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The method for calculation of Pu-240 self-shielding factors for the
heavy water fuel cell of the blanket of electronuclear facility for long-living
radioactive waste transmutation are presented and these results of computing
are analyzed. Variants of simplification for the cell geometry are considered.
The correctness of considered approaches is confirmed by results of the
calculation. The modeling of neutrons transport is carried out under the
reactor MCU-code (Monte Carlo method).
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The self-shiclding of resonances can considerably (or strongly in
number of cases) reduce a rate of corresponding reactions in a resonance
interval of energy. Self-shielding factors [ 1 ] are the measure of change for a
resonance interaction rate at a resonance self-shielding. The given work is
concerned with determination of capture self-shielding factors for the Pu-240
isotope and is performed within development of the project for transmutation
of radioactive nuclides. The absence of these data for dilution cross sections
0, >104 b and presence of a heterogeneous medium ( where a transmutation
occurs ) have caused necessity of these calculations.

The isotope Pu-240 has the large resonance capture integral I,, =
8475.0 b, fission resonance integral is small - I,,= 9.369 b [ 2,3 ]. The main
contribution to the value of 1,, gives the first resonance with the average
energy E, = 1.056 eV [4], i.e. at the bound of 23-rd and 24-th neutron groups
of the 28-neutron-group struciuré BNAB [L,5]

The given method of calculation for resonance self-shielding factors is
based on that at the small concentrations C;, C,, C; (where C;> C,> (C;)

of a researched resonance nuclide the rates of the resonance reaction

R:, R:, R: ( where k - is the neutron group) is directly proportional to the

concentration of this nuclide R;‘ : R: : Rl" =C;:C,:Cy,
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ie qq/qq=1mdqQ/qq=L

With increase of concentration of the nuclide ( let us at the

concentration C,) the effect of cross sections self-shielding begins

display and the linear dependence is disturbed: R: : R:‘ <Cy:C;,
iaqq/qq<1
The value
f*=Rc /R,

is the required self-shielding factor for this cross section in the group k at the
concentration C; of the cosidered resonance nuclide.

Thus for Pu-240 the dependences of capture resonance self-shielding
factors on concentration Pu-240 were determined for different neutron groups.
These dependences are obtained for infinite lattice formed from hexahedral
cells in a real and simplified geometries ( ring-shaped geometry and
homogenizated one).

The cell in the real geometry is presented'in fig.' 1. The zones are
separated by zirconium tubes. A heavy water solution of isotopes Pu-239 and
Pu-240 (zone 1 and 11) is the fuel. In a functioning facility it is provided
circulation of the fuel between the central tube (zone 1) and thin fuel tubes
(zone 11). In the zones 3 and 5 the heavy water is pumped under the pressure
of 100 atmospheres and is a heat-carrier. The heavy water in the intercell
space ( zone 9) is a moderator functionally.

Modeling performed for the cell in the real geometry is compared
below with results for the ring-shaped (marked as ‘rings’ geometry on figures
below) and homogenizated geometry. At modification of the real geometry
into ring-shaped ( fig. 2 ) the three layers of thin fuel tubes in the real
geometry are transformed into the three cylindrical fuel layers with
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conservation of the radius for the middle of the layer. I.e., the three values of
radiuses r = 5.0, 6.3 and 7.6 cm (see Fig. 1) at transition into the ring-shaped
geometry were not changed. The thickness of three fuel layers and them
zirconium jackets ( fig. 2 ) are designed from the requirement: nuclear
concentration must remain invariant. Ie., the isotope concentrations in the
zones 3, 10 and 11 of the ring-shaped geometry are equal to the concentrations
for the zones 3, 10 and 11 of the real geometry.

The further simplification of the design-basis geometry consists in
homogenization for the zones 1, 2, 3, 10 and 11 of the real geometry. The
geometry of the homogenizated cell is presented in fig. 3.

The modeling of the neutron field is executed under the reactor code
MCU verificated in calculations about 300 experimental assemblies [ 6 ]. The
height of cells is assumed equal 4 m. In calculations it was set mirror reflection
on bounds of cells and absorption at end faces. In the task specification for
MCU the temperature of cells is determined equal 300°K.

At the first stage of work the Pu-240 isotope was excluded from the
compozition of the fuel in the real geometry and the concentration of Pu-239
was brought up to the value 6.564 E-6 ( here and further the nuclear
concentration is given in units - 1024 nuclei/cm3 ) that provided %= 1.
Further  the concentration of Pu-239 remained constant in the all
calculations and the concentration of Pu-240 varied only. The modeling
was performed at the next relative concentration;
X = ( concentration of Pu-240 ) / ( concentration of Pu-239) = 0.00025, 0.0025,
0.025,0.05,0.1,0.2, 0.3, 0.5 specified on the all figures. The first point -
x = 0.00025 is used for normalization of the reaction rates and, therefore, it is
absent in the figures. Nuclear concentration of the zones for the real,
ring-shaped and homogenizated geometries are given in the tables 1 and 2 of

“on

the appendix where for the value “x” appropriate concentrations of Pu-240




are specified.

The self-shielding factors f. of Pu-240 in the zone 11 ( thin fuel tubes)
are presented in fig. 4 for the groups 21+26.The self-shielding is displayed
maximally in the group 23, in a smaller degree -in the group 24 and it is
expressed very slightly in the group 22. These groups 22+24 are the groups in
which the powerful resonance (with E, = 1.056 eV ) presents. In the group 21
the action of this resonance is not displayed, i.e. the value /. is practically
equal to unity. In the intervals of 25-th and 26-th energy groups this
resonance is also absent.However, the strong neutrons absorption in the 23-rd
and 24-th groups results in significant decrease of neutrons number scattered
into 25-th and 26-th groups. It causes decrease of absorption rate in the 25-th
and 26-th groups. In groups where resonances are not present ( group 21, 25,
26) it is more properly to tell about calculation of a functional £, instead of
a self-shielding factor. Therefore, the some figures for these groups are
denoted just as the functional f..

Self-shielding factors (with statistical errors) for the groups 21+26 in the
real, ring-shaped and homogenizated geometry are presented in fig. 5-10. For
clearness the error bars for the ring-shaped geometry are inclined left and in
homogenizated geometry - right to the vertical. Results for the real and
ring-shaped geometry are close and the error bars are overlaped. Values of
factors in the homogenizated geometry, as a rule, more than in the real
one.The maximum distinctions are exist in the 23-rd group where at X =0.2,
0.3 and 0.5 the error intervals in the real and the homogenizated geometries
are not overlaped. Such distinctions confirm the expected physical effect:
decreasing of the self-shielding at homogenization of Pu-240.

Intervals of errors and fited curves ( by exponential curves y =
A exp(Bx) ) of Pu-240 self-shielding factors are presented in fig. 11 for the
groups 17+21.The 21-st group values does not practically differ from unity and
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it confirms the correctness of the fit. The maximum self-shielding is displayed
in the 19-th group. The smaller self-shielding ( with respect to decrease ) - is
displayed in the groups 18, 17, 20. Such behaviour of the self-shielding factors
corresponds roughly to the group cross sections of absorption [5]: 67.65
b ( group 19), 42.29 b ( group18), 27.000 b ( group 17), 30.71 b ( group 20),
0.78 b ( group 21). The given figure is presented for demonstration of the
tendencies in behaviour of f, factors ( but not the value of £, ) in these
groups. In order to obtain the values of f, factors the statistics must be
increased considerably.

The considered above self-shielding factors are presented for the zone
of the thin fuel tubes ( zone 11). It is necessary to compare these self-shielding
values of Pu-240 with the values of the self-shielding in a more voluminous
central fuel tubes ( zone 1) where greater effect of the self-shielding is expected.
In a tube of a bigger diameter the large part of volume ( in comparison with
thin fuel tubes) is shielded from resonances. Really, the calculations ( see
fig. 12+16 ) give considerably smaller £, -factors for the central tube - zone 1.
In the group 22 ( where the self-shielding is small ) and group 26 ( where the
effect from neutron absorption in the first resonance is considerably reduced )
the £, -values in the zones 1 and 11 approach.

The value of self-shielding factors are obtained at dilution cross

sections O, are well large than in the Ref [ 5 ]. The dilution cross sections at X
= 1.0 in the real, ring-shaped and homogenizated geometry for groups 22+24
(Pu-239 has not resonances in these groups) are presented in table 1. In
order to obtain dilution cross sections for the next relative concentration
of Pu-240 X = 0.0025, 0.025, 0.05, 0.1, 0.2, 0.3, 0.5 it is necessary the values

in the table to divide into appropriate values of “X”.




Table 1

Cross section of Cross section of
Neutron Group Dilution (barn) for Dilution (barn) for
Real, Ring-shaped Homogenizated
and Homogenizated | Geometry (zone 3)

‘ Geomggzonel)

22 43252 86331
23 43268 86347
24 43384 86464

The results presented in figures are obtained at statistics given in the
table 2 where the concentrations of Pu-240 are specified as X-value (i.e. as in
the figures)

Table 2
concentration  of Number of Histories for the Cell Geometries
Pu-240 _
Real Ring-shaped I Homogenizated
x =0.0025 963000 720000 -
x =0.025 1656000 744000 -
x =0.05 1998000 876000 720000
x=0.1 1953000 720000 720000
x=0.2 1350000 732000 720000
x=03 2241000 720000 720000
x=05 1512000 900000 720000

The values k., (according to Brissenden evaluation - kg, ) obtained for
these geometries are presented in table 3 where errors are specified in
brackets ( i.e., for example the value 1.0031(5) means 1.003110.0005). The
closeness of values kg,; in the ring-shaped and homogenizated geometry to

the values in the real geometry confirms correctness of simplifications for this



lattice geometry.

Table 3
concentration of | Comparison of ) — values for the Cell in the Real,
Pu-240 Ring-shaped and Homogenizated Geometry

Real Ring-shaped | Homogenizated
x = 0.0025 1.0031( 5) 1.0036( 6) -
x = 0.025 0.99851(36) 0.99719(63) -
x =0.05 0.99230(33) 0.99162(56) 0.99191(61)
x=0.1 0.98126(33) 0.97913(65) 0.98159(57)
x=02 0.96084(42) 0.96007(62) 0.96013(63)
x=03 0.94273(29) 0.94228(61) 0.94146(59)
x=0.5 0.90739(37) 0.90781(56) 0.90680(62)

The author is sincerely grateful to N.IL.Alexeyev, L.P.Abagyan,
V.V.Veretenov, E.A.Gomin, M.I.Gurevich and M.S.Yudkevich for the help at
work with the code MCU.

The author expresses thanks to P.P.Blagovolin for fruitful discussion of
considered questions.




Fig.1. Geometry of the cell (dimensions in cm). 1 - liquid fuel; 2 - central tube for liquid fuel;
3 - moderator (D, 0), zone of heat releasing; 4 - tube separated flows of heat transport
heavy water; 5 - cooled volume of heat transport heavy water (zone of heat removal);

6 - load-bearing tube; 7 - heat-insulated gap; 8 - calandre tube; 9 - cold moderator (D, 0);
10 - fuel tube; 11 - liquid fuel.
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Fig.2. Ring-shaped geometry of the cell (dimensions in ¢m). | - liquid fuel; 2 - central tube for
liquid fuel; 3 - moderator (D,0), zone of heat releasing; 4 - tube separated flows of heat
transport heavy water; 5 - cooled volume of heat transport heavy water (zone of heat
removal); 6 - load-bearing tube; 7 - heat-insulated gap; 8 - calandre tube; 9 - cold
moderator (D,0); 10 - (Zr+Nb)-layer; 1] - liquid fuel.
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Fig.3. Geometry of the cell (dimensions in cm). | - liquid fuel; 2 - central tube for liquid
fuel; 3 - zone of homogenization moderator (fuel + D,0 + zirconium-niobium
tubes); 4 - tube separated flows of heat transport heavy water; 5 - cooled volume
of heat transport heavy water (zone of heat removal); 6 - load-bearing tube;
7 - heat-insulated gap; 8 - calandre tube; 9 - cold moderator (D, 0);
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Fig.4 Self-shielding factor of neutron capture for Pu-240 depending on the relative concentration of Pu-240 for
different neutron energy group. Results are given for the zone 11 of the cell in the real geometry.
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Fig.5 Comparison of self-shielding factors of neutron capture for Pu-240 for three
types of the cell geometries (Real, Rings, Homogenization) depending on
the relative concentration of Pu-240 for the 23-rd neutron energy group.
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relative concentration of Pu-240 for the 22-nd neutron group. Results
are given for the zones 1 and 11 of the cell in the Real Geometry.
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Comparison of functional f_ for Pu-240

for the zone 1 (central fuel tube) and zone 11 (thin
fuel tubes) of the cell in the REALL GEOMETRY.
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Error bars for the Zone 1 curve are incline left to the vertical
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Fig.15 Comparison of functional f, for Pu-240 depending on the relative concentration of Pu-240

for 25-th neutron energy group. Results are given for the zones 1 and 11 of the cell in the real geometry.
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Fig.16 Comparison of functional f, for Pu-240 depending on the relative concentration of Pu-240 for

26-th neutron energy group. Results are given for the zones 1 and 11 of the cell in the real geometry.
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Appendix
Table 1
Nuclear Composition of the Cell Zones for the Real and Ring-shaped
Geometry
NUCLEAR NUCLEAR
ZONE ISOTOPE | CONCENTRA- | ZONE | ISOTOPE | CONCENTRA-
TION TION
1 H 2.120E-4 7 0 1.00E-7
D 5311E-2
o 2.666E-2
Pu-239 6.564E-6
Pu-240: see below:
X=0.00025 1.641E9
X=0.0025 1.641B-8
X=0.025 1.641E-7
X=0.05 3.282E7
X=0.1 6.564B-7
X=0.2 1.313E-6
X=0.3 1.969E-6
X-0.5 3.282E-6
) Zr 4.250E-2 3 23 4.250E-2
Nb 4.250E-4 Nb 4,250E-4
3 H 2.120B-4 9 H 2.656E-4
D 5.300E-2 D 6.640E-2
o 2.700E-2 o 333382
4 Zr 425082 10 Zs 425082
Nb 4.250E-4 Nb 4.250E-4
3 H 212084 ] H 2.120E4
D 5.312E-2 D 5311E-2
') 2.667TE-2 ) 2.666E-2
Pu-239 6.564E-6
Pu-240: see below:
X=0.00025 1.641E-9
X=0.0025 1.641E-8
X=0.025 1.641E-7
X=0.05 3.282E-7
X=0.1 6.564E-7
X=0.2 L313E6
X=0.3 1.969E-6
X-0.5 3.2898-6
3 Zr 4,250E-2
Nb 4.250E4
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Appendix
Table 2
Nuclear Composition of the Cell Zones for the Homogenizated
Geometry
NUCLEAR NUCLEAR
ZONE ISOTOPE | CONCENTRA- | ZONE | ISOTOPE | CONCENTRA-
TION TION
1 H 2.120E4 6 r 4.250E-2
D 5.311B-2 Nb 4.250B4
o 2.666E-2
Pu-239 6.564E-6
Pu-240: see below:
X=0.0025 1.641E-8
X=0.05 3.282B-7
X=0.1 6.564E-7
X=0.2 1.313E-6
X=0.3 1.969E-6
X-0.5 3.282E-6
2 Zc 4.250E-2 7 [] 1.00E-7
Nb 4.250E-4
3 H 1.9(8B-4 8 Zr 4.250B-2
D 4.800E-2 Nb 4.250E-4
o} 2.427E-2
Zr 4.051E-3
Nb 4.051B-5
Pu-239 2.979E-6
Pu-240: see below:
X=0.0025 7.448E-9
X=0,05 1.490B-7
X=0.1 2.979E-7
X=0.2 5.959E-7
X=03 8.938E-7
X-0.5 1.490E-6
4 Zs 4.250E~2 9 H 2.656R4
Nb 4.250E4 D 6.640E-2
(9) 3.333E-2
5 H 2.120B~4
D 5312B-2
[o) 2.667E-2
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