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.Different approaches -for lnvesthatlons of
spin correlation functions
At the beginning of the 60-th an understanding had been arisen

that the language of correlation functions in statistical physics
could serve as the base for consideration of all processes in the
condensed state physics. For example, in conventional paramagnetic
resonance, an observable (i.e. the mmgnetization) is usually pro-
portional to the correlator of total spin

N
-4 = = [+ 4
6t = T I DIE (1)

a=xy,z <LogE Tr(.../Tr1,
where N is of order of total number of nuclei in a sampie. In B~NMR
and uSR the observable B-radiation asymmeiry is proportional -to the
single-spin correlation function of the impuritive S-active nucleus
{B-nucleus) or the muon: p

CHty = <a1f(t) 1%y, : (2)
This function is averaged over the pogition of radioactive probe in
" a _crystal. Experiments on magnetic neutron scattering give an
information about Fourier transform of another correlator

6% = Trep1it)1h). (3)
Here p is the density matrix. All these correlation functions are
single-particle because of two-particle type of the interaction of
the probe radiation with the matter.

More complicated correlation functions are 1nvolved in obser-
vables indirectly via equations of motion. It mekes difficult their:

experimental 1hvest1gation. For example, polarization transfer over
impuritive nuclei is described by the following equations [1]

Pyo® ~ L le‘p‘°~ v‘JpJD) . p‘o(t=0) = 8‘0 . (4)
Here p  (t) = Tr(1¥1Z(t1)/Tr(1%)? is the polarization of impuritive
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nucleus "i", if the nucleus "0" was initially polarized; v,  is the
polarization transfer probability between the nuclei, placed at i
and J lattice sites, respectively (summation in Eq.4 i5 assumed
over sites occupled by impurities only}. It is fmportant, that v

ij
is proportional to the cross-relaxation form-function
- o gt - . .
(A, ) = rexpld, t)- (L, (5)
848 = m 107 "By

g0 = <Ij(tax;<t3131;>0/<1:1313z;>0 )

The Heizenberg evolution of the spin operators is determined, as
usual, by the secular part of the dipole-dipoie interaction. Let us
consider, how much we can obtain from measurements of f-nuclei
polatizatlon pqo(t) in B-NMR experiments (1] about the dependencies
of g, (Ai ) vs space separation rlj'between_thg nuclei and detuning
Asg’ ﬁi— ﬁ , where Q: is the Larmor frequency of the nucleus at "i®
site. If all dimpuritive nuclel would occcupied an ordered
sublattice, the polarization of B-nuclei ensemble decreases
axponentially, while Pgolt) = 1/e :

poo(t) % exp(-?’vjot) . _ (5

In this cagse the decay of pooit) is determined only by one number
Evjo. Therefore, it is difficult to study the dependence g:J vs
J

rij.'However, if impurities are randomly distributed over the lat-
tice sites with the small concentration c«l, the polarization of
B-active nuclear prohes, averaged over their positions in the crys-

tal, is

<Pog(t1?e = expl=M (1) - M (1)), (7
1-expl-(£ +1v. t1 1 (I +1)
) = po- L ro - .8 0 )
Hy(t) = oL [ T ]. &= T

One turns _out that Mltt)/Mu(t) < 0.01+0.1. when Ho(t) = 1 and
g:jtﬁl = g A0} [1,2]. In reality the ratic M (ti/M (t) depends on
externa! magratic field (see for details {21). Eq.7 is much more
complicated than Eq.5 and leads to the more informative comparison
with experimental data.

In NMR investigations the depolarization of impuritive nucleus
under the influence of alterpating field with the amplitude Wy
proczeds ag a ruie, exponentially
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Poit) = Iztt)} )0/<1010 o = exp(-ht), (8)

W= mdg e, gyle) = _£ 9L expliwt) -<I3 ()1 >0,<1 155

Comparison between Egs.7 and 8 allows to elucidate a profound
internal analogy and difference among these methods: in both cases
one obtains an information concerning transverse spin component
correlator basing on an observation of longitudinal relaxation. The
difference is that in Eq.8 stands one-spin correlator, while in
Eq.7 - the two-spin function. ’

The basic approximation for two-spin correlation functions is
gty g (th-g (1), where g (1) = <I:(tJI;>0/<I;l;>O,kwhich is
accurate for L when spins I1 and [  precess independently.
Deviations from this approximation are due to the correlations in
their motion, caused by local magnetic fields of environment acting
on impuritive spins. Investigation of the validity of this approxi-
mation is really possible in the discrdered nuclear spin system
made up from B-nucleus ELi and stable nuclei BLi, for :nstance, in
LiF single crystai.

The simulation of the local field evolution by the normal ran-
dom process was proposed by Anderson and Weiss for a qualitative
explanation of the effect of narrowlug by motion. In their model
free~-induction decay gi(t) = <expl¢f dt-w ('c)]>0 1s expressed as
g(tl = expi~f}dt-(t T)+AlT)], uwhere A(c) = <wy, (r)w 0{0)2g, AOY =
<w? oo~ M, Here w {T) is the operator of the local fleld on a nuc-
leus, placed at r. If a characteristic time 1.~ fo dt-AlT) of local

field fluctuations is changed from v, » 1/vE; (static local fields)

to 1.4 l/tﬁ‘ {rapid spin motion}, g(t) is varied from geussian
function gf(L) = expl(-M,t° 2/2) to the exponential function gL(t) =
exp(-Tt), F“Mzrc' which decreases more siow at large t. Two simp-
lest funclions are usually used for qualitative description of
intermediate cases: A(1) = Bzexpt—§15/1c) corresponds to the trans-
lational nopping of the impuritive nuclei, and AlT) =
M exp(~-T /21 ) simulates more smooth processes., like local field
fluctuatlonq ‘due to flip~-flop processes .of the host spins. For the
sake of explicit calculation of ihe integrals involved, one uses
AMT) = ch'z(T/rC).




4

Hecently. it was shown [3] that the approximation of local
field w, (t) on an impuritive spin by a normal random process
Anderson Weiss- Kubo (AHK) model {4,5]) with the natural propertxes
of the correlator <w (t)w 920 leads to a very good agreement with

() _Idt wt

the measured NMR form function - (t) up to gotw)

> 10 -5 '8,(0). This fact seems rather puzzling, because the modern
theory (B8], aimed on the description of such phenomena. has only
one small parameter - inverse coordination number 1/z, and does not
pretend on such a high precision. To avoid uncertainty, we would
like to note that the most surprising is the obtained gaussian-type
time structure of local field fluctuations, while their instant
distribution 1is gaussian within two orders of its variation from
the top.

Investigation of the functions g {w}) allow to verify the
efficiency of the AWK model within the same ideas for the descrip-
tion of local field fluctuations in a new and much more complicated
process then in (3].

Note, that B-NMR gives also a possibility to study the other
similar correlation functions

+ok -

(t) = <I (L)I (t)1° I o/ <L I I > (9}

by mgans of investigat1on of the form functlon of the resonance at
© = w *+ wg, Where w, and w; are Larmor frequencies of °Li and °Li,
respectively.

2.Cross-relaxation form functions

In this paper we present  the detailed formulation of the gene-
r.l relationships, dezcribing the correlation of local fields on
impuritive nuclei, and preliminary comparison with available expe-
rimental data.

Cross-relaxation form functions (FFCR) could be represented as
follows (21 - :

+m
- dt - . .
gor‘“o er = ) 2_ [ gor(t) cos[(ﬂb ﬂr)tl ¢0P(t) cos(Zavrt)], (10)

where Qr is the Larmor frequency of the impuritive spin, placed in

r, a. is .the coefficient of dipole~-dipole interaction between



impuritive nuclei (see Eq.14),
* - Z_+2 -t tpmptom,
9or(t) = Tr [T5I5c0s (20, (12-TDIIT 1] / TROIGITITT)

1 1

0 r I (I +1D)-m (m=+1) I (I +1)-m.(m.+1)
3 LT S ST o o8 (2ag tmg-at)
m0=10 mr=Ir 00 0 r-°r r :
and

.- - toa
Eop(t) = < ()mICt>g, A= %fr¢+r_) exp{—gg up(vrdT). an
In Eq.11 T, and T_ order the following operators, accogping to
their growing up and growing down in time, respectively. wr(t) is
the local field operator (its time evolution is determined by
internal interactions of the host spins with each other). The rela-
tionship for g;r(A), used in {2}, was obtained from Eg.10 neglec-
ting a2, in comparison with <w®>;. Within the AWK model local
fields are approximated by a normal random process and, thus, for

Eop(t) we obtain .
t
exp[—{d‘t(t-t)[Anolt)-ZAo‘r(rHA”(t)]] »

. t
exp [—2{aﬂt—nmootr)mor(m] (12)

gor(t)

Q

The last approximate equality holds if the difference in g-factors
of impuritive nuclei is small (g-factors qf 8.i and SLi are 0,8267
. and 0,8220, respectively). Here A .(t) = <u.(t)-@ (0)>; is the cor-
relator of the local fields created by the z-components of the host
spins at a given pair of impuritive nuclei. Here and below o (i.e.
r=0) and r indicate lattice sites of ®Li and ®Li, respectively, and
therefore they always belong to Li-sublattice. The spin Io of SLi
is 2 and BLi spin I.= 1. Subscripts x,y and z will enumerate posi-
tions of °F or "Li nuclei only. In the following calculation of
Aar(t). the effect of impuritive spins on the host spins is
ignored. - .

The operator of the local field at the position r of the impu-
ritive nucleus can be written in frequency units as follows:

“r :A=F. Lu'('M' o ) rx b
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sadh g BIEABZ gA_=1-‘k°52%-x (13)

' Wrp°Opys 147 ";EE" X ]7;:;77573. : :

The coordinate summation is carried out over all sites in fluorine

or lithium sublattice. "A" enumerates F and Li sublattices and at

the same time takes on the values F=1/2 or 'L=3/2, which are the

sans of SF and "Li (operators of their z-components are FZ and

drx is the usual coefficient of dipole~-dipole 1nteract1on of

the spin I and A (if x=r, we set dr -0) Dipole coefficient L in
Eq.10 is determined by the similar relationship

%.a - “’II 411

%or >had or or ° (14

Using the values of the g-factors of °Li .(%Li), '®F and "Li (g~
0.824, gp=5.257 and. g =2.171, respectively} and minimal distance
between Li and F in L1F (d=2.014), we obtain wyp= 2.05 kHz, wy =
0.85 kHz, wyr= 0.322 kHz, wpp= 13.1 kHz, W= 2.23 kHz. Substitu-

ting Eq.13 into the expression for Acr(tl. we obtain

v (A)
ALY = AR gy,
or A=F,L or

{n) ~(A} .o(A) =
o Agp (B = <wm (L) w, (0)>4 =

- ALA+D) IA CAA 1 ' :
B L B ok Gyt & (15)

Here we introduced the spin-diffusion propagator GAA(t) =
Az(t)ﬂz 0/ <(Az)2>0, which satisfies the following equatlons [2,31:

AA - - A ~AA AAry o ny =
aGh /6teff = z,an Grye  Cyy(t=0) = 3,
JQA AA + axy T vZx , X,¥.z € A-sublattice, (186)
~ where UQA is the polarization transfer probability between two A

spins .

JAA L ALARL) . ( ARSARVZ.p . -
Vg = e NG Ty = S

CA



A

~1

2

. . (8,8.)
F_ ~AA, 2 Fe LL . - _°A"n 1 - AA
af-z,(.g‘}"), oFF= bl . AR ——. w0 = I
Here Ten is the correlation time or the time of flip-flop process

between A spins and TZA ggcﬁtr)dt is their phase relaxation time.

In Eq.13 té?} = J(t Tgepl ™) %%A and stands for the smoothing of

the spin-diffusion propagator at small t = TZA‘ It was shown in [3]
that the choice of goplT)  as exp(-MZAtz), ch'zvﬂgxt or
(1+ %'MZA )—3(2, where M,, is one-spin second moment of the host

nuclei [11, has very small influence on NMR form function. For
gaussian g., (1)  Top= (2mMyp(H2®))71/2 = 7.1ps, Ty = 16ps, Tp=

[/ 2 FF FINR N =
(B FEDefe™/ /Mppthz®) ] = 175us and vy = S30ws for

[100]//1!0 orientation of the LiF crystal in external magnetic field

’RD.

Egs.15-16 allow to obtain the final representation fér
Aé?’(t), which was used in numerical calculations:

) 3
(A AlA+1) . Q:dk
Ay =
or 3 £1 (2m3

- A = gAe“"kxax . dhao = er'“"‘ e n -’
XE; Xeh .

tatA k)12 explike-#*A o0t (A1,

Here By is the Brilluen zone, Q = 2d% stands for the volume of ele-
mentnry cell of LiF crystal. The results of our calculations of
APty and alk’(t) for different mutuel arrangements of °Li and
°L1 spins are shown in Figs.1,2. We considered the cases when SLi
is located on the first coordination sphere (two non-equivalent
positions), on the second coordination sphere (again two non-
equivalent positions) and when °Li and °Li are separated by a very
large distance (in this case, obviously, no correlations in envx—

ronmental local fields axist, and Aoﬂidm(t) equals zero).

Obtained functions A{A’(t) were substituted into Eq.10 and,
afterwards, the = corresponding cross-relaxation form functions
gor(w) were calculated. Results are shown on Fig.3 for the same
mutual arrangements of °Li and °Li spins. For infinite separation

g0 r-l@ is a convolution of two NMR form-functions, which we have
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calculated in [3]. The points on this figure display the results of
the fit of three runs of B-NMR experiments, where depolarization of
8li due to polarization transfer over ®Li-SLi spin system was
measured {81. In that fit the dependence of g;r(w)_on r was ignored
and the value of this form function was considered as a fitting
parameter. We think that the discrepancy between these data and
“theoretical curves on the Fig.3 indicates first of all on an inade-
quate estimation of the accuracy of the measurement of SLi- concen-

tration in [3] (this concentration squared is a multiplier before
the FFCR).

A& 7 u.,

tﬁZ/Ter - . vv . tgg T@L

Figs.1,2. Correlators of local fields, induced by all surroun-
ding '9F ("L1) spins on the nuclear pair 8Li-SLi, as a function of
time. Ro//[1001. Line 1 corresponds to the interpair separatloh F=
d-(0,0,2); line 2 - F =4d-(1,1,0); line 3 - F = d-(2,0,0); line 4 -
r -w line S - F = d-(1,0,1). Dashed lines present our results of
analytical calculations of ALF'tt) and AlL'(t) taken from (31. The
points display the values of the correlation second moments or
values of Agp (2=0) = ;A Q) wéA (0)>5 known from independent
calculations [71. An agreement between these values and our calcu-

. lations of A, )(t) according Eq.16, gives the measure of accuracy
of our numerlcal procedure.
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Fig.3. Cross-relaxation form functions of ®Li and SLi spins in
L1F R //11001, the second moment of the NMR form-function is H
> /(Zulz = 14.1kHz2. Line 1 corresponds to xnterpalr separation .

r' d (0,0,2); line 2 -1 =4d-11,1,0); line 3 - = d-(2,0,0}; line
4 -1+ line5 -F =d-(1,0,1). E
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3.Conclusion

Three exactly solvable models in the many-body theory piayed
an outstanding role in the development of general ideas of the
physical kinetics.

First of all it is the model of interaction of a two-level
system with a field of radiation, described by the Hamiltonian

H=ugS, + T wapa, + IgasS ™+ hc A
Here g is the transition frequency, , is the frequency of photon
with the momentum K and g8, is the form-factor (coupling constant)
and S is quasi-spin. This model was originally -solved by
V.Weisskopf and E.Wigner in 1830 (see also {9]).
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Secondly, it is the models based on a stochastic Liuville
equation lsee for example a review 10!. They deseribe fluctuations
as the Poisson random process with the non-continues trajectories.

The last model is the Anderson-Weiss-Kubo model of phase
relaxation. It aliows treat local field fluctuations as a random
process with the smooth trajectcries. Therefore the experimenial
verification of non-trivial predictions of this outstanding model,
pointed out in this paper, could be rather interesting.

The authors thank Prof. B.A.Nikolskii for useful discussions.
This work was supporied by Russian Fund for Fundamental Researches
(grant 93-02-2170).
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