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1 Introduction and Description of the Model

In this note we review and clarify the hidden U, (sl;)-symmetry structure of
the Hofstadter model established in [1), with laying special emphasis on cyclic
(unrestricted) representations of the g-deformed algebra.

Hofstadter model is the commonly used name for a peculiar model of Bloch
particles in magnetic field [2], {3], [4], [5]. The spectrum of this two-dimensional
lattice system has am extremely reach structure of Cantor set and exibits a

-multifractal bebaviour [4], [6], [7] (see also {8] for a review). The model has
interesting physical applications (9], [8], {10], {11] and it has been extensively
studied for some time. Recently, we revealed [1] the hidden dynamical sym-

- metry of the problem. The quantum algebra Uy(sly) acts in the space of states

of the model allowing mxe to get a partial exact solution of the Bethe-ansatz

The hamiltonian of a cbarged part:cle‘on a two-dxmensmnal square lattice -
with integer coerdinates 7 = (n,, n,) in homogeneous magnetic field is (c};, ¢
are usual creation-annikilation operators)

' H= 3 Ameencles, ")

<n,m>
 the abelian lattice gauge field- Ai,..bmgmbjecttothe constraint

I é4»=¢*
plaguette

whcre <I> is the mapetw flux per plnquette We suppose that the (real) lmpplng

amplitudes A in (1) are non-zero only for nearest neighbour sites: A; 1,7,

Aoy Az as, = Ay (1 and 1, are unit vectors along r and ydirections). Denotmg
,(ﬁ) = Aﬁ,_ﬂ., Ay(R) = A,.‘j“’, we rewrite (1) as follows:

H=x3 ®cc : +0, 7 e“"ﬁ)élfc“;i +he< @
The wawe functions of the particle in magnetic field form a representation
ofthe‘mofmagmﬁcmlaﬁm[zj let generators of the translations be
Ty{A) = A543 | 7 >< i + ji |
(hmﬂ==h1. or #£1,). They form the algebra
Tp =T, TaTa =q""*Taa,
T,T. = ¢T.T,, T,T_. = q"’T...T, _ 3




P
~ where we have denoted T, = T;,, T, =T;, and

g= exp(éill)) o 4

Below we assume that P'
’ ® = 27— . 5
o : v (5)

where P and Q are coprime integers, so ¢ is a primitive root of £1 of degree
Q. This algebra is also kihown as the finite Heisenberg-chl group. The
bamiltonian (2) therefore is

H=)(T, + T_,) + A,(T, +T.,) ©(8)

As it was shown iu [1}, the Uy(sl;)-symmetry becomes the most transparent
in the lattice chiral gauge (this gauge was also considered in [12]):

A= =one ), Ay=3inatny+1). (0

The Schrédinger equation corresponding to the hamiltonian (2) in the first-
quantized picture then looks as follows: ‘ :

Aze‘ii"("ﬂ-"v)@(nz +1,n)+ /\,e d (ﬂ"m’-uw(nz - L)+

+A, e~ Tt (n, g ~ 1) + Ay T trt UG (n, 0, + 1) = E¥(n,,n,)

. : . ) (8)
Due to periodicity of the coefficients one can find solutions in the form of the
Bloch waves

¥(ng,n,) = eP+mtP-"-y (p,,p-) (9)
where :
n:t"nz:h“y; Pt = (Pzi'Py
are light-cone coordinates and momenta. The equation (8) is then reduced to
the following one-dimensional discrete equation for x, = xa(p+,p-), (7 = n4):
ePe (N e T T A e T )yt

, _ (10)
e (Ao ) e inti )y < By,
Xn+2Q = Xny n=0,1,.,2Q~1.
This is a gauge equivalent form of the famous Harper’s equacion [8].
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2 Representations of U,(sl;) at Roots of Unity

The algebra Uy(sl;) { a g-deformation of the universal enveloping of the .l; al-
gebra) is generated by the elements 4, B, C, D, with the commutation relations
(13] [14],[15],[16],{17]

AB = gBA, BD =qDB,
DC = qCD, CA= gAC,
A% - D?
AD=1,[B,C]= .
(B¢} = g-q!
‘We assume that the deformation parameter ¢ is a root of %1 of degree Q. In
the classical limit g — 1, Uy(sl,) turns to U(sl,) (universal enveloping of the
sly algebra): (A—D)/{(qg—¢" )= 85, B = 8., C— 5_.
The central element of this algebra for general ¢ is a g—analog of the
Casimir operator:

(11)

q"%}i - q’iD :
c=|*~————1] + BC. (12)
o\ -9
When ¢ is a primitive root of unity of degree €} more central elements appear.
I @ is odd these operators are
r=C9 y=B% t=A4A% : - (13)

They are connected with fhe g~Casimir element (12) by the algebraic equation
of degree ,

Q-1

Hc-cd™@)=ay+(g=-¢ ) +17~2)
m=0
‘where y 2y 2
(m+1}/2 —(m—-1)/2
m) 19 -9 _ +1
dmig = (T ZETRY o,

and the last notation means the "g-deformed number” (m + 1)/2.

The representation theory for Uy (sly) at roots of 1 was developed in 14).
[18]. Here we describe in some detail only the representations which are rele-
vant in the Hofstadter model. .

First. there is a "regular” series of finite dimensional irreducible represcis
tations characterized by an integer or half-integer number j ("spin™), j = Q,
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1/2, 1, .., (@ - 1)/2. They can be expressed in the weight basis where A
andDaredxagonalmatnees. A= diag(¢,...,¢77). The values of the central
elements (12), (13)mspxn—_1 representation are: z::yxo t= 41,

+1/2 _ ~j=1/2 . ,
e e Y 19

These representations can be realized [14] by difference operators acting in
the linear space of polynomials F(z) of degree 2]

AF(z) = qF(¢z), DF(z)=¢F(g"'2),
BF(z) = (g~ q") ™ (¢F(¢7'2) ~ 4% F(g2).
CF(z) = —z"Y g — ¢ (Flg™'2) - F(g2)) - (15)

Then Fy(z) = 1 is the lowest weight vectar whereas F;(z) = z% is the highest
weight vector, i.e. CFo{z) =0, BFy;(z) =0.

The realization (15) is a smoot;h g-deformation of the wsell—knowu repre-
sentation of the sl; algebra by first order differential operators:

d . d
Ss-—~3£—]y S+-—Z(2}-Zd )y S-= o (16)

There are no irreducible representa.twns of the a.llebra. with dimensions greater
than Q. .

At the "critical” dimension Q, in addition to the "regular” representation
with spin (Q — 1)/2, there exists a continuous J-parametric family of irre-
" ducible representations having in general neighter highest nor lowest weight
(18]. They are called cyclic (or unrestricted) representations. The continuous
parameters are values of the extra central elements (13). In general, the cyclic
" representations can not be realized in meromorphic functions on the complex
plane (at least, such realization is not known). An explicit realization of the
cyclic representations by shift operators on a finite ring-like lattice with @ sites
was obtained by Sklyanin [14] as early as in 1983.

Recall that ¢ = exp(imP/Q). Below we restrict ourseives to the case of
even P and odd (J. In other cases some details of the arguments should be
modified. Denote ‘

w= q‘-— ¢t =2 sin(rP/Q) ‘ an



5
for brevity. The Sklyanin’s realization is the following:

A= —ie‘éql/'2T+, D =ie g 12T,
C = w—le—hq-n(eiHMT+ _ 8“6~MT.),
B = w"'t’i“’_q"(e“-MqT.; - e—£6+Mq-1T_). (18)

where 6, v and M are continuous parameters. We will choose
M=-in/2+ M

where M’ as well as & , v are real. The shift operators Ty act as follows:
Tsfa = fat1 (faneg = fn), the commutation relation with ¢* being Tiq¢" =
¢"*'Ty. Let us denote these representations R, s . As a vector space, R, s u
is Q-dimensional: dimR, sy = @ for any v, 6, M’ It is easy to find values of
the central elements for (18):

e=w(eM — oM
r = 2w Qexp(—irQ[2 — iQy) cosh(Q(M' + i6)),
y = —2w™ 9 exp(—inQ/2 + iQv) cosh(Q(M' ~ i6)),
t= -9t : (19)
In the case of general position r. y are non-zero and t is not equal to £1. -
Such representations are called eyclic becanse they have no highest and lowest
weight vectors. When £ = y = 0 and ? is not equal to *1 one obtaines
the one-parametric series of "nilpotent” representations with both highest and
lowest weights. (It can be seen frem (19) that they are not realized in' the
Hofstadter madel). When » = y = G and t = 1 (M =0, § = Z) one
gets the representation of the “regular™ series (15) which can be realized in
polynomials. :

The realization (18) is not unique. There is another useful realization on -
a finite Q-periodic lattice:

.4 = q—nﬂn' D - qﬂ—u.
C = u,—lqn(qn—l/z’—u + (qn _ q—n) - q—-n+l/'-‘+ﬂ)T__
B = -—--»"'q"'(q"“‘"”"‘ - (f}" - q-a) - q~n-—l/2+ﬂ)T+ (20)

where a. g, @ are parameters. This realization is a "svimetrized” (with re-
spect to the action of B and C) version of the more familiar one [18]. We
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- denote the representation (20) as R, , ,. The central elements are:
=wg" ~-q7"),

= —w (=129 - g7 — (1) — gY).

y=w =12 (g~ ¢ + ()¢ — 779, ,

t= un_ . (21)
The exprasions like ¢#9 are to be understood as exp(inpP). _

Equivalent representations have identical values of &, y, t and c. Se, to

identify R. s and fi'a.“,, one should compare the values (19} with (21) and
find how the new parameters are expressed through old ones.

3 Some Exact Results in the Anysotropic

Case

Let us recall the representation of the quantum algebra C:q(sl ) in terws of
magnetic translations [1]:

iwC = A7V2T, 4+ AVAT,

~iwB = A"V, 4 N2T,

. (22)
A2 = ~-qI_, T,
A? = -¢"'T_.T,
where . :
A=Ay /A (23)

is the anysotropy parametet. The g-Casimir operator (12) for (22) is equal to

AVZ 212 2
c= (————‘—‘i—-') .
79-q"
This representation allows one to realize U (sl;) in the space of states of the
medel. In particular, the hamiltonian (6) is expressed through U,(sl;) gener-

ators: :
= iy /A A, (C ~ B). (24)
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Substituting (18) into this hamzltmmn we ge!: the Harper's equatmn {10)
in the chiral gauge with

p+ =6, p.=-v, A=ezp(-2M'). (25)

One concludes that centinuous parameters of the cyclic representations “are
identified in this way with two components of the Bloch momentum of the
particle and the lattice anysotropy parameter.

Let us start with the isotropic case: M' =0, A\, = A, =1. It is possible to
show that due to the gauge invariance the spectrum of (10) with A, =, =1
depends on only one parameter A = A(p,.,p..) that for P even and Q odd.
looks as follows [1]:

A = cos(Q@p..) cos(Qp-). (25)
The value A = 0 is known to correspond to the mid band spectrum of the
hamiltenian (6) with A, = A, = 1. In other words, solving (10) for A =0, one
gets Q solutions y,, which accordmg to (9) yield e:genstates of (6) for the mid
points of the bands. :

From the point of view of the representation theory the value A =0 (é =
ps = m/2, p_ is arbitrary) means that one deals with a representation of
the "regular series” (15) (with j = (Q — 1)/2). To see this, it is sufficient
to substitute (25) into (19) at A = 0. Using (15) one rewrites the specttal
problem for (24) in the form of the difference equation

(7 4 g)F(gD) - i 40 P ) = BFG) @)

wich, by constraction, must have polynomial selutions. The original equatit;n
(10) at p, = 7/2 becomes equivalent to (27) after the substitution

Xn = F(e™P-g").
As it is shown in {1}, the ansatz
Q-1 _ S
F(z)= [] (z - za). (28)
m=1 . )
gives a solution to (27} with the energy

Q-1

E=ilg-q ‘)};‘,z;. (29) -
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provided the roots of F(z) satisfy the system of algebraic Bethe equations
Z+q _ ) |
qzf + eF+1

qu‘:—-ff'- =1,.,Q~-1L (30

m= l,m#l qz""

To see this, one should divide both sides of (27) by F(z) and cancel the residucs
in the left hand side.

A simple generalization of the above argument allows one to obtain some
exact results in the anysotropic case as well. Let us recall another realization
of cyclic representations given by (20) and plug it into (24):

W(C = B) = g o(gH+VIn — VAR (g0 — %)) Tt
o | (31)
+go(qTHTIMR — 2 4 (g - 7))

Consider the spectral problem (16) with p, = 7/2, p_ = —x/2 and arbi-
trary anysotropy A = A,/A,. As we have seen, it is associated with the eyelic
representation Ry/z w/2,-(log )2 of Ug(sle) given by (18). Using formmulas (19)
and (21) for the central elements one finds tbxt the realization (20) with

) q = Ail/! qu - emf‘/’n.‘ aQ it'“Q/l (32)

gives an equivalent representation R, wo- 50, the spectra of (10) and (31) arc
‘identical.
Now we use the following trick. Consul’er the au_xlhary hamiltonian

= w(q"’B + ¢ 3C) = (~1)F/HAT - A1) (A + D). (33)

: It turns out that the difference spectral problem for (31) at ¢***' = ~1 co-
incides with the spectral problem for (33) taken in the 1 representation of the
"regular series” with spin j = (Q — 1)/2. At the same time. one of the values
q* = +iq~"/? is always contained among the solutions of (32). This means
that the spectral problem for (33) in the difference realization

q'/;(—z;}- e+ k)F(g2) + g g s = gz MF (g 5) = EFLz) (34) -

(here & = X~V/2 — A/2) Jeads, similarly to the rase considered above, to the
functional Bethe ansatz solution in the anysotropis case. (Note that if X =
1 the spectral problem (33) gives the same riesult as in the isotropic case

though the hamiltonian is slightly different. The explanation is very simple:

.

N



A

9

the coefficients in front of B and C can be "gauged away” by rescaling the
functional variable 2 that does not change the spectrum).

After a suitable rescaling of the variable z in the functional realization of
(%)mgetthefoﬂowmgremltmtheamysotmmccase Thespectnmum
by

Q_
= (cm - 9'”’)(»\ - a\y)+d=(q 4 Y % . (35) .
i=1
where z;s satisfy the system of Bethe equatwns:
(2 = 122 ) (2 + zq‘ﬂ) VL gn -z A (3%}

(@2 +iA)(@ P20 =) e %~ 9a

This result coincides with the equations obtained for the anysotropic case in

- [19] by means of a completely different method.

We have explained how the symmetry algebra Uy(sly) acts in.the space of
states of the Hofstadter model. For the model with anysotropy A the whole
space of states V), is a direct integral

-‘-’Ldmdx’—ﬂ-r-,w.fm N2 37

of cyclic representations (18) of the symmetry algebra over an elementary
"Brillouin zone” B. The hamiltonian is a simple linear combination (24) of
U,(8lz) generators. 1t’s action respects the decomposition {37), so the spectral
problem can be considered in each R, separately. Physically, this means
the reduction to Bloch waves (9). For some particular parameters the repre-
sentations R_,_, s can be realized in the entire functions on the complex
plane (these values of parameters in isotropic case correspond to the midband
spectrum) that allows one to apply the functional Bethe ansatz.

In conclusion, let us mention twe results thai have not been discussed
in this paper. First, the Hofstadter model on the triangular lattice can be
treated in the frame of a similar approach. In this case the expression for the
hamiltonian is quadratic in Ug(sl,) generators. Second, it is possible to obtaip
explicit expressions for zero mode wave functions in terms of ¢-hypergeometric
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series. For example, the midband spectrﬁm always (for odd @) contains a zero
mode, the corresponding wave function hemg expressed through continuous
q-Legendre po}vnommls
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