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1 Introduction

The main nonperturbative properties of the QCD vacuum - confinement and
CSB - influence hadron spectrum in a different way for higher (M > 2Gev)
and lower (M < 2Gev) part.

The former is shaped by confinement and mesons are mostly ¢§ connected
by a string. The lower part feels strongly CSB especially in the PS channel.
After a short discussion of the QCD vacuum in section 2 we devote next
4 sections to derivation of gg-string Hamiltonian from first principles and
compare resulting multiplets to experiment. The last sections are devoted to
chiral effects interconnected with confinement. A summary of results is given
in conclusion.

2 Nonperturbative properties of the QCD

The QCD vacuum is known to be eccupied by the nonperturbative configura-
. tiens, which lead to the scale anomaly and produce the nonperturbative shift
of the vacuum energy density € {1]

__ Blow) o~ 11
5~——16a'<F;,F:v>_-—3 32 <F> _ (1)

Note that asymptotic freedom which ensures the negative sign of f(a,),
makes the nonperturbative QCD vacuum advzmtageous as compared to the
empty (perturbative) one.

The nonperturbative QCD vacuum can be characterized by vacuum field
correlators
. < F(1)%(1,2)F(2)...F(n)®(n,1) > where ®(x,y) are parallel transporters

(z,3) = P ezpig " Au(z)dz, (2)
The dynamics of conﬁnem-ent enters through the area law of the Wilson loop
<W(e) >= ]—;‘ < trd(z,z) >= ezp(—0 Smin) 3)

where the string tension o is compu‘ted through the vacuum correlators [2]
o= 513 [ d*2g? < Fu(z)®(z,0)Fu(0)8(0,2) > +... (4)

and dots refer to higher order correlators.
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Another important characteristies of the nenperturbative vacuum is the
chiral condensate [3]

< §g >= —(250MeV)? (5)
and the topological susceptibility [4]
[d*z < Q(z)Q(0) >= (180MeV)* (6)

which suggests that the topological charge density is of the order of one unit
per 1fm*. We shall see that the latter quantity is connected to chiral con-
densate (5).

3 The ¢§j Green’s function

The Green’s function of the q§ system can be written using the Feynman-
Schwinger representation [5] as a double path integral over paths of a quark
Dz and antiquark DZ with the proper-time integrations ds d3

G(z2,yg) = [ds [ dsDzDze *K < W(C) > (7)

where we have omitted spin degrees of freedom having in mind to concentrate
on higher levels, where spin interactions are unimportant. We also neglected
the quark determinant (sea quark loops) in the large N, limit (quenched ap-
proximation).

Here kinetic energy terms are defined as

= % [ 20, K = ;11- Fama. (8)

All interaction between ¢ and § is contained in the Wilson loop in (7). To
understand better the origin of confinement - the area law (3) - one may apply
to W(C) the nonabelian Stokes theorem and use the cluster expansion, which
yields [2)

<W(C) >= ezp{—%j‘/da,,,(u)da',;(u’) < Fu(u, zo) Foa(uw'z0) > + (9)
+%; / do(1)do(2)do(3)da(4) € F(1,20) F(2,20)F(3, z0) F(4, z0) » +...}
where F,(u,z) = D(z0,u)F,. (u)®(u,z) and zg is an orbitrary point, on

which the whole sum (9) is independent. It is convenient to choose it in the
plane of the contour C. It was shown in [2] that each term of the cluster
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expansion in (9) provides the area law (4) when the area S is much larger
than the correlation length 7, of field correlators < FF >,< FFFF > etc.
Recently the lowest order correlator < F'F > was measured on the lattice [6].
It consists of two independent Lorentz structure functions D and D,,

9 < Fuu(2,0)Fpx(0,0) >= (6605 — 6uabup)P(2) + (10)
1
+§[8,,z,6.,; — 8,26y + v —~ pAlDi(2),
which both decrease exponentially [6)
Dy(z) ~ %D(z) ~ const ezp(~[z|/T,;), T, ~0.2fm (11)

Therefore one may use the area law (3) to calculate spectrum of gg, when the
size of the g¢ system R is much larger than T,

R>T, (12)

Condition (12) is fulfilled for most existing hadronic systems, except for the
ground state of bottomonium, where one must exploit for < W(C) > the
more detailed form (9). On the other hand, the condition (12) puts some
limits on the gg system considered as a string, as we shall see below.

4 The g¢¢ -string Hamiltonian

Our aim now is to calculate the spectrum of the g system [7], described by
(7). To this end we rewrite identically the kinetic terms (8)

_ rdr m? m} .
K = hadll Pkt S 14 32 + 2 1+ 5
K+ &= [ Flos+mn0+3m)+ 2+ im0+ 5 03
introducing an important new quantity — to be the dynamical ¢ and § masses: -
dzi(}), _ dz(N)

‘ (14)

ta

mr)=—p=5 plr)=——, ==

We choose z4 = %, = T as an integration variable in (13), and neglect the
backtracking in time i.e. take u,{r) > 0. Justification for it may be found
on dynamical grounde - when coming back and forth in time. the quark is
dragging with itself the heavy string; the action sharply increases due to that,
so such motion is dynamically suppressed.
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An effective action for our system can be read off from Eq.(7) and (3).

A=K+ K +0Snin - (15)

where S, — the minimal area inside the contour made of g and § trajectories
z(A) and Z(A) — can be constructed by connecting z(A)} and Z(A) by straight

lines: .
Smin = Vrbzwlz - (w.wl)Z y Wy = zua + ip(l - 16)’ (16)
fw, ,  Ow,

. 78 -
w,,=? s wﬂ—gﬂ—=r,‘=z“-—z”.

The square-root form of Sy, can be eliminated in the standard way [7]
introducing the auxiliary functions (7, 3) and n(r,3). After integrating out
the latter and the center-of-mass coordinate R,, one is left with the following
effective action (we consider equal mass case, m; = m; = m and consequently,

By = pz = p)[7].

p(r) =2

m? .
A= [f«ff{mw(rhé[Tr + ()

+ [ 4p(8 - Sy, ﬁ)(—”—’r‘;—y vat? [ By [oag)

The function v intreduced as an auxiliary function, actually has important
physical meaning - it describes the energy deusity of the string. We note first
of all that »(r,3) and u(r) have no canonical momenta and should be found
from the minimum of the effective action (17).

Below we consider several limiting cases of (17) following discussion given
in (7). '

i) nonrelativistic case, m » /0. One finds 4y ~ m > v, in the leading
order pu(r) =m, v=o|f,

4= [Tdrim, + 757 + o] (18)

i )relativistic case, L = 0. The term (¥ x 7)? disappears in (17) and mini-
mization of v, i yields the Hamiltonian

H = 2{/p? + m? + o] (1‘9)

This is exactly the Hamiltonian of the relativistic potential model, assumed
in many papers [8-10] and studied both numerically and and quasiclassically
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in [9,10]. The spectrum is given by a simple formula

M?(n,, L) = tro(nr + ) + A (20)
where A has been computed numerically and quasiclassically in [9,10]
A(n,, L) = 20(4 — 7 — 7)L + 2m? + 4m§znm-1‘1 +m3 (21)
. g

v =0.12 for n, large.

It is interesting that asymptotics at large n,,M? =~ 47on,, is twice that of
bosonic string for large L, M} = 2moL. On the other hand at large L the
asymptotics of (20),

M*L > 1)~ 8oL (22)
differs from that of bosonic string. ‘

Actually this happens because we have used in (22) the Hamiltonian (19)
in the region L > 1, where it is not applicable. To find out what regime takes
place at large L, one must consider

iii) the limit of pure string dynamics, L 3> 1, L > n,. In this case the
minimization in (17) yields v 3> p and [7]

1-46(7;1 + 1))4’5 + ..

ML) = 2roL(1 + (23)

The extremal value of v is the energy density of rotating string

_ PL
v— ()= v (24)

where the mass density of the string p;, and the velocity »(3) are given by

o= CEET Dy o) 2 ap 173y, (25)

Thus one can see that u(r) and v(7, ) refer to the energy density of quarks
and string respectively. At small L, we have < p >=< v > and v describes
the potential energy, v = ¢|f]; p is dynamical mass of quark. At large L we
have v >> p and most energy is carried by string () and not by quarks (u).
This yields correct mass relation (23).
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5 Structure of the ¢§ spectrum at M > 2GeV

One can write the general form of the spectrum, corresponding to the action
(17) in the form {20) where A is given by {21) at moderate L, L < 2 while at
large L, the value of A is frozen, effectively one canput 4 —7r —vy — 0,L — o0
in {21). This form of answer is also suggested by numerical quantization of
the ¢ system in [11].

Since A is thus limited for large L, the gross features of the high excited
spectrum are given by the first term on the r.h.s. of (20), suggesting degen-
eration of states with the same ¥ =n,. + L/2.

Taking A(n,, L) into account splits the masses within the multiplet with a
given value of V.

Qualitatively A grows with L for L not large; L > 2 and this agrees
with experiment. E.g. for the doublet N = 1 p(1450)(n, = 1,L = 0) and
p(1700)(n, = 0, L = 2) we find from (21), § = A(1,0) — A(0,2) = 0, 58GeV?
(we choose m; = 0.2GeV and ¢ = 0.17GeV? | for discussion of m, see last
section).

Experimentally §.., = A(1,0) - A(0,2) = 0.79GeV?2

Now for the triplet N = 2

p5(2350)(n. = 0,L = 4), p3(2250)(n, = 1, L = 2), p;(2150)(n, = 2, L = 0)

the theoretical difference § between ps and p3, or p3 and p; is again 0.58GeV?
(however it is actually smaller for the first pair because for L > 2 the value
of A start to saturate), while experimentally 853 = 8y; = 0.46GeV?. We list in
Table 1 the theoretically computed masses using egs. (20-21), and compare
these with experimental values. Qne can notice that agreement is good, except
for the lowest state — p and x mesons which should not be described by our
formulas (20-21).

We conclude this section by several remarks:

1) lowest states need corrections from spin-spin, spin-orbit interactions and
gluon exchanges, which are not taken into account in (20-21)

2) at large L, fixed n,, L > n,, the splitting A does not depend on L - this
is the string regime, (7] described by (23). E.g. from Table 1 one obtains that

already ps state with [ = 4 is close to the string regime but correction in (23)
is already large,

1.46 ——
AM? = 27:0(—5-)‘/5 -VL(L+1) =~ 0.4M? (L = 4) (26)

R
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3) at large n,, fixed L, one has relativistic potential regime, M? =
4ron,. It is remarkabie that the "radial trajectory” p(2.11), p(1.45), p(0.77)
has a slope 4wo different from lowest part of orbital Regge trajectory
 p(0.77), p3(1.69), ps(2.35) with the slope which is close to 80. This is in nice
agreement with theoretical prediction (20).

4) There are many states especially in the ] = 0 channel, which do not
fit into the spectrum of multiplets M? = 4wo(n, + L/2)+ A. Some of them
~hybrids- will be discussed in section 7. They fit into generalized multiplets
of the QCD string type. Others do not and they are probably not of the gg
structure - they might be gluebals or multiquark states. We obtain a fit of
mesons in Table 1 taking m, = 0.2GeV. In section 9 we justify this choice
showing that m, is actually not the current mass (as 7, in (39)) but the chiral
mass M (0) (71). ‘

Table 1
I\n. |0 , 1 2
0 . |0.767 147 2.07
2(0.77) p(1.45); 7(1300) | p(2.11); x(1.807)
1 1.328 1.90 2.34
.| a2(1.32) J2(2.34)
2 1.715 2.19 2.58
: p3(1.69), 72(1670)p(1700) | p2(2.25)
3 2.029 - 2.44
24(2.04)a3(2.05)
4 23 2.31
P5(2-35)
5 2.544 2.52

Masses of mesons computed from (20) (upper entry) vs experimental values
from Particle Data Booklet, June 1992 (lower entry). For L = 4.5 in the right
upper corner are listed values computed in the corrected string regime, Eq.
(23).

Parameters used in Eq.(20-21) are:m, = 0.2GeV,(80)™! = 0.85GeV 2, m}
was fitted to p(0.77).
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8 OPE: condensates from hadronic spectra

Consider as a first example the process e*e~ — everything, its crossection is
given by Imll,,(q%), where II,,, is .

L, (2) = 5 < OIT7(=)ii(0)l0 > @

and i denotes the sort of quark. One can write .
Q@) = (Qu@y — @6.)IT(QY), (28)
dsJmil
(@) = £ [ I, (29)
Introducing the standard hadronic ratio R;(s), one has
; 1

Consider now large N, N. — co. This is a realistic limit, since it provides a
linearity of Regge trajectories which is observed with a few percent accuracy.
Also, all hadronic masses are constant ip this limit, while decay widths are
0(1/N.) and are indeed smaller than masses (at large masses ['/M ~ 10%).
It is important that IT' contains only poles when N, — oo
cl

while
RBo)=Edse-M) " (32)

As symptotically at large s the qua.rk»ha.dmn duality tells us that the averaged
R;(s) is constant

[ Ri(s)ds =€lN.As= ¥ & = wAn (33)
n<ls
Hence the quark-hadron duality (QHD) means that [9,12] .
. d 2
Cop = €] M (34)

Let us check it now with M2 and ¢, for our Hammoniam (19). The & have
been computed quasiclassically in [9]:

ForL = 0,¢_ = cefg-mz, m? = 4ro (35)

.
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ForL = 2,&_ = N, e‘ 3™ (36)
Since M¥(n,,L = 0) = M*(n, — 1,L = 2), both states asymptotically
degenerate and one has

¢ = N.é (gmz + gmz) = N.e*m?, (37)
while from (20) for large n = n. one has
dM? _
—a—;‘ = = 470 - (38)

Hence the QHD (34) is asymptotically satisfied, as was recognized in [9].

Let us now make a step forward: we can expand (31) at large Q? in powers
of 1/Q? using for the Lh.s. the operator product expansion (OPE) (this idea
without reference to large N, and in a bit different setting has been first used
in [12].). Using OPE from [1] one gets

Q<
‘ 39
I,(Q%) = {M2+Q2+M2+Q2+,§2M7+Q2} (39)
elN. 2 24n%m? 8w, < §q >
7r2{(1+——)1n~—+ m9+ b +
7 a, o 8 2
+§a7<GG"> o —< pg,5>+ < jaip>]
We have separated out the first two poles to approximate ¢! = c., for
n > 2. The sum is then
> 1 1 Q+A+nm? '
ngoh 7108 = -;—n~2‘I’(—-———-—5~——————) + divergent const. (40)
. where ¥(z) = x;(:) and has an asymptotic expansion
1 > B
U(z) o =Inz ~ 5 E YT (41)

with B, Bernulli numbers, B, = 1
Using {41) in (39) one obtains equations, of which we quote only those
resulting from terms InQ?,1/Q* and 1/Q*

el = Neelm(1+2) (42)
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A+2m* 1

@+e=co(—=—-3) (43)

oM} + M} = ~ela,m < G°G* > +%[(A +2m?)(A + M?) + Bym?] (44)
One deduce from (39) and (42-44) that

1) logarithmic term in OPE is naturally emerging from the sum of high

excited states, also with correct coefficient if (42) is satisfied (this is QHD).
2) In the limit m, — 0 (7, -current mass) the OPE has no 1/Q? term, while
the sum (31) generally contains it. However, if A = im?, then \D(Qﬁ"#)
contains no terms of 1/Q” in agreement with OPE. This case we shall call
"ideal spectrum”.
3) Assuming the states with » = 0,1 nonasymptotic as in (39}, one gets from
(44) that the lowest value of gluonic condensate is 2 < G*G*® >= 0.1GeV*i.e.
around 8 times the standard value of [1]. One should have in mind that the
iimit N, — oo cuts off the quark loops and hence changes gluonic condensate,
which can be several times larger than the standard value.

The same type of estimates have been obtained in [12] both from heavy
quarkonia and light quark channels.

4} Expansion (41) is at best asymtotic, since By grows as k! at large k. Hence
the OPE is at best asymptoiic expansion with factorially growing coefficients
of (1/Q*)".

5) In the leading order of N, — oo the relation (39) is exact. It allows to
relate the spectrum in each channel JFC to the microscopic characteristics
of the vacuum — condensates. Condensates are the same in each channel;
therefore one has very rigid conditions on masses and coefficients <, in each
channel. [t may lead to an apparent paradox. E.g. in the 17t shannel the
OPE for m, = 0 looks the same as in the 17~ channel (up to terms 1/Q*).
However the spectrum at least for M < 2GeV looks very different. What is
the resolution of this paradox is not yet clear.

7 Hybrids

To define hybrids one has to separate quantum gluon field a, from the non-
perturbative background B,

Ay = By +a,, (45)
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with the background gauge condition D,(B)a, = 0. Then the hybrid state
w.f. can be formed as

¥(z, ,u) = ¥(Z)B(Z, uw)Ta,(uv)D{u, z)¥(z) (46)

Thus hybrid is obtaind as a product of the quark bilinear ¥I'¥ with quantnm
numbers 07+(F =1),177(T = 4,),0"*(T = 75) and gluon w.f. with J*C =
1=~. As a result one gets for the hybrid

JPC(Ta,) = 17" (Ta, = a,),07"(Ta, = &),1*(Ta, = 152,)

17*(Ta, = 0,a,), 27" (Te, = 7480 + 126,)

Those are the lowest states not containing orbital gluon excitations. In-
troducing into T' the operator D,(B) one gets all possible giuon excitations
with additional quantum numbers e.g. 1" *(T'a, = y,D.a,). Lowest states
1+=,0%F, 17,27+ are degenerate modulo spin-spin interactions of quarks and
gluons.

The hybrid Green’s function can be written in the same way as for qq
system (cf(7))

G(1,2) = / _ji[(ds,—Dz,-e-K") < W(C)@M(u,ﬂ) > (47)

where W{C) is the product of quark parallel tra.nsporters &, while .4 arises
from the gluon propagator.

In the large IV; limit the gluon line ®,5 becomes a ¢g line, and we have
< W(C)@adj SN o< ‘V(C;) >< W(Cz) > (43)

Thus the gluon line becomes a border of two surfaces Sy, S; and lies entirely
inside the film covering the total contour C. This means that gluon in the
hybrid describes (at least at N; — co) vibration of the surface and in this way
vibrational degrees of freedom of the string appear, which have been absent
in the ground state (where the minimal surface euters). We sha.ll come back
to this point in the next section.

It is easy to obtain from (47) the Hamiltonian in the same way as it was
done for the g system. For small orbital momenta one gets

H =g +mi+ B +mi+|ps|+offs — fa| + +offa — F3| —Co  (49)

Calculation witout one-gluon exchange (OGE) and o = 0.17GeV? yields low.
est mass

M=25GeV —Co=0 (50;
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and including OGE and Cp = 0.4 =+ 1.2GeV [5] one gets

M =13-15GeV (51)

This agrees qualitatively with other calculations [13]. Orbital gluon excita-
tions cost AM =~ 1GeV for L = 1.

8 QCD string, bosonic string and Veneziano spectrum.

The spectrum of the open bosonic string is [14]

o0
M? = 2ro][—ag+ 3 kNy) (52)
k=1
where k denotes the mode and N; - excitation number. Theory is consistent
when ap = 1,d = 26.

The lowest mode is k = 1, which is rotation of a rigid stick with L = 1. Next
is k = 2 which may be rotation with L = 2 and vibration—center of the string
moves with respect to ends. The lowest vibration mode has MZ = 4wo = m?.
The open bosonic string has no longitudinal (radial) excitations.

An important characteristics of the spectrum is the multiplicity of the state
with given N, which is equal to ezp(av/N), N — 00,a = % [14]. This expo-
nential growth is needed to get the Veneziano formula for the amplitude. In
other words the property of duality of amplitudes A(s, t, «) which is contained
in the Veneziano formula, needs the exponential growth of multiplicity.

It is clear that the spectrum (20) cannot epsure this exponential growth —
the number of states with given n,, L grows only like a power, because number
of degrees of freedom is fixed. We shall see now that the problem is solved by
bybrids.

One can recognize in the hybrid Hamiltonian (49) two pieces of string con-
nected at the giuon pesition. If one does the same type of treatment as for the
g state leading in that case to (17) and considers a generic string excitation
with spectrum (23) for each peace of string, one has for the asymptotic hybrid
spectrum

MYy = 2mo(lhj+ ). D=L+ I (53)
In case of pure vibration [; + I = 0, ] = |l3] = v and one has
M(v) = 4mov, »=0,1,2... (54)

where ¢ refars to the vibration mode.
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For a multihybrid with n gluons sitting on the ¢ string dividing it into
n + 1 cuts, the vibration obtains when internal cuts have angular momentnm
2] while first and last have [. The total mass again in the regime when v; > u;
(string regime [7]) is

M?*(n,l) = 4wonl (55)
Thus every quantum of vibration yields 470" = m? to the squared mass, while
every quantum of rotation is 27o.

The hybrids contribute all necessary vibration modes and con'espond to
the spectrum (52). Moreover, the multiplicity is now growing exponentiaily,
since the number of degrees of freedom contains an infinite number of gluons
on the string.

The hybrids enter the same QCD string multiplets, which we can now write
as

L
M?3*(n,, Lv) = 4wo(n, + 5+ i+ A (56)
where v > number of gluons in the multihybrid. ’

Forv=1, M;=,/(146)2+ A ~1.5GeV
For v =2, M;=,/(2.06)?+ A = 2.2GeV

Conclusions on high spectrum:
Spectrum consists of QCD-string multiplets (56), containing radial, orbital
and vibrational exitation. This spectrum contains that of the bosonic string
plus radial excitations specific for QCD,. o

However, there is a limitation — the finite correlation length T, (see eg. (11))
makes a natural cut-off at small distances — there is no string at distancas .
Az < T,. Therefore effective number of gluons is less than length of the
string divided by T,. Hence the effective number of degrees of freedom is
finite and the string theory is nonlocal. This fact may cure difficulties with
string quantization for the real QCD string for d = 4.

9 Lowest states — chiral effects.

In the formation of lowest states the broken chiral symmetry plays an impeor-
tant role. In this Section we discuss chiral quark mass and chiral symmetry
breaking (CSB) in connection with confinement.

Several statements known in literature are in arder.

1} CSB is dne to quasizero modes of quarks in the vacuum gluonic field
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[15]. H m,,, A, are to be found from

iD(Au,(z) = Aptn(z) (57)

then the quark condensate is connected to the density /(A) of quasizero modes
[15]

<% 5=, [T 0 (58)

TS AT m32

2) zero modes ug(z) are provided by instantons [16]. Therefore instantons
may be responsible for CSB [17]. This is the simplest possibility. Another is
vacuum with magnetic monopoles which also provide zero models [18]. The
guark zero mode an (anti) instanton is normalizable [16].

W = Sy EpE (e b= e )

where p is the size of instanton; a, m-color and spin indices.

3) To provide »(0) 7 9 and consequently CSB it is necessary for instantons
and antiinstantors in the vacuum to overlap their zero modes [19]. This
mechanism was realized in [19] neglecting gauge invariance and confinement
properties. Here I wil quote results [20] taking these properties into account.

Consider instantons in the confining background

N
A“:: 4”+2:A:‘, N=N,+N_ (60)
=1
where B, ensures confinement (i.e. corrclators F,,(B) in (4) yield nonzero
string tension), while A, is the field of i-th (anti) instanton (instantons do not
confine). Now let ight quark move in the field (60) where instantons are at
z = R;,i =1,...N. The scattering amplitude of a quark on center i (instanton
or antiinstanton) is given by ) '

_ (- R)ui(y~R)
iy

where uy is given in (59), #hy- the current quark mass. The total quark Grecen's
function is given by the multiple scattering theory as {19}

S(z.9) = Sule,) + Tz
. W -1

5

(61)

— )i;w’* (m) (62)
1, .

u; = ugl{x ~ R,)
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where T;; is the overlap integral of zero modes

T = [ uf(2)iD(B)u;(2)d*z (63)

Eq.(62) shows that multiple scattering can provide effective quark mass -
chiral mass. In solids this effective mass is naturally produced by subsequent
collisions. For CSB this is not enough - the quark should return to a given
center any number of times. Only in this case cccurs a gap equation yielding
the chiral mass (similar conclusions are drawn in [19] without confining field
B,). In case of one flavour, Ny = 1, the effective action for the quark can be
written in the gauge-invariant way [20]

Zgcp = const/;‘D“(B)D‘IID‘Il*ea:p/ dxdy‘l’*(z)[ib&(a:,y) +iM(z,y)]¥(y)
(64)
where the nonlocal mass operator is

M(z,y) = / dRiDu(z - R)®(z, B,y)ul(y - R)iD+  (65)

21\/V

and &(z, R,y) = ®(z, R)®(R, y) is product of parallel iransporters (3).
Parameter ¢ is to be defined from the ’ gap equation”, which is gauge
invariant and contains confinement.

N M,
AN Tr(———"7"— MM,
2 ~D?+ M. M_
When no confinement is taken inte account, B, = 0, one can introduce
M(p) instead of M(z,y) and (66) becomes [19]
[ d'p  M¥p) 4VN,
L (2m)ip+ M¥p) N

) 66)

=1 (67)
with N
M(p)= WP‘%‘(P) (68)

and @(p) — Fourier transform of the spacial part of uy(z) (59). One can find
¥ = R™* from gluonic condensate 1]

p 1 N <GG,> -
R= 3 Vzw—-:lfm 4, and M(p = 0) = 345MeV (69)

M(p) is fast decreasing for large p; < ¥¥ >= —(255MeV)® [19].
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How confinement modifies this picture? First, the density of instantons
d(p) is suppressed at large p due to the freezing of the coupling constant
a,(p) at large distances in the confining background [21]. Rough estimates
vield the average instanton size p = 0.2fm [22].
Second, the density of instantons N/V decreases since now only a part of
gluonic condensate is due to instantons.
Keeping < ¥¥ > at experimentel value, —(250 MeV)?, one gets roughly
22] -
R=12fm , p=022fm and M(0) = 0.2GeV. (70)

It is interesting that for such small instantons there appears a situation with
two scales [23]

chiral scale R,;, = p =~ 0.2fm and confinement scale R > 07 /* ~ 0.5fm —
1fm.

In the mit R, > K., oune obtains that the mass operator becomes local,
and the role of the chiral mass is played by M(0), where M(p) is given in
(68}. Thus, confinement and chiral effects are separated:

1) chiral mass is created at small distances, z ~ p ~ 0.2fm due to quark
returns to instantons while passing the vacuum.

2) at large distances, = > T;, ¢ and § form a string, which is described by the
Hamiltenian (19) (for L £ n,) or eflective action (17), where now the role
of mass in m is played by M{0) = 0.2GeV. The situation with chiral mass
is the same for more flavours. E.g. for two flavours one makes bosonization
{introduces auxiliary scalar and pseudoscalar fiels o,7,0;, 7; to disentangle 4
fermion vertices [19]). Integrating out quark and boson fields one gets the
gauge invariant effective Lagrangian for pions in the background field B,

W(r) = ~Trln(iD(B) + iMV;) ' (71)

where Vi = ezpimTivs, and M is given in (66). Iun the limit B, — 0 one
obtains the action studied in [19].

10 Conclusions

Nonperturbative QCD naturally explains confinement and CSB, and through
this, the structure of the meson spectrum both in high and low mass region.
It is remarkable that QCD forms multiplets, called the QCD- srting multiplets
which contain those of bosonic string plus radial excitations - those of QCD;.
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To make this contact with bosonic string one needs string vibrations — and
remarkably its QCD counterpart are hybrids.

Their appears a remarkable conspiracy in structure of spectrum which
yields through OPE microscopic characteristics of the QCD vacuum - glu-
onic and quark condensates. :

Finally, CSB and confinement work together to provide twa distinct scales,
and the chiral mass of quarks appears naturally, which enters into Hamiltonian
(19). Thus chiral mass is created "before the string appears between quarks”.

The anthor is grateful to A.M.Badalian, H.G.Dosh, A.Yu.Dubia
B.V.Geshkenbein and A.B.Kaidalov for usefull discussions. The financial sup-
port of the Alexander von Humboldt Stiftung and Organizing Committee of
Hadron-93 which made this talk possible is gratefully acknowledged.
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