,
¥ = 2%/ (20 +20) famae= (2 = Ll (83)
and the equation for an anharmonic oscillator,

%

2
T P+ T+ p ) -0




i3 |

+n7Yilog — 2(2p+1)¢] - 1(2(1+ §)€‘—'
~3(2p+ )& +p(p+ 1] +0( ¥ }x =0.  (A4)
The notations are [10]

R R 15, 3.
w=B1+w)]"? o=4l-v), t=(u+ g),

2 ,‘,_ld v ,dv

.vk = {k + 1\’! d::‘/d-l: lr-:n(v) (A's)

Eqs. (A.3) define the »; dependence on v and the initial term
of 1/n—expansion for the "reduced” energy €. Eq. ( A 4) with
n — oo gives

eV = (2p+ 1){w - D(v/z0)?, - (A.6)
and d’x,d&l-‘— 2E - ')x =0, where

el {3)
B= (p+1/nw+’1<”°> (C+ S+,

n n*

)= = nT o - 22p + 1)El+

Ui
+: (=1)'n~ (s + 3)(1 — v,)€" -

EMB

~(2p+ 1>~(s+1>e'+p(p+1)<s-1)6"’1 (AT

- The coefficients of anharmonic terms ars small at n — o0,
which provides the applicability of the perturbation theory
{(PT). if the perturbed hamiltonian is

14

H= 1/2(17z + wziz) -+ g(z‘.v:z:3 +az)+ 92(13::‘ + 06+ B;),

g—0, ‘ (A.8)
then

21 a*  as
E, = {p +'1/2)w -9g {5[30p(p+ 1)+ 1].}“}—‘1 + :‘2'34-

2 4(‘J2[2z>(19+1)+1;

—2—31 ,— G} +0(gY). (A.9)

)

-

Here E, is the energy of the p** oscillator state. The simplest
case oy = By = B; = 0 is considered in ref.[22], p.132. The
general case is easily obtained with the help of the shift. ¢ —
z — ¢, and the change of oscillator frequency, w — w + Aw,

. where

Lo aw=-g(R 2y,

22
The equatxon {10} for € foliows immediately from the above
equations (here g = n~'/?). The next coefficients ¢'*) can be
obtained in a similar way, though the‘calc'idatiuns become more
cumbersome. For this purpose one can use recurrence reiations
which are very couvenient for a compuier.

‘Now let us discuss egs. (8), (3). The asymptotics of the
higher orders of PT for the anharmonic oscillator is well known



'3

~

[12,13]. For instance. for the energy of the ground state E() we
h ave

AR .- ‘
Eg)Tozw+ X Cigs - (A.10)
- k=1
where V(z) = 1/2w*2? + gz¥ and

ta

Cer cons_t.(ka)!a"kﬁ, k - o0,

1 1
a = 5(”"’ 2)9 ﬂz~"'2'a

v o

The term & n-" ’6‘* 2 in (A, 7) leads to contribution ~ n~(+-%
in the energy when it is taken in the ¢* order PT, ¢ = 2(k -

. 1)/s. The corresponding contribation to asymptotics of the'

coefficient (% is ~ (k ~ l)'w‘(”‘/')", see eq. (A.11).

is finite, all the contributions {s = 1,2,..) are of the same '

~order of magnitude and are essential. However, if frequency
w = 0 (or ¥ ~ v,, see ¢q.(9) and Fig.7), the contribution from

* 8= 1, l.e., from the cubic term in {A.7), dominates. The cubic -

anharmomc oscillator was considered in detail by Alvares [13].
Using his results, we obtain that

M e s k- o (A12)

a= 150,/&.;’ = A( )-”‘ vy, - (A13)

M) (A
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where A is the coefficient defined in ¢q.(9a), and o, = a{v,). ~

This result is valid for an arbitrary potential V(r) and shows

that a = a(v) has the power singularity at v = v,. lt explains
the lack of convergeuce of 1/n-expansion for v ~ v, [7-9].
In the case of the potentxal (10) we have

C= [1 +ar-(1 +ANN g = —c‘

A= S+ a3~ (1 0)Ph yrery

In partlculat, for the Yukawa (A = 1) poteutxalwz = 1-za/(1+:
30), .

z = %(1 +V3), V=zle ™ =0839962..,

A =.’§°§(5 - VA=D1t 646..  (AS)

 and for the exponential potential: X = 2, = (2 - z)"?,

Cz.=3, w=12Te =1.34425...,

A=27 3VA5 = 0.19967.... (A.16)

(A.15) is'in accordance with our numerical calculahons of the -
parameter a(r) near ¥ = v, (Fig.3).
Finally, for the Hulthén potential:

Ha) =zfe* - 1),




coTee

Aoy, w=(- zocth“’)"’ A 17)’

The value x, is determined from the eqnat.:on e

T=(1- )/(l + %), whence

=157 C= (22— 3)/* = 1.3807,

A = 0.13709 N . B L )

The nu}nencal values of v, v., C and 4 (i.e. the rnéfﬁcxextté in
q.(9)) are given in Tahle 1. Here v, corresponds to e(o) =0, i.e

to the point at which a highly excited level with I = n -1~

crosses the boundary E = 0 and escapes to the continuous
spectrum. The values of Ve for the potentials from sect.3 are:

., {2 (e, for (10)
"=\ 2-exp(- 31, for A11)

(e = 2.718...). So, ¥ < ¥, for all tlie cuses considered.

AppendixB = _
Calculating the integral in e.(142), we obtain

a= c/,¢(:);~ . : (B~1")i"j" -

¢(z)=.+( Z 7 —Arthe=

I YOO (I T S _.\.o (B.2)
) = 152 (1+71 + 32 +..), z 3 | (B.2) o
where ¢ = 1/2 for the Stark effect in a hydrogen, while the -

dependence of z and energy € on the redaced electric field,

* P = 1} = n%, is determined parametrically, @ = (14

37%)(1~72)* and eqs:(17). For the spherical model (see eq.(12)
with V=1 and g < 0) we-get: c=1/4,

e= (050 =R s (4300 -1) (B3).
l=7)=F ’

Note that in beth cases & the root T = r(F ) —~ 0 at F—9 .
should be chosen, and 7 = 1/3 cotresponds to the collision of

* two classical solutions {stable and unstable equilibium points). .
It occurs at F = F., where F, = 212.37% = (9081 for the Stark
problem {8], F, = 2 .37 = 0.1481 is the case of its spherical -

model. At F — Fy weput r = —(1 -ty and obtam from
eq.(B.3) that

ik

W
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, 1 4 3 1
4 §'t3 = jf, 7= [Et/(l + gt)]‘“, (B.4)
f=1—F/F. = 0, while eqs.(17) yield
1 3 3 1
248 T AR =271 4+ )7 (B.5
t+6t+ +2 gf, z=3 (+2) (B.5)

From egs.(B.1)-(B.4) we obtain
z= 3f)![4 -92. 3—3/2f1/2 +0(f)]
Hence, eq.(18) follows, where

= 5/8 3=, 4749,

b=—20/7 3’/2 = ~0.5499, b =-06699  (BS)
(in the case of the spherical model). Analogous calculat:ons |

for the Sta.rk eﬂ'ect give

A= 5/23/4 33" = 05722, b=-0470  (B.7)

© These values 7 are in agreementhththecurvesmﬁgz. _
" The parameter a of the asymptotics (8) in the weak field re-

gion can be calculated, when substituing expansions of €% and

J(F) at F — 0 into eqs.(14). In such a way, for an arbitrary ' .

(n1,n3,m) state in a Irydrogen a.iiom, we obtain
a(F) = —F’(l - -pF InF + kF + . ) - (B.S8)

where k = .g{3+(3ln2_ Z)P-— 1{(p+4) In{p+1)+ (o~ 1) Infp—
M1} = (244 |m | +1)/n =1~ (ny = ny)/n and p =m/n.
. In particular, p = 1 and k = 3.579 for the (0,0, n — 1) states
with'n > 1,p=1 and k= 4.619 for the ground state, n = 1.

20

Appendix C

Here we derive the formaulae of sect.4.
Proceeding to the elliptic coordinates &,7,¢ [22]

&= (1’1 +m)/R, n={r-r)/R, »
1€8<o, -1Zn<gl, 0<Lp<m,
and fulfilling the scaling transformation

& =2, R=AR, E=X, A= st

m2-1" ? “

= (€~ 1) - PN xa()xaln) ezplime),  (C1)
we arrive at the one-dxmens:onal Schrodinger eﬁuatic’ms for the

functions x;,

.

A’%u(e-cr(z»xl;m e

(Xis ana]ogous to the Planck constant A, — 0}, where the -
eﬂ’ectlve energy e and effective potentxals are

= Zeﬁ-’, N
1t -zg".,,g_-v . S
HO=ge- X . et e

Vel



) s . : ®
AR Ry . — . N Dy
Y Ll '1 i . o
Eoatd ¢ .

2

Z; = —(Z 1= Z,), and ﬁ is the sepa.ratmn constant. I‘\uther we
put Z,=12_= 0, which corresponds to H7 ion.

)R> R.—l 299 038 ..
The potential V(n) is shoWn at Fig.5, i.e. it reduces to the
case of double-well potential (23], which has symmetric and
antisymmetric states with different energies, but identical 1/n-

expansions. [n this case the Borel sum of series (1) has imag-

inary part T, 2, which corresponds to the tunnelling from one
vacuum to another [24,25] (calculation of large orders of per-
* turbation theory is considered in (23]).
When n — oo and mg = n, = 0, the four equations follow

Utde) = Vi(mo) = e,
U'(&) = V'() = 0,  (Cy

the solution of which is

PO _ (B - 1E+ 1P

@-n@vor g
m= (o Syra o aempn, (o)
ap2 1 7 .

(€0, 7m0 are el]eptxc coordinates of the classical orblt 1< <
312 o0 < e.< —1/2). Since V(n)- V(no = —e[(n*-nd)/(1—
)]2 then

~ . ~i»u ?! fff
w
”n v . flo ' : -
=2 [ |pyidn=2" [[Vim) - V(n)]"/dn =
- - iy :
= 4(= - Arth n0) {C6)

1- 7]0

(instanton contributxon). Weput 7 =£722>1/ 3 and arrive at
eqs.(24), where { = m. In particular, at 7 =1/3

&=3"% m=0, R=R.=3/4, e=-1/2 (CT)

and ¢ = —32/27. Nete that at n = 0

_ _ —‘N-z -+ .., e<-1/2

So, the effective potential changes its shape at R=R..
2) 0 < R< R.. In this case —=1/2 < e < 0,

(C8)

i
22

L V-V = gl et - =
=TT eh 12 (e + 1+

So, the equih‘brium point is e = 0-and the turning pomfs are ) O
‘complex, 7} = 1 + (2¢)~! < 0, where ¢ = -soR2 ‘as before.

Therefore,

2)1/-

_ g1 [l(_'an_d,, = =2(arth { - (), (0-‘931
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where ¢ = (2¢+1)/? = (1= 3r)Y3(1 - r)7}, see eqs.(23). Con-

trary to the previous case, the equilibrium orbit is symmetrical

(r1=1r2,m0 = 0), 50

e 2 -
=L =cos’a, R=2rcosa,

and 312 < § < 0,1/3> 7> 0.

3) Compare our variables with that of ref.{20], where large-
order dimensional perturbation theory for H is considered.
Note that

) — ! - -1
D3 n=_l-l,—1_=—D2——»oo

(n, = 0), the dimensional scaling factor in {20] is

s=ipm-naie, R=mr=ik (1)

and the expa.nsioﬁ pa.ia,nieté- § = 1/D = 1/2n. So, e® =
- 2R st k- oo (see eq.(3b) in {20]). Let the Borel trans-
form F(ﬁ)

25".6" / et F(5t)dt,

has the smgula.nty closest to the origin of the type F(&)

(6o — 8)7". Then, the coefficients Fi = Ej /k! 5tk and
e®) x const - k'(260)"°l\."" k — o0, Companson with eq.(8)

gives

.a= 1/26, o=p-2 : ' (C.ll)

24

It was shown numerically [20] that 6, « 0 and p = -1/2,
if R < R., which corresponds to a square-root branch point
of the Borel iranslorm at 0 = §&,. The agreement between
calculation results of ref.{20] and our formula {23) is exdlent

see Table 1.



Eootnotes

1) See ref . [18]. The numerical methods we have used will

be described in detail elsewhere.

2) When f(z) = e~* and z(e* - i)" in eq. (4), we obtain

the Yukawa and Hulthen potentials, frequently used in nuclear
physics; f(z) = z exp(-2*) corresponds to the Gaussian po-

o tential, f(z) = 1 —a? - ta the funnel potential (3), etc. In fact,

‘an arbitrary central potential V(7) can be written in the form

.. of eq.(4), if the condition 0 < f(0) < o0 is ngnored,

. 3) Note that _
z"'v'j” -dlnu
f-zf =
where z = zo(u), eq. (6), and v, = 23 f"(a:.)
-4) Large orders of the usual perturbation theory E; (in pow-

ers of the coupling g) may increase as (ka)! wnh an a.rbxtra.ry
value of a. For example {12],

W=l

- By o« (ka)la® kP, &_= -;(N -2)

for D = 1 anharmonic occillator, V(z) = 12? + gz¥

On the other hand, in the case of 1 /'n-—expansnon a =1 and
) o k1 for all the problems considered.

5) For example, when calculating complex energies of qua-

sistationary states (mynym) for the Stark effect in hydrogen

(8,9].
6) The dependence of the variable z on F/F, is shown in
Fig.8 and is quite similar in both cases.
7) The analytical value of the coefficient b for the Stark
problem is b = —85/63 . 2%/2 ~ ~0.47702.

A fow ldditinml :

© I) After this mk vas completed and submmd for publiurtinn.:

ve. booano acquainted with the paper by L6poz-0;brera. Goodson.

 Herschbach and Morgan [zo] in- which  large-order dimsiml.

per turbation -theory for H ‘i developed. Using the advancod an-»-;"

merical technique, mcludmg the Borol transfomtmn and - Pa- o

dé-Borel sumtwn. the authors shoved that the coeﬁicien'h'»
(H

' [20] are in an excellent agreement vith our eq.(23), ses Table Z.-

Note that ¢"+I=-I.5 in eg.(8) corresponds to the squara—root
singularity of the Borel transform, F(S')m(f ;) (1t R<R
8' <0). In this case, the quadra.tm Padé analysis is very
appropnate [20] and gives the correct values of : a.ndd(R)
with 5:8 slgmficant figures, as is seen from Table 2.

2) Let us gwe some expansions in the two-centire Coulomb problem -

At R—:vR -
-4 z ff3 3 ’
(o) T-ihegh - zeg * t AP0
€ =€ - - 1)

Ly edypx 443
.{ A/[-(‘?/f"é‘é .‘L”')A'?‘VO

vhere é* =-32/27 and h=(R—R#)/R* . The singularity of 4.(R)
is not symmetrical, which'differs from the case of a spherically
symmetric potential, eg.(9): ‘ ‘

grow as ki, k» ©0 _ and determined the- dependance of
the Boral‘paraméter J' =I/2a. on the scaled distance R ( 5 is,”

the pontion of the singularity in the Borel function: F(S‘ ) elo-
seat to the origin). Hovevar the analytical form:lae . (22)-(2&) o
‘are not given in ref. [20] The. mnnerlcal values of 5 from



e ﬂ "

2 ,
~3% %G;5+Vﬁﬁ?f0

-—

{:(—EE;. é’f""‘ )47—0

where A,=3  and A =-(2/3) . From eq.(23) it follows that.

where A ‘&c(/@) and R -> 0

At R —>°0 we put z=I-2t, t-)o in eq.(24), ‘then

7~ o -2
y _L_‘__(_,_,),- = 2342 = gz | ”6_()= Y i) A
' ;,[»f-,‘éf)" = 2 .z/f-—xz‘/

sith 2= z(f—,zz‘} } sz =kf:.’ :_“H. sz‘}‘ thg -
PA 7-g*
‘V”"(f"f 5 ~ff; * f ‘s +f" j‘)

Us:ng the Lagrange s formula irom the theory of mlytiq ,-func'ti‘-s

/

ons, we finally, obtain x%):

x) Note that the coefhcxents CA can be calculated for arbitra-
ry k. For instanca

» . (3#-3).
= (-1 -
w0 Ty

y £z3,

S K

cal®) =4, 1) 7 .

‘éZ = —--- [A ('{ ""‘)1 + C)/A ) (.3')/

)

. {see rat.[26] and og. (4. 59). in [27} with n,=n,=0, m—-n—I) L
. 1 2 eothe six first terms of the. expansions (5 ) a.nd (7 ) coin-. -

. 28

2 ke . L,
= [+ yZ (sr) et <

kL T(k+ 74 1)

= 4- vy +£ V/v%‘)f ,
£ .
(R) ¢ = —,{-f*ff’-
| _ﬁ’=o .
.~.~;%f-' 35’ *pf+ 22

| (5’)

{73 2_
7€ ¥ mFg e

[/"'f&*‘ + 0(@&9) )]

(here &, is the root of 8q.(4"), vhich > I at R ~ &0 ) |
" On the ather. hand the expansion of the eleetromc anernr %
for the two Coulomb centers, Z, =z _1, is well lmovm : o

e(e) =~%-¢ e e -
“'(‘/fh ) [ (“"“‘75’ *7("*")/4‘“"/1’ -

o ;)v‘_

S et-E )t 06] Rl

clde.



. 3) For the potential

TV/’?‘-‘ -F

" we have f21]

Lo RATNW)
. “’a i[ e

X,

(-2)"%

_.__——-4256

Y- AN

A

e . f/s and

k% =Pt¢;

_‘/5'

» .

= X

whez ¥ -» ¥, . Since g
-  {8‘—3'0

1¢

-

/4 3;70) )

~

~34
Yx ’3’-2

—5‘3

2

L/
/'a-

T:f [‘f‘-l‘),

Xy
Fo =7

Ay on

f SN2 1
oy z}(9)

(@)

——

=0.472% and 2,

+ Of27%)  at

. we obtain from 0q.(9') that

W)= A(3)

- sl

?

As5f3 0 2

" which is in accordance with the general eq.

2

. ’b

. whsre

1/’ :/8/‘2)11/{ . Zxo/ : 4 Zﬂ

_ shown

. )
4—;; f;ai% = 7/

]

[~

is the radius of

that

2.

ihe

classival

, than .

S

X+X

why

»0.2478, (107 -

(I2)-in ret. [2I].
'4) Analogously, for the Zeedian effect in hydrogen we have [28)

= '-i 62+~~ 8?0

(82 )%

elactron orbit. Let

4

=/

, B>

. It can bpe

' 3°
. 4 . ’2 ,
‘2"f:: (é-—iz)(/ » 1h 203" C’:? ”1i) 4-_ (')
(2 -f)'é 3%z a2/ R
- h22E L owey
where : ' ' Ce :
fé ' : - “ ;’;
2= (4~ 37,) 7<a<a . . (@h

(z=I at B-#O,_' z=2 at 3» 02 ). In this case the asymptotical pa- '~-.

“rameter 4 (B ) is complex, so the series (1) is altermtmg in.. s

sign. The dependence of the parametera on B is shewn: 7) m Fig}u
The case of a hydrogen atom in both helds, & an.d B, can be
considered analogously (see eg.{3) in ref. (28], determining
the r&dl\lS‘ Z '-2 (E ,B) of the classical equilibrium orblt)
As ar examle of caleculation of the asymptotioal pa.rameter

'Q[g 3)‘.399?13"0 -




3 - 32 . . .

. N
: - | : Table 2.
Table T. . , _ 7 Iable 2. e
i i ' : , ., The vaiunes of the Borel parametor JJ =[/2R4 ;
{.'/x) ) v G A ‘potentiai , 0 B
4t o * . for the molecular ion H (Rd? ). :
i .
app{~x) 1 O.73BTE 0.929%  1.289 0.1116 | Iukawa x
. E s method of
Uow/{e*=0) ! T.z9b32  I.52344 1.381  0.I371 | Hulthen ~ : _
_ ] ’ o " R —_ 5d caleulation
axp(-x?/2) | 1.21306  1.58650 1.682  0.2478 o R
4 | x-exp(-¢) | I.08268  1.34425 1.565  0:1997 : ~
- -2 ' _ L 0.2 1.720 950 0q.{23) ST
b {T+x) 0.8 0.52816 1.033 0.0574 | Tietz ‘ - : » )
' 2 . ‘ s 0.4 . 1.062 37 - A L
5 | xeexpi{-x") | 0.73576  T1.0R268 2.000  0.4167 | Gaussian : ‘ .
: e _ , 0.6 0.705 527 : -
7 Tex? i - 0.38490 [.566  0.1997 | spherical model : : o
' ;t ) : | o~ - ret.[20]
% —_ - 0.456I8 0.8680 ' 0.2408 | Stark aetfect : : : -
SN 0.9 0.474 800 620 eq.(23)
J | _ 0.474 796 ref.[20] .
. 1.0 0.3I3 841 I9I | eq.(23). .
Footnéte:  +{x) is the screening function in (4), A and C - ths _ : »
—_— 0.313 841 21 ref.[20] :
coefficients entering aq. (9). : : .
_ ) ~ 0.I1975I8 621 52 | . eq.{23) ,
0.197 516 6I8 7 | ref.[20] -
L4 0.I12 797 8q.(23)
Y ) ) .
1.8 0.052 563 R
1.8 ' 0.0I3 569 SRR S
L

Footnote Note that the def1n1tlon of the scaled
'intermuclear distance R in ref. (20] ditters
from ours by the factor 3/2 2, as it is explained -
in 8q.(C.I0), so here Ry -3 /8 1. °48 557.
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to the Stark effect, its spherical model (y < 0) and the funnel -
potential. In the latter case the values of | a | are multipijed -
by 10% ’ ' '~ :
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~ Fig.4. The same as in Fig.2 at v =~ v, for the Yukawa
potential (v, = 0.8400, curve 1), the Hulthén potential (v, =
1.5234, curve 2) and funnel potentials (12) with N=1 and 2 .~
(curves 3 and 4, », = 0.3849 and 0.4725, correspondingly). -
Analytical equations (7),(8), etc. were used for calculation of
the curves. -




Fig.5. The same as in the precedmg T"ua;ure *"or the Yuk@\n

(1) ang Huithén {2) potentiais (the results of aumerical calcu-
lations {13]).
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