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. Equalions describing the bubble evolullon in the theery

with degenerate vacuum in extornal gravitationil fields with
the Friedmann and de Silter metrics were received. flors ve shov
that the bubble doss nol collapse in Lhe de Sitter space-Lime.
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Bubbles determed in \I1\ for the theory with

the degenerated vacuum by the Lagrangian: -

208)=1 203828022 | €
(here A and 7m are constant) were regarded later jin the theory
with the metastable vacuum 2\, and_ they were investigated rather
carefully in papers 3\ with the same Lagrangian (1). A number of
papers M\ examined the influence of the own gravitational field
on the bubble dynamics. But the problem of the gravitation influence
on the bubble evolution may be coinsidered in a different way. We can
imagine the case when the influence of the own gravitational field
may be neglected in the background of a strong external field .

Here we investigate Lhe bubble evolution in the theory
described by the Lagrangian (1) in the background of the external
metric of the type: a) Lhe expanding Friedmann space-time \5\

(here the cosmological constant A=C and the pressure of matter p=0):

dsC=aZ(n) (dn®-dyP-sh®y (d8%+s1in®8 dgd)?, @
here a(n)eag(ch y -1); b) the de Sitter space-time \B\ (A=3HC, and
H is the Hubble constant)

ds®=dt2-22(1)1dre+ r2(dsPrsin®e a1, 3
here a(t.):aoexp(Ht.). There is exist a large number of papers
investigated the behavior of physical fields in the de Sitter
metric background taken as 2 vacuum ( see, for example, \7\ and
references there). The scalar field action for (1) cx:e-l,nm
‘with the minimal interaction in gravitational field has the
standard form: .

S=fdz *g [ g*¥ 9 19, ~(¢%-121 . 4
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Whence we get the following equations of motion for the scalar
field in metrics (2) and (3): '

n® @ 33 0y @y, 2 chy / shy ¢, +2a%(m) KP-D0, (D)
here the initial goudition is :@lng)=th lalng)(x~ 290): On(no)ao;
as they correspond to the rest bubble far the momentn=n, when x, is
large enough. By the analogy to the previous case the equation
in the de Sitter space-time is:

by ¢ 3 mate - artaPy - a0 24F-1020 8
with initial conditions: #t,)=th [a(t.o)(r-ro)l. ¢t(?.0}=0.

The equation describing the bubble radius evolution can be
written using two met.‘hods: the first one is the “contracted action”
method, first regarded in the paper “2\. Following to this method
the action for the Friedmann space-time was obtained using the
expression (4):

S=1dn a3(n) shiy vT:;nZ 0
and the corresponding equation of motion is:
Xon* 2 chy /shx( 1—z§) + 32,72 znu—x%):o. )
Chere x(n) is the bubble radius). By the analogy for the de Sitter:
S=f dt a2(LIRRY 1-a°RF 1))
and

R+2a R 11-2%2) + 3 aalR(1-2%% + aa R = 0.
here R=R(t) is the bubble radius.

It is possible directly get the bubble radius equation of
motion from éqat.lons (5) and (6) using Lhe second method . It was
developed for the flat space-time in the paper \8\. Here we describe.
this method when applying it to the curved space-~time of metrics




(2> and (3). We shall search for the solution of the following
equation:
175 (5 g% ), +28(¢P-1)=0

in the form ¢ = tha, here a is the new variable . When passing
to the limit of infinitely thin wall this exact equation
disintegrates into two equauons '

g aiak+1=d2f

175 (v g**a) =af
here f is some function which has not infiuence on the form of
the bubble radius equation of motion. Nexi transformations depend
on the concrete type of background metrics. For the space-time (2)

€112

we insert the parametrization resolving the first equauon (11):
a = (1-d20)1%1-v8) 12

q:=-va(1-aaf)14(1-v2)'1/‘" a2
The function v is the velocity of the surface- (a=const)~ motion:
vEmaa, . As the bubble radius is the radius of the surface a=0 in
this terms, we get the equation for the radius using the formila
(11), and this equation coincides with the term (8). Besides the
equation(8> the given method allows Lo get the additional information
about the bubble behavior due to the integrability condition
Gy 3y BY analogy this construction may be done for the de Sitter
space-time:

ap <a(1-a21)12(1v2ad) "1 2

a =-var1-2N 12123 172 1
The resulting equation for the bubble radius R ( the surface a=0)
coincides with the term (10).
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Equations (8) and (10} were solved numerically using the
Runge-Kutta method for initial conditions of the rest bubble
at the time tg5 : x(0)=Ry m 2€0)=0. cmpgted‘ results for the
eq.(8) are shown at Fig.1. Here we see that far any initial values
Rg the bubble collapses. The eq. (10) has more complicated behavior
than the eq.(8). For Ry < Ry,% 1.22 the bubble has time for
collapsing. But for the initial radius Ry which is more than the
critical radius R_.., the bubble does not collapse (see Fig.2.
After the primary small compression it temds to the steady
asymptotical value Ras‘ There is the picture of the dependence of
the asymptotical radius R,. on the initial radius Ry at Fig.3. Thus
in the region of applying of the equation (10}, that is the region
where the bubble radius R >> ~ 1,here ¢ is the width of the wall,
the bubble never collapses. Notice here that the equation (10) has
the exact solution : ’
' R=Cq*ag H lexpC-Ht)
(Cq is the arbitrary constant ), but unfortunately it does not
satisfy to the initial condition R(0)=0. For obtaining the solution
satisfying to this condition it is need to expand the function R
on powers of exp(-2HL): ©
R:}__:‘?)Cnexp(-axu.‘lt)

The resolution on non collapsing of the bubble in the de Sitter
space-time is confirmed by the computation of the exact equation (6],
these results ( together with computer investigations of the eq.(5) )
will be publicized later.

Athors are . thankful to A.S.Gorsky,A. D.Dolgov,L.B.Okun and

K.G.Selivanov for useful discussions of the paper.
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FIGURE CAPTIONS
Fig.1 The dependence of Lhe bubble radius y on conform time 7
for jinitizl conditions: a) p®=1.5;, b) 0)=5.0 in
the Friedmann space-tiime metric.
Fig.2 a,b.c The dependence of the bubble radius R on time t for
initial conditions:a) Ry=l.2 (collapse ); b) Ry=3.0;
c) no-w. in the de Sitter space-time metric (H=0.5
Fig.3 The dependence of the asymptotical t+ m value of the
bubble radius on its inttial value for the de Sitter
space-Lime metric (He0.5).
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