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A previous theory of equilibrium state in electron cooling system m
derived for a case when neutralization degree is near unity [1),{2].
this case the ion energy appearing due to Coulomb interaction with f;nt
electrons ie extremely small (~ eV'). For such cold ions the electric field
of the neutralization electrode is screened by the self Coulomb forces,
and the external electric field influences on the ion motion only in a very
small region with dimension about Debye radius ("sharp edge model”).
However, the recent mesurements of neutralization in LEAR electron
cooling system have shown that the real observed neutralization degree
is far enough from unity. For such situation ions are born with the ap-
preciable potential energy in the Coulomb field of the electron beam.
" Thus, without maxvellization the transversal ion energy may be essen-
tially larger than the longitudinal oge, and the transversal electric field of
the peutralization electrode may penetnte inside the beam and disturb
the ion motion. C
In our paper we have considered the following model: a) the !ong:tu-
dinal components of the external electric field are screened by the self
Coulomb forces of the jon beam; b) the corresponding transversal screen-
ing is absent; c) for simplification of the electric field calculations we have
-limited ourselves by the following geometry: the left part of the infinite
cylindrical chamber has uniform poiemwj equal to Uy, the right part has
the potential equal to zero. '
Such simple model permits us to estimate the effact wahtlcally and
to discuss its qualitative features. Really, of course, it is necessary to
examine the problem by numerical methods with account of the self-
consistent potential of the ion beam. ’ :
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2 Investigation of Self-consistent State
A condition of the longitudinal screening has the following form:

Ul 2) + Ui(2) = 0 (1)
Here U,(z) is 2 longitudinal potential of the neutralization electrode,
U;(z) is a longitudinal potential of the ion beam (we have supposed that
both potentials are calculated for r = 0), r,z are, respectively, transversal
and longitudinal coordinates. The potentials are norinalized by use of the
same condition:

Uuxt(00) = Ui(oo0) = ()

| The equation (1) with account 0!' the normalizanon condition (2) may
be written in the following form:

j““ Gz, 2)A()}e = 1 - DF(a) 3

The Green functioni G(z,2’) for ion beam Coulomb potential is deter-
mined in Appendix by Eq(17). F(z) = Uua(0.2)/Us, Uu(r,2) is the
external potential (see (20)), U = Uy/U,, U is the potential of the
uniform beam, £ = 2/b, where b is the chamber radius.

In Eq(3) A(z) is a longitudinal linear density of the jons divided by a
corresponding density of the uniform beam. We see that formally Eq(3)
is an integral Fredholm equation of the second kind for unknown function
A(z). It is convenient for calculations to write this integral equation for
argument ¢ = T — &g in the form:

F(zo +u)

[ KAy’ = 1+ e

where the kernel K(u,u’) is determined by:

@

F (iﬂq + “)
F(zg)
The value of z, is connected with U by the equation:

K(u,v) = G(u.w') - G(0,4') - ()

1-TF() = [~ G(0,0)A(s)du = p(z) (8)

We shall consider z; as a free parameter of our problem. If z; and the
corresponding function Q(u) (and, therefore, ©(xo)) are known, then the
dimensionless potential U may be expressed as follows:
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Table 1: Depeadence I upon o

ofb=1/3]afb = 1/7]
. Xg . ﬁ if
005| 094 | 0.19
0.10| 125 1.10
020 1.69 1.54
060| 352 3.19
1.00| 833 .48
7 = 130l | m

“Flzo) . .
Correspording value of the potential U is determined by the following

Uq#ﬁ’Uw ) . A (8)

U, is given in Appendix by Eq(18), dependence U upon x, for different
values of a/b is given in Table 1,

The resuits of calculation A(u) are presented in Fig.1-Fig.4. We see
that charge density of the beam is nonuniform near the boundary of
the reflecting field of the electrode. This nonuniformity increases with
‘decrease of the voltage Uy and with growth of the beam radius (i.e.,
sparameter a/b). If a transversal electric field of the electrode penetrates -
inside the beam, then its gradient ( calculated according to (20)) changes
the complete radial focusing gradient acting on the ions as follows:

2%‘) =1 - nA(s) ~ aU(§) Eyﬁnezp(—kw)

)
_ FARTLY) :
«= 23ty -

‘Here 1 is the coefficient of neutralization, e is the beam cross section
radius, J,(x) is Bessel function of the n-th index, A, are roots of Jo(z).
the summation is made for all values of k. Values of g(u)/g, are calculated
for the different parameters %, 2, and a/b and presented in Fig.5-Fig.8.
We see that without transversal screening the gradient of the exteraal
field may significantly influence on the jon focusing, moreover, a depen-
dance of this effect on parameters U7, and afb ia similar with described .
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- above dependence of ion longitudinal density. Let us underline that for
zg < 0.1 (i.e. for Jo/Ux < 1.25) near the edge of the ion beam appears a
defocusing radial gradient (g9(u) < 0), which may result in particle losses.

3 Discussion

Of course, our note does not exhaust this very complicated problem.
Particularly, we have not considered the influence of a dipole companent
of the peutralization electrode field. This dipole component may also
penetrate into the ion beam and to affect on ion-dynamics {these both
effects diminish with increase of the neutralization electrode voltage).
Therefore, such edge effects may help us to explain the influence of this
voltage on the neutralization degree, which was found ir recent LEAR
experiments. .

Moreover, it is necessary to underline that straight numerical calcn-
lation of the edge effects obligatary has to include the analyesis of seif-
consistent state of the ion beam. Such analysis (especially in three-
dimensional case) is not a trivial problem and needs in a tremendous
work, but without such work the results of siinple-heazted mimerical cal-
culations are not reliable.

4 Appendix

The potential of the uniform charged disk in the chamber of cireular
section is derived as followes. The solution of the Lapiace equation with
the zeroth boundary condition for a potential on the chamber wall is of
the form:

ApF Mz
Ule,2) = Eeadol o jezal~ 221, (10)
Here a b, consequently, are the radii of the disk and the chamber cross
section. The boundary condition is U(b,z) = 0.
The boundary conditions on the disk are the following:

au 2%0 r<a
dz {0 r>a (11

Here o is the surface deusity of the charge. Performing the differentiation
of (10) we obtain:
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(G)mo = T 2R SN (12)

When multipied by the rJ,(éH and integrated over  from 0 to b this
equation in accordance with (12) becomes the form:

‘ %[r},}(é‘f-)& = 210£r1°(ﬁ:)b (13)
Using the expressions for these integrals given in (3] we obtain:
Ji(Aa$)
& = QmmA ) (14)

" To derive the Green function for the paraxial beam we take the ex-
pression 0 = pdz = ;‘43;4:. where  is the charge deusity of particles, J
is the beam current, Sc is the velocity of particles, and obtain fram (10)
and (14):

Ji{A
ven=L 1,y ,\;f,{fl)mx. Deap-AEZZl) ()

B(z')
ln&mdudn;h(z):% and taking r = 0 we derive:
U@®.2)= 7&%’2 j: A(Z)G(z - 2')de (16)
where the Green function G{z — 7’) is defined by:
_ S(Ag) Iz - ﬁ
G(z—-1)= 2 -3 o) Z ~ Ay ) (17)

Bere [, dre the walues of 1.5 on the mﬁm&y It follows from foregoing
that the potential on the end of the uniformily charged beam is expressed
by the equation: .
Ji(Ag) .
U.=m£‘a( )dz-ﬂ z“‘(u) (18)

We evaluate also the potential of the half cylinder that has on its left
bound the condition U = U,. Taking z = 0 in the Eq(10) we obtain:

Us = T arhl(Mi) | (19)
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Petfortning the same pmcednre as in Eq(l&) we evaluate ¢, and the de-
sired potential:

vﬂm)-»v«zmm (epleap=h3) ()
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