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BEAM: DYN.lMICS IN MODIFIED BETATRON: Preprint ITEP 8-99/ 

E.R.Maatafin, P.R.Zenkevich - M., 1999 - 24p. 

«Modified betatron» is an accelerator using betatron method of acceleration, 
whose magnetic system includes usually solenoidal longitudinal magnetic field, 
bending magnetic field (which, in principle, can have additional gradient) and 
quadrupole spiral windings. Theoretical analysis of transverse beam dynamics in this 
machine should be based on Teng's theory which pennits to consider transverse 
motion as projection of two uncoupled modes. It is shown that the direct use of the 
theory is impossible d~e to a presence of «break points»; it is suggested a method to 
avoid these problems, named «advanced Teng's algorithm» (ATA). The main 
physical effects in the modified betatron (matching, influence of field errors, 
collective effects and so on) are considered by use of «projecting functions» and other 
characteristics of the linear transverse motion. It is shortly described the 
corresponding numerical code and its application to the positron accumulator 
«LEPTA» which is now under construction in JINR. 

«MO.nu:qUII..{HpOBCl.HHJ)IB 6era'IpOH» npe,lJ;CTaBJUler co60B KOJlbu;eBOD 
YCKOpHTeJIb, Hcnom.3YIO~ii 6enrrpoJIJJDIH MeTO,l{ yCKOpeHHSI, MarHlfTIlIDI CHCTeMa 
KOTOporo BKIIlOQaer COJIeHoH.z:tHYIO 06MOTI<y, nOBopOTHoe MarHHTHOe none 
(B03MO)KHO, c ,l{OnOJlHHTeJIhHbIM rp3,lUlefITOM) H CllHp3JIbHOe KB(UtJlynOJIbHOe IIOJIe. 
AH3JIH3 noneperrnoro .n;BIDKeHIDI B TaKOH Mannme BhIlIOJIHeH Ha OCHOBe reopHH 
TeHTa, KOTOpWi n03BOJUleT paCCMaTpHBaTb ):{BIDKeHHe no KIDK,IJ;OH H3 nonepetIHbIX 
CTeneHeH cBo60~ KID< CyMMy npoeK.J.UIi;i KOJIe63.HHH ,l(Byx HeCBH3aHHbIX MO,ll. 

nOKa3aHO, TITO I1pDlOe I1pHMeHemt:e 3TOH TeopHH HeB03MO:>KHO H3-3a HaJIHtmJI 
«oco6bIX TOqeK», B KOTOphIX napaMeTJ>hI HOpMa.JILHbIX MO,lJ; TepIDIT p33phIB; 
npeMO)KeH Mem.n, 1l03BOmnolllHH H36eJICaTb 3THX 3aTPY.lUleII.Hii (<<ynyqmeHHhIH 
anropHTM TeHra»). OCHOBHLle c}>H3MecKHe np06JIeMhl (corJIaCOBaHHe, .BJIIDIHHe 
OIIIH60K MarHHTHOrO nOIDI, KOJIJIeKTHBHhIe 3$t>eKThI H T. ,lJ;.) paCCMo-rpeHbl C 
IlOMOI1(bIO «npoeKTHpylOI.U.HX <»)'HKlJ.Hii)) H ,Iij)yrHX napaMeTpOB JIHHeillioro 
,llBIDKeHIDI, nonyqeHHb1X B paMKax nOB TeOpHH. Kpauw OTIHCaHa nporpaMMa, 
OCHOBaHHWI Ha «yrryqmeHHoM aJITOpHTMe Tenr8», a TaIOKe ee npHMeHeHHe K 
pac'Iel)' n03H'lpoHHoro HaKOIIHTeIDI <<LEPTA», KOTOpbrH: B HaCTOHlIIee BpeWl 
coopyiKaercH B ORHH (,l{y6Ha, POCCIDl). 

Fig. - 3, ref. - 5 name. 

~ HBCTHTYT Teope~HQeCKOA H 3KcnepHUeRT8A&HOA ;M3KKH. 1999 



1. INTRODUCTION 

Recently it was suggested [1] to use «modified betatron» in experiments for 
positronium generation, for high energy electron cooling and so on. A specific feature 
of the particle dynamics in such kind of machine is a strong coupling of the transverse 
oscillations which appears due to longitudinal magnetic field. For the simplest case of 
the «symmetrical» modified betatron with constant parameters and equal gradients for 
both degrees of freedom (field index n=O.5) it is possible to find analytical solution 
describing a transverse particle motion. 

A theol)' of the particle dynamics in the modified betatron with arbitrary 
magnetic structure can be built using of Teng's theory [2] where it is suggested a 
method to find the parameters of the uncoupled modes which describe the transverse 
motion of the particles. In investigation of this method we have discovered some 
circumstances which make difficult its direct use. We have fOlmd a way to overcome 
these problems named '«advanced Teng's algorithm» (ATA) and to use it for an 
analyze of particle dynamics in modified betatron with arbitrary magnetic system. 

A paper consists of four chapters: 1)theol)' of the «symmetrical» modified 
betatron~ 2)description of the physical principles ATA~ 3)analysis of beam dynamics 
in non-symmetrical modified betatron by use of ATA, which includes investigation of 
main characteristics of the transverse individual particle motion as well as the main 
limitations due to the collective effects; 4) short description of the numerical code 
used ATA and the results its application to the ring for positron accumulation 
(<<LEPTA») which is now under construction in JINR (Dubna) [3]. 

2. SYMMETRICAL MODIFIED BETATRON 

a. Equations of motion and frequencies of transverse oscillations 

Equations of transverse motion of the particle in a section of the modified 
betatron have the following fonn: 

vx'- .QYy + ,Q/x - A [xcos(2kz) +y sin(2kz)] = 0 

v./+ Q Vx + Sly2y - A [x sin(2kz)-y cos(2ks)] = 0 (I) 

Here x and yare, correspondingly, the horizontal and vertical transverse coordinates, 
z is a longitudinal coordinate, Q= Bz / (BR), «BR) is a magnetic rigidity in T m, Bz is 
a longitudinal component of magnetic induction), A= G/(BR), VX and vy are derivatives 
from x and y on z, 
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Q} = (1 - n)/k _(n..SC)2x x , 

(2) 

In Eq.(2) field index 

n = _1_ dB)' !f­ (3)
BR ax 

and petVeance P is defined by: 

4/ 
(4)p= (ftr)3/

A 

Here I is the beam cWTent, h is the Alfven current (for electrons and positrons 
IA=1.7 104A), Pand r are relativistic parameters, ax and ay are mean squared beam 
sizes on corresponding degrees of freedom. In the symmetrical modified betatron 
ax=ay, n=O.5, nx2 = fiy2 = d and all other parameters are constant; then the Eq.(1) 
can be written as: 

v.j- £tVy + d x - A[x cos(2kz) +y sin(2kz)] = 0 

v/+ Qvx -j d y - A[x sin(2kz)-y cos(2ks)] = 0 (5) 

1 PR2 

d= - -(05--) (6)R2 • 2a2 

Let us introduce complex variable u = x + iy; then our system of two unifonn 
equations for real variables can be written as one complex unifonn equation: 

zI' + i.Q. zI + d u - Au'"exp.(i2kz) = 0 (7) 

Changing the independent variable as 11 = r exp.(ikz) we obtain 

I' + 2i(k+ .Q /2)r '- [k(k + Q) - d]r - Ar'" = 0 (8) 

Let us look for a solution ofEq.(8) as 

r = Cj exp.(-i l-Z) + C2 exp.(i la) (9) 

Then we obtain: 

AI C1 -AC2'"=0 

-A C1 + 82 C2" = 0 (10) 

Here 

A1,2 = -v ± 2 v (k+,Q 12) - ~2 = 0 (11) 
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nl = k(k+Q) - d (12) 

Eq.(10) is a system of uniform linear equations which has a non-trivial solution 
only jf its determinant is equal to zero. Using tIus condition we find the following 
dispersion equation: 

l-2.Q1
2 J+n;.4_A2 =O (13) 

where 

il1
1
= k(k+Q) + Q 212 + d (14) 

The roots of the equation are defined by: 

_ IA 2 j 4 2 4 
VI,2 - .-jU t ±" 0t +A -02 (15) 

All the roots are real (the motion is stable) if 

IA I ~ 11;.2 (16) 

A complete solution of Eq.(8) can be written as: 

r = C1 exp.(-iV)z) + Ie} CI· exp.(iV)z) + C2 exp.(-i l?z) + Ie2 C2* exp.(i ~z) (17) 

Here 

Ks = A / 82( ~'l)' (18) 

Let us introduce new dimensionless variables Q = nR, A = AJf, m = kR. 
Using these variables we can write a complete solution of Eq.(7) in the following 
fonn: 

U = LC. exp.[i(-l),Q. !~]+ksC:exp.{i[2m+(-1)'-tQ.!..]} (19) 
s R R 

Here positive «betatron frequencies» Q]). are defined by: 

Q] = VIR - m, Q2 = m -VJR (20) 

Let us introduce vector 

(21) 

Separating imaginary and real parts in Eq.(l9), we can write: 

x/= ~>~/(z)COS(Q.~+"I'/ +a,) (22) 

Here Ws = Ici, as = (-1) s arg( C s) ~ 
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(23) 

j'7 _ 1;../
'PI (...) - arc cos.(. fd) .. ) if 1;../ ~ 0 

\i<f>/ 

. T. .J 

'¥IJ(Z) = 2;r- arc cos.( -~) if 1;/ <0 (24) 
\i(f)/ 

Coefficients Tt,sj and T 1) are defined by: 

TI,sI(z) = l+kscos(2m~), T2,sl(z) == (-l)Hkssin(2m~) 

2 1 ~ 
T2,s (z) = Ii. (-l)s-l{-Qs(-l)'-l +kJ2m-(-ly-lQ8]cOS(2m~)}
 

T1}(z) = ~ kJ(-ly-lQ. +2m]sin(2m~)
 

T1,,/(z) = (-lY[-l+k.,COS(2mi)], T2,s\z) = k.. sin(2m~)~
 

4 1 . .... . 
T2,s (z) = Ii (-l),,{Q.. +k.[2m(-l)" - Qs]COS(2m~)}
 

T1,s\z) = ~ k.[Qs +(-ly-t2m]sin(2m~) (25)
 

If A q ~O. then kg ~O, x and;l~cos(2m~).y and i ~sin(2m~).
 

For strong solenoidal field (QL»m. QL2»Aq) approximate expressions for the 
frequencies can be written as 

(26) 

Using Eq.(26) it is easy to estimate «chromaticities» l),2~ i.e. derivatives from 
frequencies on momentum deviation z=Ap/p: 

A/(QL +m) 
It ::::: -QL, I2 ~ - 4;,QI.(QL /2 +m)2 (27) 

For A=O and Qo=O KI,2=O. QI = QL. Q2=O. and 
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u = C J exp (-iQr, ~) + C2 

This is a standard solution for Larmor oscillations of a particle in the solenoidal 
field. For small spiral focusing gradient the motion consists from two components: 
fast rotation with frequency near the cyclotron one (this mode appears due to the 
angular spread and its amplitude for our conditions is much smaller than the 
amplitude of the slow mode) and slow rotation with small frequency; amplitudes and 
phases ofboth modes are modulated with wavelength equal to the spiral step. 

b. Stationary orbit and dispersion function 

Let us consider one particle oscillations forced by a harmonics of the 
electromagnetic field which doesn't depend on u (for generalization of the problem, 
with exponential dependence on time). In this case right hand side (RHS) in Eq.(7) is 

s s
defined by:RHS = an exp[i(n -R - m-R - mt)l. Taking into account that d = ~ +! ~ ,

ds a va 
we can find the following solution ofEq.(7): 

u = ~ {L\2(An) exp[i(n~ - mt)] + A exp[-i(n~ - 2m!.. - u)/)]} (28)
L\(A) R R R 

Here An = (n - m - mIil)R, n is the revolution frequency, detenninant L},2(An) is 
defined by substitution An in Eq.(ll), 

L\(ln) = (An2 
- V,2) CAl? -vi) (29) 

The resonance appears if 

min = n + QJ, or rdn = n + 2m + Q, 

min = n - Q2, or rdn = n + 2m - Q2 (30) 

We see that besides the main harmonics it appears the harmonics shifted on 2m. 
Amplitude of the stationary orbit (for (j) = 0) is defined by: 

Iuni = lanl L\(A 
1 

) I[Ll2(ln) ± All (31) 
n 

Analysis of these expressions has shown that the more dangerous case 
corresponds to IDain harmonics. For strong solenoidal field «(A»m, QJ?» Aq ) 

amplitude of the forced oscillations for resonant harmonics is defined by 

Iunimax ~ lanl (QL&rl (32) 

where eis a deviation of the frequency from the most dangerous resonance. 
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By use of Eqs.(28,29) we can calculate dispersion function (0/ - function) and 
momentum compaction factor a. substituting an = (Ap/p)/R, n = 0 and 0) = o. After 
simple algebra we obtain: 

ILf ) _ R 2 A/ -I [1 Aq exp(2imz / R) ] 
.L \s - (Qo + , ) +) 1 (33)

4m2 + 2mQr. - Qo- 4m- + 2mQL - Q(l 

We see that in modified betatron due to a coupling of the transverse modes it 
appears a vertical component of the dispersion function. A momentum compaction 
factor is defined by 

A/a- (Qo
1 
+-l-·--2"Y

I (34) 
4m +2mQL -Qo 

c. Beam transverse size and temperature 

For our purposes it is necessary to get small particle temperature. Let us 
assume that the beam is matched, and therefore phases of the complex amplitudes as 
have unifonn distribution in interval [0, 21t]; then using Eq.(l9) and averaging on 
phases and amplitudes, we obtain: 

2«>,<1> = 0.5<WI> [1 ±2kl COS(2m~) + k J ] + 0.5< W2 > [l+2k2 COS(2m~) + kll 

<?> = «> + <1>= 0.5<w]> (l + k]2) + 0.5< W2 > (1 + kl) (35) 

Here symbol < > means averaging on particle ensemble. Correspondingly, for mean 
squared derivatives we have: 

«xi>, <uJi> = 0.5<w]> ;2 [Q/ ±2kt Qt(QJ +2m)cos(2m~) + k J 
2(Q] + 2mi]+ 

1 Q2 z 2 20.5<W2>R2[ 2 +2k2Q2(Q2 -2m)cos(2mIi) +k2 (Q2 -2m)] 

2«/)2> --,- 2~1 {<Wl>[QJ2 + kI (QI + 2mlJ + <W2> [Ql + k}(Q2 - 2min 
(36) 

Using Eqs.(35, 36) we find, that 

{(r/)2)R1 
_ GQl 

2 +k/(Qt +2m)2]+[Q/ +k/(Q2 -2m)2] 
(37)

-(r2
) - C(l+k/)+(1+k/) 

Here C = <Wl>/<W2>. It is seen that «Ii> reaches minimal value if C = 0, i.e. 
amplitude ofthe «fast» solenoidal mode is equal to zero (<w]>= 0); then 
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«(Ii»rnin = <?> [Q/ +k;:(~22 -2m)1.] (38) 

Minimal transverse.energy (T1)min is expressed by 

/ 1. \ [Q 2 k 1. (0 2m)1. ]
(T \ . = T. Uz + 2 _2 - . - (39)

.L}mm 0 R1 1+k/ 

where To is kinetic energy of the particle. 

ADVANCED TENG'S ALGORITHM. 

a. Brief description of Teng's theory. 

Theory developed in paper [2] permits to use Courant- Snyder representation 
for coupled transverse motion. Let us write the equations of motion in Hamilton's 
fonn with the Hamiltonian 

1 2 2 1 _2 1.2H= z(Px +Py )+L(PxY-PyX)+ zFx-+Kxy+ 2 Gy (40) 

where Px and Py are moments conjugated with x and y, L, F, K and G are periodic in 
q> with period 2m? (R is an average beam radius). In our case 

L = 0.5 .QL, F = Acos(2kz) + flx2 + 0.25.q? 

K = A sin(2kz), G = -Acos(2kz) + n/ + O.25.Q? (41) 

Using Eqs(38,39) we obtain the following equations ofmotion: 

x=8H=P+Ly y=aI=P_Lx
IIJ" x -', iP y • 

y 

iH I iHP x I = __at' = LP 
y 

- Fx - Ky
, Py = - ~ = - LPx - Kx - Gy. (42) 

It easy to see (excluding Px, y) that this system coincides with Eq.( I). 

Teng's theory permits to find canonical trarisfonnation R to new coordinates V 
of the form 

(43) 

where 

(44) 
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In Eq.(43) R is 4x4 matrix depending on s, the motions described by 11 and v 
are decoupled. Solutions for each new variable can be written in the Courant-Snyder 
phase-amplitude form, containing periodic parameters analogous to usual Twiss 
parameters. The periodic parameters are related to the single period matrix in a 
fashion similar to one-dimensional case. However, OUf analysis have shown that the 
direct use of the theory is impossible due to discontinllities of some of parameters. To 
avoid these problems we suggest to use some new «projecting functions» which are 
continuos (together with these derivatives). Moreover, we introduce new «direct» 
method derivation of phases of the lUlcoupled modes. lbe corresponding procedure is 
described below. 

b. Calculation of «single-period transfer matrix» 

Let us introduce the transfer matrix T(Z2, zd connecting the state of the motion 
at Z2 to the state of the motion at ZI according to 

X(Z2) = T(Z2, ZI) X(ZI) (45) 

For periodic system, the «single-period» transfer matrix defined by 

T(z) = T(z + '"'[)cr' z) (46) 

is also periodic. 

Let us assume that the beginning of the period corresponds to a point z = O. 
Matrix T(z) may be calculated by direct multiplication of the «section matrices» of the 
period which could be calculated if the parameters of Hamiltonian are constant in 
each section (the corresponding expressions are given in Appendix). Matrix T(z) is 
connected with matrix .nO) by 

.nz) = T(z, 0) T(O)[T(z,O)r' (47) 

Let us mark that there is a simple coupling between motion in canonical 
variables X and a motion in standard variables which is defined by vector X N In• 

these variables equation of the motion can be written at the following fonn: 

x N (zz) = TN (zz,Zt)X N (Zt) (48) 

Non-canonical matrix of the motion r" (Z2'Z\) is connected to the canpnical 
matrix of the motion T(z2 ,z,) by the expression 

TN (Z2 ,Z\) =[ M(Z2) r' T(z2>z, ) M(z, ) (49) 

Here 
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~ 
0 0 0 0 

1 L(Zl) o -1 0 1 - L(Z2) 
o [A1(Zl)] = 0 (50)M(z,) =[ :j [1 ~]0 I 0 1 

- L(Zl) 0 0 I L(Z2) 0 0 

These equations can be useful for checking of the numerical code and 
derivation of the matrices for separate focusing sections with constant parameters. 

c. Calculation of «characteristic matrices» of the normal modes 

A 2n*2n matrix Twhich satisfies the condition 

TST=S (51) 

is called «symplectic». Here T is transposed matrix (i.e., a matrix with 1;,.; =1;..; ), S is 

2n*2n generalization of unit «symplectic» matrix 

S=(~l ~) (52) 

The Jacobian matrix of the canonical transformation has this property; from the 
other side, matrix T(Z2, Zl) gives the canonical transfonnation from X(ZI) to X(Z2) and 
therefore it is symplectic. The symplectic condition (49) gives n(2n - 1) relations 
between (2ni elements of the matrix. In our case n=2, and, consequently, the single­
period matrix 1{z)contains 10 independent parameters. Our purpose is to express all 
Courant-Snyder variables through these parameters. Let us represent the matrix 1{z) 
in the following form: 

(53) 

Here M, m, Nand n are 2x2 matrices. From the other side, matrix T(z) can be 
written in the following «symplectic rotation» form, which for two dimensional 
motion is 

1
1cos(J D- Sin¢)(A 0J(1 cos(J - n-1 Sin,)

T~)= ( . . (54) 
- Dsm¢J I COS? 0 B DSID? 1cost} 

or 

T(z) = R[!R-l (55) 

Here A, B and D are 2x2 symplectic matrices, each of them requires 3 parameters; the 
tenth is the angle ¢. These ten parameters are expressed through ten independent 
parameters ofmatrix T(z) by the following expressions: 
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COSIJI - c08112 = ~ Tr(M _ N){l + ~;mi + Tr(nm) } 

2 [2 Tr(M - N)]2 

1/2Tr(M - N) 
cos2~ = ---'­

COSPI - cOSJ1.J. 

D= .. m+S1'1S 
(COS flJ - cos Il2 ) sin 2~ 

B = N + Dntan,p (56) 

Analysis shows that this system has {{break pointS» when Tr(M -N)=O. Let 
this condition is satisfied for z =Zh, ;moreover, let us denote all the parameters 
corresponding to the left side of this point (with z =Zbr - 8; where 8 is an infinitely 
small number) by indice - , and the parameters corresponding to the right side (with 
Z =Zhr +8) by indice +. Then we can write: 

(COSJ4 - cos,Ltz r = -(cosflJ - cosJ1.J.f, <1>- = -<P+ ,D- =:; D+ 

A - = M - D-1mtan<P- ,B- = N + Dntan cP­

(57) 

These breaks result in the corresponding breaks in parameters of the nonnal 
modes. In order to confine the invariant mode amplitude let us introduce discrete 
function N(z) , which is equal to a number of the breaks in interval [0, z]. Then we 
can introduce matrix A Ii, which is defined by 

A1=A, A 2 =B if N(z) is even 

(58) 

To confine the continuos change of parameters it is necessary to change also 
the matrix R and to introduce new matrix RS 

: 

jf N(z) is even 

R= (D- 1 
sin~ Icos~ )S if N(z) is odd (59)

J cos~ - Dsin? 

d. Calculation of Twiss parameters for the uncoupled modes 

If matrices A S are known, the values of corresponding Twiss parameters can 
be found from the following standard equations: 
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AS = I cos,u. + J. sin,u.;J. = (:;. !~JJ = (~ ~) (60) 

Using this equation, we obtain 

f3" = A1/ I sin,us,a. == (A1/ - cos,u.) I sin,u, ,r" =(1 + as
l 

) I f3" (61) 

Then we can write the solutions for uncoupled modes in standard Courant­
Snyder form: 

c-
u = ~wIA cos 1Ft, Pu = --J~ (sin ~ + al cos~) 

v= ~W2f32 cos If/z, Pv = - ~~ (sin ~ + a2 cos If'2) (62) 

In Eqs(62) phases 'Fs are defined by 

'Ps(z) = 8tFs(z) + Ys (63) 

Here Ws and Ys are invariants of motion for separate particles, tS'Fs(z) are functions 
characterizing the corresponding normal modes. Analysis of these formulae have 
shown that f3.,r. are continuos functions, but a. and 8'Ps(z) have jwnps in break 
points. 

e. Calculation of the phase functions for the normal modes 

Let us mark that phase functions <5Ps(z) are not defined by the procedure 
described above. In Teng's paper it is given the following expression for 'Pl,2(Z) 
(which does not coincide with standard Courant-Snyder theory): 

ITf (.)_ JS l+hJ,tan'd I 
Tl,2 S - Il \' (64) 

o 1"1.2 

However, numerical calculations have shown that this expression is not valid 
for break points(where phases have jumps), and therefore it is not applicable to the 
calculation of the phase functions. To avoid this problem we introduce special 
procedure, based on calculations of trajectories for «probe particles». The first step in 
the procedure is a calculation of Twiss parameters for a point z=O. Then we find X(O) 
for two particles:l)wl = 1, W2 = 0; 2) W2 = 1, WI = 0 (for both particles rs=O). Then 
for both particles we have found vectors X(z) by use of Eq.(45). Then, using 
equations (62), we can write the following evident expressions for the phases: 

u
'PI = arccos( ----r=) ifsin 'PI >0 

"/fJ.. 
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1f
27!· arccos( (7;}) ifsin \p] ~O (65)

"'Jf3., 

Here 

• 11'.f ra 11 
sm T] =-"~P,, +at ~. (66) 

-.jPt 

Expressions for the second mode can be foood by the corresponding change of 
the indices and a change u, Pu on v, Pv . 

f. Calculation of the «projecting functions» 

For the most part of the applications we are interested not in the nonnal modes, 
but in physical variables (coordinates and its derivatives) expressed through invariants 
oftbe uncoupled normal modes. Using Eqs(43),(62) we can find, that components of 
canonical vector X are defined by 

A.j = "L.JwsPs[T;/ cos'!'s - 1;../ sin\P.J (67) 

Here 

(68) 

Components of the vector of physical variables xN are defined by the similar 
expressions for components with j=1,3 (xJl), but for components with j=2,4 
(correspondingly, for J andy) expressions for Pare changed: 

2 a. LR 2 (69)1;.s =~.t+2S + LR3•t +ZS - fl. (R2•2+ 2• + 3.2+2S)' T2.S ::;; 

(70)
Pl1 

After simple algebra we can write these expressions given Eq.(67) in the following 
fonn: 

(71) 

Here 
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T. f R as f _ Rj ,h2r 
I,s = Rj.l +z• - f.2+Z. P. ,1;.. - -----p:- (72) 

7;,/
'I' J = 'I' +arccos,·c----:-='··====0= if 1;./ ~ 0 

S • 1(T,j)2+(1'j)2
"1,. 2,.. 

1;/
'I' + 21C - arccos ' ifr.i<o (73) 

s ~(T, f)2 + (T, j)2 1•• 

J,s 2,6 

g. Calculation of betatron frequencies and periodical components of the 
«projecting functions» phases 

In calculation of the betatron frequencies Qs it is necessary to take into 
account, that the phases '1'. are defined in interval (O,21t), and in real calculations we 

can observe <<jumps» from 21I to zero and back (from zero to 21t). Let M 1(Lper) is a 

number of «direct;> jmnps, andM2 (L,,,,,.) is a mnnber of the «backward» jumps; then 
we can ~d betatron frequencies from the following expression: 

1 
Qs::: (MI(Lper)- M 2 (Lper) + 2JT['P.(Lpu) - '¥.(O)]}N[NT (74) 

Here N per is a nmnber of the magnetic periods in the ring. 

For some applications it is useful to write the phases of the projecting functions 
in the following form: 

(75) 

Here ~O/ is periodic functions with a period equal to a period of the magnetic 
system. 

b. Calculation of the invariant matrix 

In accordance with Teng's paper, invariants Ws are expressed through canonical 
variables by the following fonnula: 

w.. = L(Gi./Y.... X,X} (76) 
;,f 

Here matrices (ol.)yan are defined by 

(G1)CQIJ =: SR(~l ~}{'(G2 ran =: gR(~ ~) (77) 
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However, usually it is more interesting to know the expressions of the 
invariants through the physical variables which can be written as follows: 

w ="G. .3X N X N (78)s £..J '~,1 1 J 
i.] 

Here matrices GS are defined by: 

G' = M(G.)caJI(M) (79) 

i. Calculation of periodic dispersion function 

Dispersion function (in our case, two-dimensional vector) is defined by the 
following column: 

(80) 

This function can be found by use of standard matrix fonnalism. Let vector 
B(Z2~1) is a particular solution of the following non-uniform system of linear 
equations for zero initial conditions: 

vi- .QrYy+ Dx2 x - A [x cos(2kz) +y sin(2kz)] = R;Z) 

vi+ .!4yx + .!2/y - A [x sin(2kz)-y cos(2kz)] = 0 (81) 

Due to a periodicity of the dispersion function its value in initial point (z = 0) is 
defined by: 

(82) 

In intennediate points 

lJ'(z) = B(z,O) + T(z,O)lJr(O) (83) 

These formula permit to find W(z) by use of special computer code. Let us 
mark that in a presence of the momentum deviation an expression for the invariants 
becomes the following: 

W = LC'xN x.N 
- ~LG. :('fIX N +\f'XN)+(~)2LG S'¥'P (84) 

, i.;" !.J 1 ) P I.) I.) i) ) 1 P i.f I.) 1 j 
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3. MAIN PHYSICAL EFFECTS IN NON-SYMMETRICAL MODIFIED 
BETATRON 

a. Transverse size and temperature of matched beam 

As for symmetrical betatron, the matched beam should have uniform 
distribution on phases Y5' Squaring given above expressions and averaging on phases 
we obtain: 

, . 1:L ,2' 'f

\(XJ 
) \:= - <I> J qV .' (85)

~ : 2. .r \ j., 
f 

Let us underline that the injected non-matched beam becomes matched due to 
phase mixing which is connected with linear and nonlinear spread in betatron 
frequencies of the normal modes. 

In order to find <Ws> we should substitute in Eq.(84) values of all parameters in 
a point z=O and make an averaging on the ensemble. The second member in right side 

of the Eq.(84) is equal to zero since <L1p >=0. The fITst member could be simplified if 
p 

we have injection with radial synunetry (in this case \(xoyl)=((Yo)2)=O.5((ro)2)=«, 
/ \-0 I( i)2\_!(y !')2\-b2 " , 1\=0) Th b ..\xoYo/- , \ Xo j-\ 0 /- ,\Xo Yo /-. en we 0 tam. 

2 
''oW.) =a2 

(GI./ +G3./) +b (GU ' + G4,./) +a/L Gi.JAjA j (86) 
'.J 

Substituting found values of i~W.) in Eq.(85) we can calculate beam size and 
temperature. 

b. Invariant growth due to Coulomb scattering 

Coulomb scattering of the circulating particles results in a growth of transverse 
invariants for the nonnal modes. By use of Eq. (84) we obtain: 

(Aws ) =0.5 < (G/· 1 +G.,4.4)> (A«(J2») (87) 

Here sign <> means averaging of the corresponding elements on the ring's length; r. 
m. s. value of the squared scattering angle of (A(e 2 ») is defined by: 

(~(e2)\=(~Ca.r)2 ~- (88), ; pcp X 
T 

Here EscO! = 25 MeV, X
T 

is a radiation length of the residual gas in glcm2 
, M is a 

length of the particle inside the gas (as well in g/cm2
). 
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c. Forced oscillations 

Let us consider oscillations forced by an external electromagnetic field which 
doesn't depend on transverse coordinates but has anarbitraIy dependence on 
longitudinal variable and sinusoidal dependence on time (account of this effect it is 
necessary for investigation of the dipole oscillations stability). In this case additional 
member in Hamiltonian can be written as follows: 

oH = Re[f{z)x exp.(-iliK)] (89) 

Here j(z) is a known complex function ofz. Substituting x from Eq.(71) we obtain: 

c5H=Re[f{z) L-j";.cP/ cos'P/ exp.(-imt)] (90) 

Let us consider the :first member in Hamiltonian. Representing cosine as a sum 
of two exponents, taking into account Eq.(75) and limiting ourselves by analysis of 
the second (negative) exponent, we obtain: 

8H = 0.5 JW: ~.I(Z) Re{j{z)exp[-i50/(z)]exp(-iQsi -i]'s-imt)} (91) 

Let us expand periodical function 

F(z) = j(z) .J<ii}(;) exp[- il58/(z] 

in complex Fourrier series on variable z: 
W=aJ 

F(z) = Len exp(iw"z) (92) 

Then we obtain: 

OJ{ = 0.5 ~w~ Re [exp(-iQ~~ - i]'s - imt) ~c .. exp(iw"z) 1 (93) 
n=--.>o 

Separating one member of the series and taking into account that t = z / v (v is a 
particle longitudinal velocity), we obtain: 

&f= g-fW; cos[(-Qs +n - .~ )-~ - Ys +anl (94)nriV R 

Here g = 0,5Ie"i, an = arg(cn). Taking into account that Ws and Ys are the canonical 

conjugated variables (since u, Pu are the canonical conjugated variables as well) we 
obtain the following pair of equations: 

dw. '-. 
dz = 2 "\/w.• g sm(x) 
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dX = g -COS(x) + c (95)
dz ,!w

\' s 

This pair of equations can be written as a complex one: 

da . . 
dz =19 -leG (96) 

Here a = ~~ exp.(ix). Stationary solution has the following fonn: 

a=-g/e 

The resonance appears if 

(97) 

(98) 

We see that this theory coincides with standard theory for uncoupled 
oscillations; a single difference consists in more complicated fonnula for the 
resonance width. Using these fonnu1a, we can derive the following expression for 
forced oscillations: 

Xt(z)=R(z) Re{ g cos[n~+a,,+oO/(z)]exp.(-imt)} (99)
w RII--Q - -­

• Q"". 

e. Influence of arbitrary order field perturbations 

Let us consider an arbitrary order perturbation of the Hamiltonian, which can 
be written in the following form: 

8H = "Lfm(z)x"'yl'm (100) 
Itt 

Substituting x and y (Eqs.(71)), considering only one mode and neglecting all 
low order tenns, we obtain: 

8H=(w.)f_1_ ~ fm(z)(<P.l);(<P/)~'" cos[p(Q. Z +Y,)+moOs
x +(p-m)oOsYl (101)

2P- t ~ R ­

and expand complex periodic function 

1 m (7-'" 

F(z)=2:P ~f",(Z)(<P/)2(<ps3) 2 exp.{-i[mO'P.x + (p-m)O'¥/JJ (102) 

in Foumer series on variable z: 
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F(z):;;: ~Cn exp.(;n~) (103) 

Then, omitting all members besides the resonant one (with number n) we obtain: 
p 

oH = g(W.)2 cos(Px) (104) 

Here g = Ie" I, X = ; [(11 - pQ.) ~ - pys]' We see that this Hamiltonian has a standard 

form of one-dimensional non-linear resonance and can be analyzed by standard 
procedure. 

f. Coulomb shift of tbe transverse frequencies 

Let us assmne that dV},2lim (maximal shifts of the normal modes betatron 
frequencies) are known. Then we can write: 

. limPlim = mm(.6. VI,2 I D1,2) (l05)

;2 ).Here D1,2 are corresponding derivatives (D],2 = Using Eqs.(4) we find the 

following expression for the maximal current: 

Jlim= 0.25 (fJri JA (P)lim (106) 

Values ~ V},2lim can be defined by examination dynamical aperture and (or) 
resonance widths, values of derivatives can be calculated numerically or by use of the 
corresponding analytical procedure. The additional member in Hamiltonian can be 
written as follows: 

P x 2 y2
lilf= ----(-+-) (107)

8(b.. +by ) b;c by 

Here bx,y = <X-,Y->. Substituting x and y, taking into aCcoWlt only one mode and 
averaging on phases, we obtain: 

Pw CD 1 
<1>3

OH= • (_'+_s) (108)
16(b.T + by) b.. b.v 

Using Hamilton equations, we obtain: 

iQ. L <I> / <I> 3 
-:;;:-< (--+.'._» (109)
8P 32lf (bx+bJ') bx by 
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g. Longitudinal instability 

Dynamics of longitudinal motion in modified betatron is the same as in 
standard ring, and therefore we can use the usual criterion for longitudinal stability of 
the electrons and positrons, which can be written as follows: 

(110) 

Here I is the beam current, Ue is «the electron rest voltage» (U~ = 510 keV), f3 and r­
relativistic parameters, TF 1-2

- a, a is a momentum compaction factor, Of'is a spread 
in momentum deviation (half width on half height), Zn is a longitudinal coupling 
impedance of the beam for a mode with number n, factor F}ong takes into account the 
real form of the stability diagram (in standard Keil-Schnell kritherium Jtiong=1). 

For non-relativistic beams longitudinal impedance is defined by space-charge 
component Znsc which can be calculated by use of the following expression: 

Znsc/n = 20 pi y2[0.5 + In(h/h)] (111) 

Here Zo is a free space impedance (Zo=377 0), h is the beam size, b is the chamber 
radius. 

The most critical problems are a choice of reasonable values of 0"[ and F1ong. 
The maximal threshold corresponds to a case when the following conditions take 
place: 1)dynamical aperture on the momentum spread 0"0 significantly increases O"r; 
2)beam is «space-charge dominated», i.e. its space charge component of the 
longitudinal impedance Znsc is much more than the last sources of the impedance; 
3)the beam distribution has long tails. Then it is possible to show [4] that with good 
accuracy 

hong ~ (O"of / 2(O"rf (112) 

h. Transverse <lipole instability.
 
Now let us consider coherent oscillations, when
 

1(z, t)= [ax (x)+~. <y)] (113) 

Here ax, y are some complex constant (in the further text we will consider a case ax = 
ay = a), <X, y> are averaged on all particles of the beam. Moreover, let us assume 
that 

(x,y)= Atp.T,/z)exp.[i(l1~ - wt)] (114) 

Then we can write the additional member in Hamiltonian in the following form: 
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(115) 

Let us represent cosine as a sum of two exponents and assume, that only one 
exponent, corresponding to slow wave, is resonant. Then this Hamiltonian could be 
written as: 

6Rs = -M-JwsF:(z)exp.[i(lI- Qs j) -wt - yJ (116) 

Here 

Fs(z) = i[qJx(z)~cI> /(z) exp(-io0.1 
) + qJ/z)~(J> / (z) exp.(-i80.3 

)] (117) 

Expanding F.'i(z) in Fourrier series, omitting all members besides a member 
with zero indice and separating the real part, we obtain 

6Hs = - McoF cos[(n - Q")~ - rot - y.] (118) 

(119) 

1bis is a standard Hamiltonian which was analyzed earlier. Corresponding 
solutions could be written as: 

MCo r;;:-13 13 Z 
x,y = - -c-\j ¢J.' expo (i¢~, ' ) expo [i(n Ii - aJt)] (120) 

Here e=n-Q ­
OJ 

SQ' 

. 1 .
Averagmg on -- we obtam: 

c 

<X>, "SY> = - AACoJ.-J(J)/,3 exp.(i80s1.3)exp.[i(n~ - OJI)] (121) 

Here dispersion integral 

I =<! >= j j(u)du (122) 
s C c(u)-lIO 

Comparing Eq.(121) with Eq.(113,114), we find, that 

fP",y =leol, Iii:}" exp.(i80/,3)] (123) 
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These fonnulae we can substitute in Eq.(117,119), we obtain standard dispersion 
equation, which has the following fonn: 

(124) 

where 

1 LJI" 

K. = L f[<1>/(Z)+<1> .•3(Z)}iz (125) 
per 0 

Analysis of this dispersion equation shows that the stability criterion can be 
written in the fonn similar to the standard one [4]: 

/5.8 %i Gj,F-L.PrI7J1 vsAsSs (126) 
l-

In Eq.(126) Ss=n-vs+Ts / 71, where Ts is the ring chromaticity, factor F-L takes into 
accOlmt the fonn of the distribution function and character of the impedance (F-L~l)~ 

and additional factor As is defined by: 

As= (127)d;' 
Transverse impedance Z-L for non-relativistic beam is defined by standard expression: 

Z-L = iRZoP2r-2(b-2-h-2) (128) 

4. NUMERICAL CODE ATA AND ITS APPLICATION TO LEPTA 

We have written numerical code based on described above algorithm AT~ 
which calculates all linear characteristics for transverse motion in the ring with strong 
coupling of the transverse degrees of freedom. Code may be divided on three parts: 1) 
input subroutine; 2)subroutine for calculation of supplementary characteristics; 3) 
subroutine for calculation of the output functions. As a unit of length in the code it is 
used cm. 

Input subroutine includes optical scheme of the ring~ which gives dependence 
on the longitudinal variable all. the coefficients of Hamiltonian (L, F, K and G, see 
Eq.(40~41». All coefficients are supposed to be constant at each section of the ring; if 
the ring includes a part with variable parameter~ such part is divided on small sections 
with constant parameter whose amplitude is changed from section to section to 
simulate the known law of change the initial parameter. 

Calculations in the second and third subroutine are perfonned for given set of 
points inside the period. The second subroutine calculate the parameters of the normal 
uncoupled modes introduced by Teng. This subroutine includes: a)calculation of the 
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single period transfer matrix; b)calcuIation characteristic matrices; c)calculation of 
Twiss parameters; d) calculation of the phase functions. 

The results of the second subroutine are used in the third subroutine for 
calculation of the output functi.ons characterizing the linear motion in the ring. The 
subroutine includes: a)calculation of the amplitude projecting functions <I>./ and phase 
projecting fimctions 88/; b)calculation betatron frequencies of the nonna! modes; 
c)calculation of the invariant matrix; d)calculation of the dispersion function and 
momentum compaction factor. Let us mark that functions <I> / and <I>8 

3 can be 
considered as a «projecting p-functions», correspondingly, for x and y (these 
functions has a dimension of our unit of the length - «CIID». Functions <I> 8 

2 and <1>. 4 

are projecting functions for derivatives and has a dimension «cm-I ». Sometimes it is 

convenient to use instead of <I> / «amplitude functions» A/ = -JCb7 ; let us underline 
that functions A.,1.3 ando~,I.3 has a physical sense of «amplitude and phase of 
projecting Floquetfunctions». 

This numerical code was applied for calculation of the linear parameters for the 
ring «LEPTA» which is now under construction in JTNR (Dubna, Russia). The 
scheme of the- machine is given in a report of A. Sidorin «Peculiarities of LEPTA 
design», which was made-at the second-meeting of the INTAS collaboration (Dubna, 
13-14 Of November, 1998). The main parameters of the machine are given in Table L 

Table 1. 

Circumference m 18.12 

Positron energy keV 10 

Revolution period nsec 300 

Longitudinal magnetic field G 400 

Major radius of the toroids m 1.46 

Bending magnetic field G 1.75 

Gradient of quadrupole winding G/cm 10 

Positron beam radius cm 0.5 

Number of positrons 1.0 E9 

Residual gas pressure Torr 1.0 E-10 

Using numencal code based on described above algorithm ATA, we have 
calculated for ring LEPTA all the characteristics of the normal modes: 1)betatron 
frequencies; 2)16 projecting functions: 8 amplitude functions <1>/ and 8 phase 
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functions oB/ (s = 1,2; j = 1,2,3,4); 3)8 diagonal coefficients matrix G
J
./. The most 

part of these functions are constant (or oscillating with small amplitude) in all ring 
besides the section with quadrupole winding; however, inside tJ:iis section amplitude 
fimctions for derivatives sharply increased for «slow» mode (in our case slow mode 
has index «1»). The typical example is given at Fig. 1 (dependence All on z). 

1000 1500 

z,cm 

Figure 1. Dependence of amplitude function for the first mode on z 

Besides, inside the section with the winding the phases of the projecting 
functions begins to grow (see Fig.2). 

I 0.3-;­

1 

, 025 t'P 1 ,IM'tr--- ­
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I 500 1000 

; -a.as ..i. 
I 15OO Z , em 
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Figure 2. Dependence Of\¥l l on z. 

Simultaneously we observe increase and (or) sharp oscillations of some 
elements ofmatrix Gi./(see Fig.3, where it is plotted function G,."). 
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Figure 3. Dependence of G1,1 ) on z. 

5. DISCUSSION 

An attractive feature of the symmetrical option of the modified betatron is its 
simplicity which permits to find analytical formulae describing the transversal motion 
of the particles. However, real machine (for example, LEPTA) is very far from 
symmetry, and analysis of dynamics could be made by use of Teng's theory. Our 
analysis has shown the direct use of this theory is impossible due to a presence of 
break points, where integral expression for phase advance derived by Teng becomes 
invalid, We suggested an advanced algorithm which permits to overcome this 
difficulty. Due to mentioned above jumps Teng's uncoupled modes are very artificial 
«objects», and in practice the more convenient way is connected with an introduction 
continuos «projecting functions», which permits to express particle motion through 
invariants of the Teng's modes (these amplitude and phase functions are similar with 
amplitude and phase of Floquet functions in standard theory of the uncoupled 
motion). However, for the coupled motion their number is increased in 4 times (16 
instead of 4). 

Application ofthis method permits to find a solution of a number of «classical» 
problems: analysis of the size and temperature of the matched beam, investigation of 
the resonances due to field perturbations, analysis of the transverse dipole instability 
and so on. In conclusion we would like to lmderline that a lot of the important effects 
(for example, intra-beam scattering) was omitted in the present paper. We hope that 
the further development of these ideas will give good insight in physics .of so 
complicated facility as modified betatron. . 
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