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1 The reasons to incorporate the scalar mesons into
Chiral Theory. The effective chiral lagrangian.

There are at least two reasons to have a theory with the scalars:

1) Scalar resonances exist and we need the theoretical description and
understanding of their properties.

2) Like the vector mesons defining the momentum behaviour of the form
factors in the channels with J = 1, the scalar mesons can define the momen-
tum behaviour in the J = 0 channels of the low—energy mesonic processes.

Then, the momentum dependence of the mesonic amplitudes, both the
strong one and the weak one, will be determined by the momentum depen-
dence originated by S, V and A meson exchange.

As the modern theory of strong interaction — Quantum Chromodynamics
(QCD) is not applicable to description of the low—energy processes, one is
enforced to use for this aim the Effective Chiral Lagrangians (EChL) taken
in one or another form. Such lagrangians allow to reproduce in a simple way
all results following from the algebra of currents and soft—pion technics for
the processes with the pseuduscalar mesons. These results are independent
of the properties of the scalar mesons. Therefore, the last ones must be
incorporated in such a way that do not spoil the relationships arising in the
leading approximation in momentum expansion for the amplitudes with the
pseudoscalar mesons. One of the ways to do this consists in introduction of the
- scalar mesons as the elements of the Chiral Theory itsclf. Such a possibility
is in accordance actnally with the properties of the underlying QCD. To be
convinced of this let’s turn to the QCD lagrangian.

The main part of the QCD lagrangian

1
L3°r = ~4Ch G + (0 — igAS) 1)

possesses the left-right global symmetry, which means, in particular, that
before a breakdown of the symmetry, the degenerated states of opposite parity
and the same spin must exist.

At the EChL level this phenomenon can be taken into account for the spin
0 particles representing the lagrangian in terms of the matrix

U=3§"+ii = (o +inp)tp, B=0,1,..8 (2)

where o and np are the nonets of scalar and pseudoscalar mesons respec-
tively, to = 713-I and t|"_.3 = ;}5/\1',”3.




2

Then, the left-right symmetric part of EChL corresponding to L3P can
be written in the form

Lo = 3Tr{8U8,U"} - Tr{UU*UU*} ~ c€Tr{UU}?  (3)

which is invariant under the transformation

Ly — &4 Ev +€a
U YU - 4
— eap(i®! ) Uep(~iTLC) ()
corresponding to the independent transformations of the left~handed and
right-handed quark fields

ié ié
qr — ezp(—‘/%)qp i qr — ezp(-fg)qn (5)

An existence of the non-zero vacuum values < G% G2, > and < gg >g in
pr py

QCD may be taken into account writing the potential part of eq. (3) in the
form

V = —cTr{UU* — a%2}? — £(Tr{UU* - a®t%})? (6)
meaning that the field ¢4 acquires the v.e.v.
<ogy>=a (7)
As a consequence, all scalar fields become the massive ones:
mZ = gaz(l + 3¢), mf,‘"_" = gaz (8)

The pseudoscalar fields remain massless at this step. They acquire the masses
due to explicit breakdown of the rest symmetry due to non-zero masses of
quarks. In QCD this effect is produced by the term

18 = gig

where
my

M = my (9)

In a chiral theory the corresponding term of EChL is

BT MU +U*)} =
2, My + Mg + my mu+md_2ms my — My
= b%( 75 ot 75 ot~z fré) (10)
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It does not produce the masses of pseudoscalar mesons directly, but it shows
that there are the transitions of the fields o3 and o3 to vacuum proportional
to my, + mq — 2m, and m, — my respectively. In other words, the fields o3 and
03 acquire the non-zero v.e.v. proportional to corresponding mass difference.
The v.e.v. < o¢ > now is not equal to a, but contains the additional part
proportional to m, 4+ mg+m,. The masses of the pseudoscalar mesons appear
from the potential part of Ly after a minimization of this part with

U:‘t,q =< og >t <og>ilsgt+ <o3>t;+o4ta (11)

The theory described by the lagrangian containing the terms (3), (6) and
(10) has one disadvantage. The %' meson turns out to be too light in it. In
QCD, there is one mechanism allowing to get m,; different of the masses of the
rest members of the pseudoscalar nonet. Namely, it is a mix of the isosinglet
7o meson with the gluonic state G""",éz,, occuring through the triangle quark
diagram.

The explicit form of the term solving this so-called U(1) problem in the
sector of pseudoscalar mesons is not important for our present purposes. As
for the scalar mesons, one can conclude from the relations (8) that the U(1)
problem for the scalars receives a resolution if the parameter § is different from
zero. Of course, such a splitting between m,, and m,, , has the same origin
in QCD as for the pseudoscalar mesons: it occurs due to mixing between o,
and gluonic state G5, G, -

The potential part of Ly can be presented in the form:

V = —cTr{UU* - a2} — &(Tr{UU* — a?3})? =

~5(1+3¢)(0F + 7% —a?) -

1 4
- C{E[dju(ff;tfi + mim) + :/-—6(0302 + mom)|? + 2 fiuoim)?}  (12)

il

A positive definiteness of energy in the theory with such V requires:
c>0;(1+3)>0 (13)
Minimization of V with o/, defined by eq.(11) and m, = my gives‘: .

1-—5¢
2—-¢

mi=X+Y;mk=X-Y. (14)

m; =X +Y+A?
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2 _y 1 2(1 —¢/2)
m,K—X 2Y+_A AT ey

mg, =X =¥ + A%(1+€)7?[(1 - )’ + 2¢7(1 + 3¢)] (15)
m2 =X + A%(1+ €)1 + 3¢ + 2¢7)
m2 . = 6v2(Y + A%(1 + &) %eg)

where

X= gc(l 4 36)[< 00 2 (1 + 26%) — 7] (16)
Y = ze < o0 > e(1 - €/2) = (1 ~ /2)(1 + ) 7A? (17)
€=<05> [(V2 < ap>) (18)

As it follows from eqs. (14), (15) and (17), m,, and m,, are expressed
through m,, my and parameter €. The last one can be found using the general
expression for the axial current:

; 1 .

A = —ﬁTT{au*(ti&' +6't) - B0 (i + 7t;)} (19)

Then <o0>
<0147 |7 >= ‘/5'7%—(1 +6)0,n' 7 = Fdyn' ™ (20)

< ap > €

<0| A;’f | K >= \/5 \/% (1- §)0“1{4,5 = FKQ‘ -'{4'% (21)

Therefore L_e
T4e R -R (22)

In terms of the parameter R

m, —m? = (m — mi)(R-1)"" (2R~ 1)’ (23)
i =k =~ )R- 1) -

Using the experimental value of R we could find m,, and m,x. But there is
some uncertainty in determination of R because of the value of R following
from the data on B—decay turns out to be smaller than one following from m,
and K, decay. For this reason it scems to be more convenient to determine
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a magnitude of R using eq.(23) and identifying o, meson with the isovector
resonance ap(980). Then

R =1.176? - (29)
m,, = 1.23GeV (26)

To find the masses of the isosinglet scalar mesons we need to know a mag-
nitude of the parameter £. It can be determined using the data on K;, decay,
as it will be shown a little later. But the general expressions for the masses

- of the diagonal states

oy = ogcosfs + ogsinfs
g, = —0osinfs + o3 cosfs (27)

we can write down here.
m?, —m? = (m2, - m2)- {1+ 2R(R - 1)(cosfs — VZsinbs)' +  (28)
+:1;EI(2R + 1)cosfs — 2V2(R — 1) sin65°} ,

mi, —m; = (m}, - m";) {1+ 2R(R — 1)(V2 cosbs + sin05)* +
+3¢E[(2R + 1) sinfs + 2VE(R - Deoss]’} ,  (29)
where

1+£(2R+1)(3R)! }
A 1-§(2R+1)*[6R(R—1)]'[1 - 8(R - 1)2(2R + 1)7?]
The coupling constants of the scalar mesons to the pseudoscalar ones are de-
termined by the expression (12) and the part ALg(s” solving the U(1) problem

for the pseudoscalar mesons.
At

1
s = 3 arctan{?\/i

AP U
ALY = L3 Tr(n 0 3.4] (30)

3Using the standard relations
Vs
R= (02151 0.002) | 24|,
Ve P+ Ve, P+ Va P=1,
and putting into them | V4 |= 0.973510.0015 [1] and | VL |< 0.007[2] one comes to the result R = 1.17110.045.




we obtain, for exa.mple

m?
__z.._l(cosﬂp ~ V2sin 0p) + m:/(L;e)

ga; =-
1= " VAF,
_ (md —-m?)(1 +4e)
o K+Ro = \/EF,(I-}-E) ’
where Op is the mixing angle between 7y and #y:

[ (1 6) sin gp -
—\/ié cosfp] ;
m? = 0.634GeV*(31)

1) = —wysinfp + xgcosfp .
7 = mycosfp + mysinfp (32)

A width of the isovector resonance o, calculated with the above coupling
constants turns out to be =~ 300MeV [5]. But as it was noticed long time ago
(6], the observed width may be considerably smaller due to different effects
including an opening of the channel X*K?° at the resonance energy. The sit-
uation is illustrated by fig. 2 in ref. [5] Of course, the theoretical curve in
this figure corresponds to observed width of order of 70-90 MeV instead of
the experimental value I'g980) = 54+ 7MeV, but there is very important, but
unresolved question how to extrapolate the expressions for the vertices o;mgm
given by EChL to the region of energy of order 1GeV'. It is not excluded a con-
siderable renormalization of these vertices diminishing the effective coupling
constant. A naive calculation [5] of the width of the strange ok meson led to
T, = 570MeV which has to be compared with the experimental results

I =485+ 80MeV for m, = 1245+ 30MeV  [7]

and
T'=4T7T+51MeV for m, =1240+ 22MeV  [8]

, Though the Particle Data Group gives the different value of m, ~
1350MeV [9] and somctimes m, ~ 1500MeV [5] with T, ~ 250 -+ 300MeV,
the experimental data on (pge + p,)? distribution show a position of this
resonance at m, = 1240MeV [7,8].
Therefore, a naive approach to calculation of the widths of the isovector and
strange scalar mesons gives the results close to the experimental observations.
A situation with the isosinglet mesons o,y and o, is more complicated. At
the value £ = —0.225 following from the data on K, decay

m,q,(at{ = -0.225) = 650MeV ,
Ty, = 680MeV (33)
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So, the o, meson can be identified with the old scalar resonance (600 +
800) (see, for example, ref. [10]). It does not included into PDG tables
because of a very large width. However, the indications on existence of such a
resonance continue te appear. In particular, the Omicron Collaboration [11]
have confirmed an existence of the wide scalar resonance with m = 600MeV

and ' ~ 600MeV.
The last isosinglet scalar meson o, has the followmg characteristics

me, (at€ = —0.2255) = 1365 MeV
T,, = 120MeV 5] (34)

But at such big mass it seems to be not convenient to believe the result
of the naive calculation of the width. To identify o, meson with any of the
scalar resonance laying at m ~ 1300 MeV one needs to elaborate a method of
extrapolation of the chiral theory results to energy > 1 GeV.

Let turn now to application of our theory of the scalar mesons.

2 Application.
2.1 Form factors of K;, decay
The hadronic part of the matrix element of this decay is

<wtr | Af) | K* >= fi - (Px + Pr)u + a{Pr — Pr)u + L3P — P — P;5£35)

<7n' | VIO K >= ifsepuar(pr)o(pe)o(pr)- (36)
A contribution of the term proportional to f; te Ky amplitude can be
neglected because it is suppressed by factor m, /mx. In the soft-pion limit

hi=fi= g 12, fi= s 1Y (37)

At these values of f; the theoretical magnitude of a probability of K4 decay
turns out to be by 2 times smaller than the experimental one. The second
term in r..h.s. of eq. (37) gives only 1/5 of the probability at f; = f; and the
term (38) gives only 0.13% of total probability. For this reason, to explain the
experimental situation we need increasing the form factor f; by ~ 1.4 times
and, moreover, this increasing must occur in the non-physical region of the
quantity Q% = (p, + P, )’ because of the experimental data do not show any
considerable alteration of f, in the physical region of Q2.




8

To preserve the results of the soft-pion approach obtained at Q? = m2,
one is enforced to adopt that an increasing of f; happens due to considerable
dependence of f; of Q? leading to the result

f1(Q* = 4mY) = 1.4/1(Q” = m}). (38)

As the form factor f; describes a production of the pair atw~ in S-wave
state, the result (40) can be obtained if a mass of the intermediate scalar
meson is small enough. The analysis {14] shows that the result (40) requires
Moy =~ 650 MeV. According to egs. (29) and (31) this value of m,,, takes place
at { = —0.225. The experimental observation that f; is constant practically
at Q% > 4m! is explained by an appearence of a width of o, meson rapidly
increasing with an increase of Q2.

The example of Kj; decay shows, that a theory with scalar mesons allows
to understand the underlying physics of such an unusual phenomenon as very
considerable change of the form factor in non-physical region of a variable.

2.2 Form factors of K, decay.

The hadronic part of the matrix element is
< x(p) | VT K(p) >= fo(@)px + pa)p + J-(a)px —pe) (39)

where ¢* = (px — p. )’
The combination

qz

Fo(@) = 1+@) + 5 1-(@") (40)

A——

) K t
describes the S wave state in the K= system.

Usually fo(¢?) is represented in the form

fo(9?) = fo(O)[1 + Xog’/m]] (41)
In our theory . 5
LO)=1, (&)= %}"; [15] (42)
Consequently .
Xo = m}/mj, (43)
or ~
Ac ¥ 0.013 at m,, = 1235MeV ‘ {44)

To verify this prediction, more accurate measurement of the Kj, form factors
is necessary.



2.3 Kgs — 2x decay.

As it was noticed in ref.[16], a half of a value of the AI = 1/2 ppart of Ks — 27
amplitude is originated by an exchange of the isosinglet scalar meson. The
authors of ref. [16] considered the mass of ¢ field as a free parameter. In our
chiral theory their expression

A(Ks — 777 Jo, o~ [R— 1+ RM]

0
is replaced (at £ = 0) by the expression

R-1
— gty ~ - —
A(KS T ) {Os,o [R 1+ 1— 2(R — 1)] ’ [17} (45)

showing a considerable increasing of A |o,, due to corrections of next orders
in (R —1). This effect first mentioned in ref. [17] was confirmed later by the
authors of ref. [18].

An additional enlargement of A |o,, arises due to mix of oy state with the
gluonic state (G%,)2. As it was shown in ref. [17], this effect proportional to §
leads to the magnitude of A |o,, sufficient for an explanation of the AT = 1/2
rule for K — 27 decays.

2.4 K — 3x decays.

In the leading p? approximation, the chiral theory with the scalar mesons give
the usual expressions for the matrix elements of different modes of K — 3«x
decay.

At the convenient values of the coeflicients & in the operator expan-
sion of the AS = 1 part of weak non-leptonic lagrangian, the probabil-
ity of K* — xtxtz~ decay and slope parameter g turn out to be smaller
then the experimental ones. Namely, at £ = 0 (which case corresponds to
Mg, = Mg, = 981 MeV)

MK >« 1r+1r ) = 0.73T*P(K+ — atatx™)
th = 0.784°7

When the effects of the corrections of next orders in p? expansion and effect
of mixing between oy and (G2)? are taken into account the theoretical values
of I' and g turn out to be coinsiding with the experimental ones [19].
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It should be mentioned that these two parameters are not connected in
considerable way one to another, because of the part of the amplitude pro-
- portional to g in the general expression.

| M(K* = xtxta™) P~ 14+ g§§—:3—§3 + e,
m‘l’
where S3 = (px — pr and Sp = m% /3 + m?, gives a very small contribution
toT. ' ‘ ,

Therefore, the above mentioned corrections to the leading terms in
M(Kt — xtx*z7), calculated in the framework of the theory with scalar
mesons, improve the results for two practically independent quantities.

2.5 Concluding remarks.

The chiral theory incorporating the scalar mesons as the elements of this
theory has an evident advantage consisting in a clear understanding of a
nature of one or another momentum dependence of different amplitudes. Such
a theory allows to understand, in particular, why the momentum dependence
of the amplitudes with the S-wave 2x states is considerably stronger than the
dependence in other states. It happens because of for the S-wave state, the
momentum expansion is the expansion in p?/m?, and m?,, is considerably
smaller than m?_, ...

One more advantage of the considered theory is a possibility to estimate
the role of higher order corrections in p?, in particular the corrections of order
- p® and higher. Such a possibility is absent really in usual Chiral Perturbation
Theory. ’

At last, the properties of the resonances £{600 — 800) , a,(980) and the
strange scalar resonance obtain the theoretical foundation. But for an overall
quanttitative description of the widths of these resonances one needs an elab-
oration of the selfconsistent procedure of extrapolation of the vertex functions
oxx from the energy region of order m, to the region of order 1GeV.
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