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BEAM DYNAMICS IN MODIFIED BETATRON: Preprint ITEP 8-99/

E.R.Mustafin, P.R.Zenkevich - M., 1999 - 24p.

«Modified betatron» is an accelerator using betatron method of acceleration,
whose magnetic system includes usually solenoidal longitudinal magnetic field,
bending magnetic field (which, in prnciple, can have additional gradient) and
quadrupole spiral windings. Theoretical analysis of transverse beam dynamics in this
machine should be based on Teng’s theory which permits to consider transverse
motion as projection of two uncoupled modes. It is shown that the direct use of the
theory is impossible due to a presence of «break pointsy; it is suggested a method to
avoid thesc problems, named «advanced Teng’s algorithm» (ATA). The main
physical effects in the modified betatron (matching, influence of field errors,
collective effects and so on) are considered by use of «projecting functions» and other
characteristics of the linear transverse motion. It i1s shortly described the
corresponding numerical code and its application to the positron accumulator
«LEPTA» which is now under construction in JINR.

«Mopudmimposanssiit  Geratpor» npeactagager cobodf  KOABLEBOH
YCKOPHTENb, HCNONBL3YIOMWH GETaTPOHHEINA METOA YCKOPSHWSA, MarHWTHAS CHCTEMA
KOTOpOTO BKMIOYACT COJNCHOHAHYIO OOMOTKY, MOBODOTHOE MAarHMTHOC IIOJ€
(BO3MOXHO, C JOTIOIHMTENHHBIM IPATHCHTOM) B COHPATBHOE KBAAPYIOILHOE NONeE.
AHajM3 NONEPEYHOrO ABAKEHHMA B TAKOH MAIIMHE BHIITOJHECH HA OCHOBE TEOpPHH
Terra, xoropasd MO3BONACT PACCMATPHBATh JBHIKCHHE IO KaXKIOH M3 mONEpeuHBIX
creneneli cBOOOAW Kak CyMMy npoekumii kosnebaHuii ABYX HECBA3AHHBIX MOJ.
Iloxa3aHO, YTO HPSMOE MPUMEHEHME JTOH TEOPHH HEBOSMOMXHO H3-32 HAMYRAA
«OCOORIX TOuek», B KOTOPHIX MapaMeTpPhl HOPDMATbHBIX MOJX TEPMAT pa3pHB;
IPEUIOKEH METOA, NO3BOAOMMHA u30EXKaTh 3TMX 3ATPyAHEHHM (KyJTy4lIECHHbIH
anroput™ Tenra»). OcHOBHHE (u3mieckue HpolOneMsl (COTNAacOBAHME, BIMAHEE
ommMOOK MarHWTEOrO TOJA, KO/UIKTHBHBIC 3((EKTH W T. 1.) PacCMOTPEHB! C
HOMOW(BIO «HPOEKTHPYIOIMX (QyHKUMEI? H APYTHX NapaMerpoB JIHHEHHOro
ABHKCHHs, MOMYYICHHEIX B paMkax 23r1oii Teopmu. Kparko onmcaHa tiporpamma,
OCHOBAHHAA Ha «YNy4dUIEHHOM ayropwTMe TeHra», a Taloke ee NPAMEHEHHE K
pacuery no3urponsoro Hakormreni «LEPTA», xortopelii B HacTosmee BpeMms
coopyxaetcsa B OMAHN (lyGua, Poccns).

Fig. - 3, ref. - 5 name.

@ WHCTHTYT TEODETHUSCKOf M BRCnepuMeHTanbHOA Quanku, 1999



1. INTRODUCTION

Recently it was suggested [1] to use «modified betatron» in experiments for
positromium generation, for high energy electron cooling and so on. A specific feature
of the particle dynamics in such kind of machine is a strong coupling of the transverse
oscillations which appears due to longitudinal magnetic field. For the simplest case of
the «symmetrical» modified betatron with constant parameters and equal gradients for
both degrees of freedom (field index #=0.5) it 1s possible to find analytical solution
describing a transverse particle motion.

A theory of the particle dynamics in the modified betatron with arbitrary
magnetic structure can be built using of Teng’s theory [2] where it is suggested a
method to find the parameters of the uncoupled modes which describe the transverse
motion of the particles. In investigation of this method we have discovered some
circumstances which make difficult its direct use. We have found a way to overcome
these problems named «advanced Teng’s algorithm» (ATA) and to use it for an
analyze of particle dynamics in modified betatron with arbitrary magnetic system.

A paper consists of four chapters: 1)theory of the «symmetrical» modified
betatron; 2)description of the physical principles ATA; 3)analysis of beam dynamics
in non-symmetrical modified betatron by use of ATA, which includes investigation of
main characteristics of the transverse individual particle motion as well as the main
limitations due to the collective effects; 4) short description of the numerical code
used ATA and the results its application to the ring for positron accumulation
(«LEPTA») which is now under construction in JINR (Dubna) [3].

2. SYMMETRICAL MODIFIED BETATRON
a. Equations of motion and frequencies of transverse oscillations

Equations of transverse motion of the particle in a section of the modified

betatron have the following fonn: ,

V- vy + £22x - A [x cos(2kz) +y sin(2kz)] = 0

v+ v, + 027 - A [x sin(2kz)-y cos(2ks)] = 0 6))
Here x and y are, correspondingly, the horizontal and vertical transverse coordinates,
z is a longitudinal coordinate, 4= B,/ (BR), (BR) is a magnetic rigidity in T m, B, is
a longitudinal component of magnetic induction), A= G/(BR), v, and v, are derivatives
from x and y on z,
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21, i sc\2 sey2 _—P_
02°=( n)/R2 (£257Y, (€2™) aa, +a,)
2 se\2 se\2 = __L
QP =R~ (%) @ = ey @
In Eq.(2) field index
1 dB,
"= ra K ©
and perveance P is defined by:
47
p= 4
Byl @

Here I is the beam current, /, is the Alfven current (for electrons and positrons
I,=1.7 10*A), B and y are relativistic parameters, a, and @, are mean squared beam
sizes on corresponding degrees of freedom. In the symmetrical modified betatron
ax=ay, n=0.5, 32 = 27 = (¥ and all other parameters are constant; then the Eq.(1)
can be written as:

V- v, + 2 x - A[x cos(2kz) +y sin(2kz)] = 0

v+ Qvi 4 2y - Alx sin(2kz)-y cos(2ks)) = 0 )
1 PR?
2= 205~ o (6)

Let us introduce complex variable « = x + iy; then our system of two uniform
equations for real variables can be written as one complex uniform equation:

W+ i + 2 u- Au"exp.(i2kz) = 0 ©)
Changing the independent variable as u = r exp.(ikz) we obtain

7+ 20+ 2 12)r - [k(k+ £2) - Z)r-ArX =0 ®
Let us look for a solution of Eq.(8) as

r=C) exp.(-i1z) + C; exp.(ivz) 9)
Then we obtain:

AC -AC =0

AC+MCT=0 (10)
Here

Az =-V+2 v+ 12)- 22 =0 an



27 = k(k+8Y) - (12)

Eq.(10) is a system of uniform linear equations which has a non-trivial solution
only if its determinant is equal to zero. Using this condition we find the following
dispersion equation:

W20+ 00 A =0 (13)
where
7= (ke $2) + Q2+ F (14)
The roots of the equation are defined by:
Vo= Q7 0 A -0, (15)
All the roots are real (the motion is stable) if
Al <2? (16)

A complete solution of Eq.(8) can be written as:

r=Cexp.(-iv2) + K, C)" exp.(iviz) + Cy exp.(-iwz) + k3 Co" exp.(inz) (17)
Here
6=A/A(W), (18)

Let us introduce new dimensionless variables O = 2R, K = AR®, m = kR.
Using these variables we can write a complete solution of Eq.(7) in the following
form:

1= 3C,epli-D'Q, Jl+kC, exp.{il2m+ (-0, 11 (19)
Here positive «betatron frequencies» (; ; are defined by:
O1=wR-m, O, =m-w»R (20)
Let us introduce vector
X
xf
XY= 21
i @D
Y

Separating imaginary and real parts in Eq.(19), we can write:
XY= 3 @,/ D eosQ, - +¥ +a) 2)

Here w, = |C*, a5 = (-1)° arg(C,);
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o =(L) +(,/) (23)
o T
¥(z) = arc cos.( —~=) if7,/>0
Jo
Wi(z) = 27~ arc cos.(— if 7,/ <0 Q4)
\/(-,:]— 2,5

Coefficients 7; ¢ and 71 ¢ are defined by:

T14(2) = 1+ £, cos(2m %) , Tysl2) = ()&, sin(2m%)

B2@) = (D™ 0.(D +kf2m= (-1, eos(zm 2y

T2 = kLD Q, + 2mlsinam Z)

N@) = (D -l+kcos@m D), D)= k,sinm 5),

Nl = L V0, kDmy - QlesmDy

T80 = g kIO, +(-) 2mlsinam D) @25)

If A,—0, then k, —0, x and y—>cos(2m %) ,y and ¥ —>sin(2m %).

For strong solenoidal field (Qy>>m, QL2>>Aq) approximate expressions for the
frequencies can be written as

~ + QQ"_Z + qu
Q=T o 2O mxD, T2 v m)
L2 A
O~ 30,0, 12 mm (26)

Using Eq.(26) it is easy to eshmate «chromaticities» 172, i.e. derivatives from
frequencies on momentum deviation z=Ap/p:

qu(QL +m)
im0, 2wy

For A=0 and Q0=0 K‘]_zso, Ql = Q]_, Q2=0, and

27
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=, exp (10, ;é) +Cy

This is a standard solution for Larmor oscillations of a particle in the solenoidal
field. For small spiral focusing gradient the motion consists from two components:
fast rotation with frequency near the cyclotron one (this mode appears due to the
angular spread and its amplitude for our conditions is much smaller than the
amplitude of the slow mode) and slow rotation with small frequency, amplitudes and
phases of both modes are modulated with wavelength equal to the spiral step.

b. Stationary orbit and dispersion function

Let us consider onme particle oscillations forced by a harmonics of the
electromagnetic field which doesn’t depend on u (for generalization of the problem,
with exponential dependence on time) In this case right hand side (RHS) in Eq.(7) is

defined by:RHS = a, exp[l(n = - m — - at)]. Takmg into account that g g ! g
we can find the followmg soluhon of Eq.(7):
u= {Aa(An) exp[l(n— - o)) + A exp[-i n—— - 2m— -2} (28)

A(/’» )

Here 4, = (n - m - /SR, £2is the revolution frequency, determinant Ay(4,) is
defined by substitution A, m Eq.(11),

A) = Aa’ - vi?) (A" - v2D) (29)
The resonance appears if

Q=n+0, orawQ=n+2m+Q

Q=n-0s orafQd=n+2m-Q, 30)

We sce that besides the main harmonics it appears the harmonics shifted on 2m.

Amplitude of the stationary orbit (for @ = 0) is defined by:
[{A2(An) £ A (31)

[tan] = |@0) 7~ A( i)

Analysis of these expressions has shown that the more dangerous case
corresponds t0 main harmonics. For strong solenoidal field (Qi>>m, O 2>> A,)

amplitude of the forced oscillations for resonant harmonics is defined by
fnlmax = |an] (..QL“J)-l (32)
where £is a deviation of the frequency from the most dangerous resonance.

— _—_—
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By use of Eqgs.(28,29) we can calculate dispersion function (‘¥ - function) and
momentum compaction factor «. substituting a, = (Ap/p)Y/R, n = 0 and w = 0. After
simple algebra we obtain:

Hs)=R (Qoz . Ay I+ A, exp(2imz/ R)

anm* +2mQ, - 0, am® +2mQ, -0,

(33)

We see that in modified betatron due to a coupling of the transverse modes it
appears a vertical component of the dispersion function. A momentum compaction
factor is defined by

A 2
a— (Q02 + g )_l

N 34
4m* +2mQ, - 0, 34

¢. Beam transverse size and temperature

For our purposes it is necessary to get small particle temperature. Let us
assume that the beam is matched, and therefore phases of the complex amplitudes a;
have uniform distribution in interval [0, 2rt]; then using Eq.(19) and averaging on
phases and amplitudes, we obtain:

<> <> = 0.5<wi> [1£24, cos(Zm%) + k] +0.5< wp > [172k, cos(2m%) + k)

<> = <> + <= 0.5<w> (1 + kD) + 0.5<wy > (1 + k) (35)

Here symbol < > means averaging on particle ensemble. Correspondingly, for mean
squared derivatives we have:

<(®Y>, <> =0.5<w> —R% [0 £2k,0,(Q, +2m)cos@m—) + k*(Q1 + 2mY' ]+
0.5<wy> h}f [0.* 72k,0,(0, - 2m)cos(2m %) + k(0 - 2m)’)

V>~ o5 (s [QF + k(O +2mP] + <wy> [0 + kX Qs - 2P}

2R
(36)
Using Egs.(35, 36) we find, that
WY)R  C0 +hHQ +2m) 1+IQ)" +K,"(Q, ~2m)’] 37

r*) CA+k7)+0+k7)

Here C = <w;>/<w,>. It is seen that <(#')>> reaches minimal value if C = 0, i.e.
amplitude of the «fast» solenoidal mode is equal to zero (<wy>= 0); then
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2 2 _ 2
(P in = <> 1 Th (O 22 ] (38)
1+k,
Minimal transverse energy (7' )min 1S expressed by
g O G, - 2m)) 9)
(T = Tos 20 5% (39)

where 7y is kinetic energy of the particle.

ADVANCED TENG’S ALGORITHM.
a. Brief description of Teng’s theory.

Theory developed in paper [2] permits to use Courant- Snyder representation
for coupled transverse motion. Let us write the equations of motion in Hamilton’s

form with the Hamiltonian

= SPRAP)+LPy-Pyx)+ S FR+Kay+ S Gy (40

where Py and Py are moments conjugated with x and y, L, F, K and G are periodic in
¢ with period 27R (R is an average beam radius). In our case

 L=05%, F = Acos(2kz) + £22 + 025022
K = A sin(2kz), G = -Acos(2kz) + €32 + 0.256%> @1
Using Eqs(38,39) we obtain the following equations of motion:
H N
¥ = de—P,‘+Ly, )/—dDy Py-Lx,
Px’=-g:=LPy-Fx—Ky, Py’=-£§=—LPX—Kx-Gy. (42)

It easy to see (excluding Py ,) that this system coincides with Eq.(1).
Teng’s theory permits to find canonical transformation R to new coordinates J’

of the form
V=R'X (43)

where

(44)

<V e Yo%

-_— _
—— e T T T \J
-—
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In Eq.(43) R 1s 4x4 matrix depending on s, the motions described by » and v
are decoupled. Solutions for each new variable can be written in the Courant-Snyder
phase-amplitude form, containing periodic parameters analogous to usual Twiss
parameters. The periodic parameters are related to the single period matrix in a
fashion similar to one-dimensional case. However, our analysis have shown that the
direct use of the theory is impossible due to discontinuities of some of parameters. To
avoid these problems we suggest to use some new «projecting functions» which are
continuos (together with these derivatives). Moreover, we introduce new «direct»
method derivation of phases of the uncoupled modes. The corresponding procedure is
described below.

b. Calculation of «single-period transfer matrix»

Let us introduce the transfer matrix 7(z,, z1) connecting the state of the motion
at z, to the state of the motion at z; according to

X(z2) = Iz, 2:) X(z1) (45)
For periodic system, the «single-period» transfer matrix defined by
Tz) =Tz + Lper, 2) (46)

is also periodic.

Let us assume that the beginning of the period corresponds to a point z = 0.
Matrix 7(z) may be calculated by direct multiplication of the «section matrices» of the
period which could be calculated if the parameters of Hamiltonian are constant in
each section (the corresponding expressions are given in Appendix). Matrix 7(2) is
connected with matrix 7{0) by

T(2) = Tz, 0) TO)[71(z,0)]" (47)

Let us mark that there is a simple coupling between motion in canonical

variables X and a motion in standard variables which is defined by vector X*. In
these variables equation of the motion can be written at the following form:

XN(zz):TN(zpz])XN(zl) (48)

Non-canonical matrix of the motion 7%(z,,z,) is connected to the canonical
matrix of the motion 7(z,,z,)by the expression

T¥(z,,2,) =IM(2,)T' T(z,,2,) M(z,) (49)

Here I -




1 0 0 0 1 0 0 0
0 1 Iz) © . 0 1 -I() 0
-L{z) 0 O L L{z,) 0O 0 1

These equations can be useful for checking of the numerical code and
derivation of the matrices for separate focusing sections with constant parameters.

¢. Calculation of «characteristic matrices» of the normal modes
A 2n*2n matrix T which satisfies the condition
TST =S 1)
is called «symplectic». Here 7'is transposed matrix (i.e., a matrix with 7, =7,), S'is
2n*2n generalization of unit «symplectic» matrix

()

The Jacobian matrix of the canonical transformation has this property; from the
other side, matrix 7(z,, z;) gives the canonical transformation from X(z;) to X(z;) and
therefore it is symplectic. The symplectic condition (49) gives n(2n - 1) relations
between (21)? elements of the matrix. In our case #=2, and, consequently, the single-
period matrix 7(z)contains 10 independent parameters. Our purpose is to express all
Courant-Snyder variables through these parameters. Let us represent the matrix 7{z)
in the following form: '

M n
[

Here M , m, N and n are 2x2 matrices. From the other side, matrix 7{(z) can be
written in the following «symplectic rotation» form, which for two dimensional
motion is

| _( lcosg D"sin¢)(A o}[lcosys —D"singtj

T(z)—(—Dsindf ITcosg J\O B/ Dsing  Icos¢ C2)
or

7(z)= RUR™ (55)

Here A, B and D are 2x2 symplectic matrices, each of them requires 3 parameters; the
tenth is the angle §. These ten parameters are expressed through ten independent
parameters of matrix 7{z) by the following expressions:
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1 imi + 1
COS 14y — COS g4, :ETr(M—N) lJr——Zﬂs—‘t 7 (omm)

[ 7r(M - M)
_1/2Tr(M - N)
" cosp, —cosy,

0s2¢

e NS
" (cos, —cosp,)sin2g
A=M-D 'mtang B =N + Dntang (56)
Analysis shows that this system has «break points» when 7r(M - N)=0. Let
this condition is satisfied for z=z, ;moreover, let us denote all the parameters
corresponding to the left side of this point (with z =z, - §; where § is an infinitely
small number) by indice - , and the parameters corresponding to the right side (with
z =z, +J) by indice +. Then we can write;
(cos iy —cosgy, )™ =—(cosy, —cospy)’, @ =-®*, D" = D"
A" =M-D"mian® ,B" = N+ Dntan®"
A" =M+D 'mtan® ,B* = N - Dntan®" (57)
These breaks result in the corresponding breaks in parameters of the normal
modes. In order to confine the invariant mode amplitude let us introduce discrete
function N(z), which is equal to a number of the breaks in interval [0, z]. Then we
can introduce matrix A4°, which is defined by

A'=A4, A’=B 1If N(z) iseven
A'=B, A’=A4 if N(z) isodd (58)
To confine the continuos change of parameters it is necessary to change also
the matrix R and to introduce new matrix R’:
R'=R, if N(z) is even

5

_(D7'sing  Icosy J if N(z) 1s odd (59)

T Jcos¢ - Dsing

d. Calculation of Twiss parameters for the uncoupled modes

If matrices 4° are known, the values of corresponding Twiss parameters can
be found from the following standard equations:
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a, B 1 0)
< = i M = $ s M = 60
A® =Tcosp, +J sinp;J (—h —aJ’I [0 ) (60)
Using this equation, we obtain
B =4, Isiny,a, = (4, ~cosp)/ sinp,.y, =(+a’)/ B, (61)

Then we can write the solutions for uncoupled modes in standard Courant-
Snyder form:

. fw, .
u= jwp cos¥, Py=- v':’i (sin¥] + o cos 1)
v=[w,, cos ¥, P, = - \J% (sin¥ + a cos B) (62)

In Eqs(62) phases ¥ are defined by
¥(2)=SF2)+ 5 (63)

Here w, and y, are invariants of motion for separate particles, &%¥(z) are functions
characterizing the corresponding normal modes. Analysis of these formulae have
shown that gy, are continuos functions, but o, and 5%(z) have jumps in break
points.

¢. Calculation of the phase functions for the normal modes

Let us mark that phase functions S%¥(z) are not defined by the procedure
described above. In Teng’s paper it is given the following expression for ¥ ,(2)
(which does not coincide with standard Courant-Snyder theory):

Fia)= [ (64)
0 .2

However, numerical calculations have shown that this expression is not valid
for break points(where phases have jumps), and therefore it is not applicable to the
calculation of the phase functions. To avoid this problem we introduce special
procedure, based on calculations of trajectories for «probe particles». The first step in
the procedure is a calculation of Twiss parameters for a point z=0. Then we find X(0)
for two particles:1)w; = 1, wy = 0; 2) w, = 1, w; = 0 (for both particles y,=0). Then
for both particles we have found vectors X(z) by use of Eq.(45). Then, using
equations (62), we can write the following evident expressions for the phases:

¥ = arccos(%) if sin ¥, >0
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2z~ arccos(j/%) if sin ¥, <0 (65)
Here
sin'¥, =— /B P, +a, —-y,: . (66)
VB,

Expressions for the second mode can be found by the corresponding change of
the indices and a change u, P, on v, P,.

f. Calculation of the «projecting functions»

For the most part of the applications we are interested not in the normal modes,
but in physical variables (coordinates and its derivatives) expressed through invariants
of the uncoupled normal modes. Using Eqs(43),(62) we can find, that components of
canonical vector X are defined by

Xi=3 . whIL, cos¥, - T, sin¥,] ©67)
Here
a, ; i 2+2s
7;,:’ = Rj,lns - leus E:TZ,AJ = ﬂ)ﬁ' (68)

Components of the vector of physical variables X* are defined by the similar
expressions for compoments with j=1,3 (x,y), but for components with j=24
(correspondingly, for ¥’ and /) expressions for 7 are changed:

R1,2+Zs + LRS.Z& s

a‘
I;,:z = Rq.uzs + LRJ.HZ: - —(R1,2+2: + LRs‘uz: )r Tz,sz = (69)
b B
Q, oy R 2428 LR, ,2+25
7;,:4 = R4,|+z: - LRl,st - "ﬁ— (Ryz42s ~ LRI.2+2.1)’ 12.34 = -2 B Lo (70)
§ £

After simple algebra we can write these expressions given Eq.(67) in the following
form:

X =T w®, cos(¥, +7,) (1)
Here
O =BG B,
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R

j a; j 2418
7;,.;} = Rj.|+’l.t -Rj.bls F1E“J == jﬂ - (72)
. T’ .
¥/ =¥, +arccos— === f .,/ >0
J@ Y (L)
L/’

(73)

Y 427 — arceos—rm—————r——ma ifT <0
) J@ + (@, )

g. Calculation of betatron ‘frequencies and periodical components of the
«projecting functions» phases

In calculation of the betatron frequencies (J; it is necessary to take into
account, that the phases ‘¥, are defined in interval (0,2x), and in real calculations we

can observe «jumps» from 27 to zero and back (from zero to 2x). Let AM(L,, ) is a
number of «direct» jumps, and M,(Z,,,) is a number of the «backward» jumps; then
we can find betatron frequencies from the following expression:

1
Here N, is a number of the magnetic periods in the ring.

For some applications it is useful to write the phases of the projecting functions
in the following form:

¥ = z;:g,% 807 +7, (75)
Here 86/ is periodic functions with a period equal to a period of the magnetic

system.

h. Calculation of the invariant matrix

In accordance with Teng’s paper, invariants w; are expressed through canonical
variables by the following formula:

W, = Z(Gi,j,)m X, X, (76)
ij
Here matrices (G'#)™ are defined by

(G‘)"‘":S’R(Jl OJK(GZ)W:SR(O 0) )
0 0 0 J,




14

However, usually it is more interesting to know the expressions of the
invariants through the physical variables which can be written as follows:

ws = ZGLJJ Xl v XjN (78)

Here matrices G are defined by:
G* = M(G,)™ (M) (79)

i. Calculation of periodic dispersion function
Dispersion function (in our case, two-dimensional vector) is defined by the

following column:
l},l
¥ 80
Y= Wy ( )

)

This function can be found by use of standard matrix formalism. Let vector
B(z3,z1) is a particular solution of the following non-uniform system of linear
equations for zero initial conditions:

1
R(z)

v+ vy + 2% - A [x sin(2kz)-y cos(2kz)] =0 (81

, Due to a periodicity of the dispersion function its value in initial point (z = 0) is
defined by:

W vy + 02 - A [x cos(2kz) +y sin(kz)] =

¥(0) = B(L,., 0)+ T(L,, ,0)¥(0) 82)
In intermediate points
P(2) = B(2,0) + T(z,0)F(0) (83)
These formula permit to find ¥(z) by use of special computer code. Let us
mark that in a presence of the momentum deviation an expression for the invariants
becomes the following:

W= 3G, XE X - % TG (X W, X )+(é;i)‘l TG, Y, (84)
iJ g iy
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3. MAIN PHYSICAL EFFECTS IN NON-SYMMETRICAL MODIFIED
‘ BETATRON
a. Transverse size and temperature of matched beam

As for symmetrical betatron, the matched beam should have uniform
distribution on phases ;. Squaring given above expressions and averaging on phases
we obtain:

(X = %Z @, (83)

Let us underline that the injected non-matched beam becomes matched due to
phase mixing which is connected with linear and nonlinear spread in betatron
frequencies of the normal modes.

In order to find <w> we should substitute in Eq.(84) values of all parameters in
a point z=0 and make an averaging on the ensemble. The second member in right side

of the Eq.(84) is equal to zero since < %>=0. The first member could be simplified if

we have injection with radial symmetry (in this case {(x,)*}={(3,)*=0.5{(r,)" ;=d’,
{xo30)=0, {(x,)?)={( )} =b", {x,', }=0). Then we obtain:
(86)

[ it

W =a* (G, +G, ) +8(G,, +G, ) t0, Y. G, 4,4
iy

Substituting found values of ‘\w in Eq.(85) we can calculate beam size and
temperature.

b. Invariant growth due to Coulomb scattering

Coulomb scattering of the circulating particles results in a growth of transverse
invariants for the normal modes. By use of Eq. (84) we obtain:

(Aw,) =05 <(G,** +G,**) > (A(8*)) 87

Here sign <> means averaging of the corresponding elements on the ring’s length; .
m. s. value of the squared scattering angle of (A(6%)} is defined by:

/ £ Ar

LA =Y -

A(G%);=( pcﬂ) X

Here E,, = 25 MeV, X, is a radiation length of the residual gas in g/cm?, Ar is a

length of the particle inside the gas (as well in g/em?).

(88)
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¢. Forced oscillations

Let us consider oscillations forced by an external electromagnetic field which
doesn’t depend on transverse coordinates but has an .arbitrary dependence on
longitudinal variable and sinusoidal dependence on time (account of this effect it is
necessary for investigation of the dipole oscillations stability). In this case additional
member in Hamiltonian can be written as follows:

6H = Re[f(z)x exp.(-ia)] (89)
Here f{z) is a known complex function of z. Substituting x from Eq.(71) we obtain:
SH =Re[f(z) 3w, @, cos¥,' exp.(-ian)] (90)

Let us consider the first member in Hamiltonian. Representing cosine as a sum
of two exponents, taking into account Eq.(75) and limiting ourselves by analysis of
the second (negative) exponent, we obtain:

SH=0.5Jw, |0, Re{ flD)exp[-i60, @)]exp(-iQs 7, - ir-ian)} (91)
Let us expand periodical function
F(z)=fz) @, (z) exp[-i58/(z]

in complex Fourrier series on variable z:

F@)= Y c, explion,2) ©2)

A==

Then we obtain;

SH = 0.5w, Re [exp(-iQs s - i - i) Se, explioz) ] (93)

n=—c0

Separating one member of the series and taking into account that t =z /v (vis a
particle longitudinal velocity), we obtain:

SH =g w, cos[(-Qs +n- ") - %+aa] (94)

Here g = 0,5|c,|, @n = arg(c,). Taking into account that w, and y are the canonical
conjugated variables (since u, P, are the canonical conjugated variables as well) we
obtain the following pair of equations:

e =2, g sin(z)
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W 8 o5+ e (95)
dz W,

Here £=(-Qs+n- =)/ R, z=(-Os+n- ~)5 - p+

ere £=(-Us o L X = (-Us o R ¥t

This pair of equations can be written as a complex one:
da

= ~ig-isa ' (96)
Here a = ./w, exp.(ix). Stationary solution has the following form:

a=-gle o7
The resonance appears if

o =n-0 (98)

rev

We see that this theory coincides with standard theory for uncoupled
oscillations; a single difference consists in more complicated formula for the
resonance width. Using these formula, we can derive the following expression for
forced oscillations:

xfz) = ,\/’E)j(;j Re{ mg_w_ cos [n %+ a, +86.'(2)]exp.(-iw)} (99)
n-Q - - -
3 Q !

rev

e. Influence of arbitrary order field perturbations

Let us consider an arbitrary order perturbation of the Hamiltonian, which can
be written in the following form:

OH =3 fu(2)x"y" " (100)

Substituting x and y (Egs.(71)), considering only one mode and neglecting all
low order terms, we obtain:

SH=)* LT 1@ @) codp@, E 4y 4mo0 +(p-mo0] (101)
and expand complex periodic function
1 " om
H2)= 5 2 fu(aX D)2 (@) * exp.{=ilmd¥,” +(p—-m)o¥, T} 102)

in Fourrier series on variable z:
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F(zy=).c, exp.(inl%) (103)
Then, omitting all members besides the resonant one (with number ») we obtain:

SH = g(w,)? cos(py) (104)

Here g = c,,l A= —;—[(n - pQS)%— pr,]. We see that this Hamiltonian has a standard

form of one-dimensional non-linear resonance and can be analyzed by standard
procedure.

f. Coulomb shift of the transverse frequencies

Let us assume that Av;,"™ (maximal shifts of the normal modes betatron
frequencies) are known. Then we can write:

Py =min(Av 2™/ Dy 5) (105)

&, .
Here D;, are comresponding derivatives (D2 = —;). Using Egs.(4) we find the
following expression for the maximal current:
Lin=0.25 (BY* In Pl (106)

Values Av;,"® can be defined by examination dynamical aperture and (or)
resonance widths, values of derivatives can be calculated numerically or by use of the
corresponding analytical procedure. The additional member in Hamiltonian can be
written as follows:

P 2

T8, +b,) b, by) (107)
Here b., = <x’,y*>. Substituting x and y, taking into account only one mode and
averaging on phases, we obtain:

Po, @) 0

M= 16, +5) 5, 3, (108)
Using Hamilton equations, we obtain:
1 3
. ‘@_‘ = i_ (3‘_ + .(DF,,) > (109)

@ 327 (b,+b) b, b

£
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g. Longitudinal instability
Dynamics of longitudinal motion in modified betatron is the same as in
standard ring, and therefore we can use the usual criterion for longitudinal stability of
the electrons and positrons, which can be written as follows:

1< 4FoUe B 70| o7 ; L (110)
Z, ! n{_

Here / is the beam current, U, is «the electron rest voltage» (U, = 510 keV), Sand y -

relativistic parameters, 7= ¥~ - @, a is a momentum compaction factor, o is a spread

in momentum deviation (half width on half height), Z, is a longitudinal coupling

impedance of the beam for a mode with number #n, factor Fioge takes into account the

real form of the stability diagram (in standard Keil-Schnell kritherium Figng=1).

For non-relativistic beams longitudinal impedance is defined by space-charge

component Z,* which can be calculated by use of the following expression:
Zm =7, B y40.5 + In(h/b)] (11

Here Z, is a free space impedance (Z;=377 ), A is the beam size, b is the chamber
radius.

The most critical problems are a choice of reasonable values of or and Fign,.
The maximal threshold corresponds to a case when the following conditions take
place: 1)dynamical aperture on the momentum spread o significantly increases o
2)beam is «space-charge dominated», ie. its space charge component of the
longitudinal impedance Z,* is much more than the last sources of the impedance;
3)the beam distribution has long tails. Then it is possible to show [4] that with good
accuracy

Fiog = (o0)’ / 201 (112)

h. Transverse dipole instability.
Now let us consider coherent oscillations, when

Sz, =[x )+ oy ()] (113)

Here oy, y are some complex constant (in the further text we will consider a case o, =
a, = a), <x, y> are averaged on all particles of the beam. Moreover, let us assume
that

{x, y>= Ao, ,(2) exp.[i(n—;:2 3) (114)

Then we can write the additional member in Hamiltonian in the following form:
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8H, = — Ad\w, [, ()], (2) cos(Q, % +80 +y) +

0,(00.1 (&) 0ox(Q, 7+ + 7,1} explin -~ an)] (115)

Let us represent cosine as a sum of two exponents and assume, that only one
exponent, corresponding to slow wave, is resonant. Then this Hamiltonian could be
written as:

SHy = — 44w, F,@)explitn -0, )i ~7,] (116)
Here
1 —
F(2)= i[¢x(z)\/5,‘ (2) exp (-i68.') + @, (2)\ D, (2) exp.(-i86,%)] 117

Expanding F(z) in Fourrier series, omitting all members besides a member
with zero indice and separating the real part, we obtain

8Hs = ~ Cyofow, cosl(n=Q,) 7~ ot ~7,] (118)
1 LFI
C,= LW ];F,(Z)dz (119)

This is a standard Hamiltonian which was analyzed carlier. Corresponding
solutions could be written as:

xXy=- MSCQ JE ;"'; exp.(i66,"* Yexp.[i (n}% - wt)] (120)

w

Here g:n—Q,—Q.

Averaging on i we obtain;

<>, <Y> = - AC, I, 2 exp.(iaeﬁ)exp,[i(ni} — ) (121)
Here dispersion integral
_ T Sfwau ~
== (122)

Comparing Eq.(121) with Eq.(113,114), we find, that
., = ACol,J®. exp.(i86,")] (123)
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These formulae we can substitute in Eq.(117,119), we obtain standard dispersion
equation, which has the following form:

1= UK, (124)
where

1z .
K=, 1@, @)+ @) (125)

Analysis of this dispersion equation shows that the stability criterion can be
written in the form similar to the standard one [4]:

18 Y aFL Byinl wASS (126)
RZ 1
In Eq.(126) S;=n—v.+I; / n, where I is the ring chromaticity, factor F, takes into
account the form of the distribution function and character of the impedance (F\,>1),
and additional factor A; is defined by:

_K.0
A= R 127
Transverse impedance Z; for non-relativistic beam is defined by standard expression:

Z, =iRZ,f*y Hb2-h?) : (128)

4. NUMERICAL CODE ATA AND ITS APPLICATION TO LEPTA

We have written numerical code based on described above algorithm ATA,
which calculates all linear characteristics for transverse motion in the ring with strong
coupling of the transverse degrees of freedom. Code may be divided on three parts:1)
input subroutine; 2)subroutine for calculation of supplementary characteristics; 3)
subroutine for calculation of the output functions. As a unit of length in the code it is
used cm.

Input subroutine includes optical scheme of the ring, which gives dependence
on the longitudinal variable all the coefficients of Hamiltonian (L, F, K and G, see
Eq.(40,41)). All coefficients are supposed to be constant at each section of the ring; if
the ring includes a part with variable parameter, such part is divided on small sections
with constant parameter whose amplitude is changed from section to section to
simulate the known law of change the initial parameter.

Calculations in the second and third subroutine are performed for given set of
points inside the period. The second subroutine calculate the parameters of the normal
uncoupled modes introduced by Teng. This subroutine includes: a)calculation of the




22

single period transfer matrix; b)calculation characteristic matrices; c)calculation of
Twiss parameters; d) calculation of the phase functions.

The results of the second subroutine are used in the third subroutine for
calculation of the output functions characterizing the linear motion in the ring. The
subroutine includes: a)calculation of the amplitude projecting functions®,’ and phase
projecting functions 68 ; b)calculation betatron frequencies of the normal modes;
¢)calculation of the invariant matrix; d)calculation of the dispersion function and
momentum compaction factor. Let us mark that functions @' and ®; can be
considered as a «projecting A-functions», correspondingly, for x and y (these
functions has a dimension of our unit of the length - «cmw»). Functions ®_* and ®,°
are projecting functions for derivatives and has a dimension «cm™». Sometimes it is
convenient to use instead of ®,’ «amplitude functions» 4, =./®_ ; let us underline
that functions 4, andé@ has a physical sense of «amplitude and phase of
projecting Floquet functions».

This numerical code was applied for calculation of the linear parameters for the
ring «LEPTA» which is now under construction in JINR (Dubna, Russia). The
scheme of the machine is given in a report of A. Sidorin «Peculiarities of LEPTA
design», which was made at the second-meeting of the INTAS collaboration (Dubna,
13-14 0f November, 1998). The main parameters of the machine are given in Table 1.

Table 1.

Circumference m 18.12
Positron energy keV 10
Révolution period nsec |300
Longitudinal magnetic field G 400
Major radius of the toroids m 1.46
Bending magnetic field G 1.75
Gradient of quadrupole winding | G/cm | 10
Positron beam radius : cm 0.5
Number of positrons h 1.0E9
Residual gas pressure Torr [1.0E-10

Using numerical code based on described above algorithm ATA, we have
calculated for ring LEPTA all the characteristics of the normal modes: 1)betatron
frequencies; 2)16 projecting functions: 8 amplitude functions @,/ and 8 phase
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functions 56,/ (s = 1,2; 7 = 1,2,3,4); 3)8 diagonal coefficients matrix G, ,*. The most
part of these functions are constant (or oscillating with small amplitude) in all ring
besides the section with quadrupole winding; however, inside this section amplitude
functions for derivatives sharply increased for «slow» mode (in our case slow mode
has index «1»). The typical example is given at Fig.1 (dependence 4,' on z).

] I
093 1 :
| IA1 |
092 i

!
i 091 Jr

09

0.89 +

0.88 +
087 +

086 +

085 | z,cm

084 —+ t +
0 500 1000 1500

Figure 1. Dependence of amplitude function for the first mode on z

Besides, inside the section with the winding the phases of the projecting
functions begins to grow (see Fig.2).
,70.3-,- l ]

1
¥4
025 1

; 02 -
0.15
01+
0.06

— |

500 1000 1500 z,cm

Figure 2. Dependence of ¥, on z.

Simultaneously we observe increase and (or) sharp oscillations of some
elements of matrix G, ;*(see Fig.3, where it is plotted function G,,").
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Figure 3. Dependence of G;;' on z.

5. DISCUSSION

An attractive feature of the symmetrical option of the modified betatron is its
simplicity which permits to find analytical formulae describing the transversal motion
of the particles. However, real machine (for example, LEPTA) is very far from
symmetry, and analysis of dynamics could be made by use of Teng’s theory. Our
analysis has shown the direct use of this theory is impossible due to a presence of
break points, where integral expression for phase advance derived by Teng becomes
invalid. We suggested an advanced algorithm which permits to overcome this
difficulty. Due to mentioned above jumps Teng’s uncoupled modes are very artificial
«objects», and in practice the more convenient way is connected with an introduction
continuos «projecting functions», which permits to express particle motion through
invariants of the Teng’s modes (these amplitude and phase functions are similar with
amplitude and phase of Floquet functions in standard theory of the uncoupled
motion). However, for the coupled motion their number is increased in 4 times (16
instead of 4).

Application of this method permits to find a solution of a number of «classical»
problems: analysis of the size and temperature of the matched beam, investigation of
the resonances due to field perturbations, analysis of the transverse dipole instability
and so on. In conclusion we would like to underline that a lot of the important effects
(for example, intra-beam scattering) was omitted in the present paper. We hope that
the further development of these ideas will give good msight in physics of so
complicated facility as modified betatron.
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