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Relaxation in quasiadiabatical limit. Saturation of Dipolar Order in slow
rotating sample: Preprint ITEP 45-00/

T. Charpentier,® F. Dzheparov,® J.-F. Jacquinot,? J.Virlet.* - M., 2000 - 24p.

A NMR study of saturation of spin dipole order due to slow rotation
of the sample was carried out on polycrystalline adamantane. Dependence
of saturation rate on the angle J5 between rotor axis and external static
magnetic field was studied for the first time and simple sin?dy law was
established. A new theory for quasiadiabatic evolution of thermodynamic
systems is constructed basing on first principles and projection operator
technique. The theory gives simple conceptually and correct description of
obtained experimental results.

Penaxcanms 8 ksasmannabarmueckoM npenene. Hacrliienne namoabLHOro
CIMHOBOI'O pe3epByapa B MEJIEHHO BpallalomeMcd obpasie.

T.IapnerTne, ®.IMxenapos, 2K.-D.2Kakuno, Hx.Bupne

Metonom AMP Ha no/maxpucTasIMueckOM alaMaHTAHE M3YYeHO HACHIIIE-
HEE QUNOIBLHOTO CIMHOBOIO pe3epByapa BCIIEACTBHME MEILIEHHOIO BpAIlEHHS
obpa3sna. BnepBrie nccienoBana 3aBHCAMOCTL CKODOCTH HACHIIIEHAS OT YTIIa,
Yy MEXITy OCBIO POTOPA M BHEIITHAM MATHATHLIM NOJieM B O60CHOBAH POCTOM
3axoH sin’dy. M3 mepBRIX OPEENMNOOB M HAa OCHOBE NPOEKIMOHHOM TEXHUKK
TIOCTPOEH HOBAs TEOPHs KBAa3naqnadaTHuecKoil 3BONIONNY TEPMOTUHAMNIEC-
Kux cucteM. Teopus maeT mpocToe ¢ KOHUENTYANLHOM TOYKM 3PEHHI U KO-
PEKTHOE ONHCAHUE MOTYyYeHHBIX SKCIEPAMEHTAIBHBIX PE3YyILTATOB.
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1 Introduction

The thermodynamical spin temperature concept is the framework of a gen-
eral theory of nuclear magnetism in solids which has been extensively stud-
ied in the past [1, 2]. It has been mostly applied to spin systems in static
samples. The introduction of the multipulse narrowing methods has shown
that the spin temperature concept could also be applied to spin systems
submitted to a strong periodic interaction [3, 4, 5]. Numerous theoretical
and experimental studies of evolution of dipolar order under influence of
various external or internal interactions have been carried out; of particular
interest in connection with the present study are the works related to the
influence of coherent [6, 7, 8, 9] or incoherent motion of the sample [10, 8].

The most widespread line narrowing method in solid state NMR is prob-
ably the magic-angle spinning (MAS) technique. The problem of dipolar
order in rotating sample is then of physical and practical interest as being
related to more general problems such as cross-polarization (CPMAS), mul-
tipulse line narrowing combined with MAS (CRAMPS) and so on. Inves-
tigation of the phenomenon seems also important for better understanding
of general spin dynamics, including very deep problems of time dependent
Hamiltonians and corresponding spin thermodynamics. In order to use
such dipolar state, it must be understood how it will be influenced by the
rotation of the sample. Compared to static sample, the (secular) part of
the dipolar interaction, here denoted Hpy(t), is time-dependent and does
not commute with itself at different times. Therefore, the rotation of the
sample produces a saturation of dipolar order that may be created.

We have invéstigated this saturation theoretically and experimentally
in two limits. The slow spinning speed case, w, < w; (w; is the typical
dipolar linewidth) is presented in this paper. The fast spinning case, which
is physically different, will be presented in a forthcoming paper. Here, we
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have developed a general theory of dipolar order saturation due to the
rotation of the sample in the quasiadiabatic limit. The present theory uses
a time-dependent projection operator approach.

The problem of slow spinning speed was already studied in experiments
[6, 7] and in theory [8], for orthogonal orientation of the rotation axis rel-
ative to the external magnetic field. We propose a new formal and general
theory based on an extension of the Nakajima-Zwanzig projection tech-
nique. General part of the theory is detailed in the second Section together
with simple and general approximations, used to obtain quantitative re-
sults. Third Section gives some experimental results. Here, the variation
"of the saturation with respect to the spinning speed has been studied in a
polycrystalline sample of adamantane for rotation axis directed near magic
orientation. Discussion of the results and approximate calculation of one
of most important parameter ( Ag),. is carried out in Section 4. More
detailed calculations and additional information are placed in Appendixes.

2 Theory.

2.1 Spin temperature and adiabatic evolution.

We consider that the spinning speed of the sample is very slow so that
the thermodynamical state of the system continuously adapts itself to the
instantaneous Hamiltonian H(t) = H, + Hyp(t), where H; = —w.[; and
Hp(t) represent Zeeman and secular dipolar parts of spin interactions [2].
As usual [Hy, Hp] = 0, therefore in this adiabatic limit the system, being
initially prepared in Zeeman and dipolar order, reaches at each time 7 a
state of internal quasiequilibrium corresponding to a density matrix pg,(7)
of the form

Ps(T) = 1 — BHy — Bo(7) Ho (7). (1)
where (; and f3,(7) are Zeeman and dipolar (inverse) spin temperatures,
and usual high temperature spin dynamics conventions [2] are used. The
conservation of entropy S = —Tr {pIn p} gives

Ba(r) - Tr{HZ(r)} = const. (2)
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Then, during the adiabatic variation of the dipolar Hamiltonian, the spin
temperature varies according to

Bo(r) = const/\/(H3(r)), () =Tr{}/Tr{1}, ®3)

or, in a differential form,

dfo _ Pod 2
bl ol H . 4
o = Lol (in(HE(T)) o)

This last form of Eq.2 will be used later. At this stage, no saturation
processes has been introduced. The expansion

Hp (1 + A7) = Hp(7) + ATH(T) + . .. (5)

shows that the small term Hy(7) (~ w,/w; < 1) is the perturbation which
produces the saturation. Thus, a correlation function like

(Ho(t +7)Up Ho(t) U ), Up = Texp (—z’ [ Hotw) du) (6)

is expected in a saturation calculation. The Zeeman order is unaffected
by the slow rotation because I, commutes with Hp(7). This results must
be obtained by any approach and it will be checked below. The set of
observables of interest, in analogy with the static sample case, are f, and
Hy(t). Therefore, for the present theoretical treatment, we should intro-
duce a time-dependent projection super-operator #(t) which acts on any
vector | A(t)) in the Liouville space as

#O1A0)) = (A@)) 1a) + L8O )y o SHOIA), )y )

(12) (H3(t))
where
<X|y>=%l, and <X):gg£. (8)

Here X and Y are usual operators in standard Hilbert space of quantum
mechanics [2].

In the remainder of this section, for notational convenience, the time
dependence will be omitted when not necessary. Thus 7(t)| A(t)) will be
simply denoted #| A). The projection (super-)operator 7 (t) = Id — #(¢)
is also introduced. Some useful properties, obtained after straightforward
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calculations, are given in Appendix A. The Zeeman and dipolar time-
dependent spin temperatures are then defined by

L (LIE@) ()

Ba(t) = o () 9)
IRCAGILOATOY
Bl = T ey 1o

and the quasiequilibrium density matrix is of the form
|ps(t) ) = ()| p(t) ) = | 1) —wnBa(t)| L2} — Bo(t)] Ho(?) ). (11)

The knowledge of the master equation for the reduced density operator
| p) is then sufficient for obtaining the evolution of the spin temperatures.
This calculation is detailed in the next section.

2.2 Master equétion for 7| p).
We start from the Liouville equation for the spin density operator | p(t))
which is, in the conventional rotating frame,

%’Z—) = —i| [Hp(8), p(t)]) = —iLo(t) | o(t) ). (12)

All following transformations of this equation are directed (as usual in
deriving of master equations [2]) on separation of dynamics of slow and
fast variables in the problem. From the present choice of slow variables,
given by the projection operator #(t) (Eq.7), where H; commutes which
each of its component, one can obtain the relations

Al = ED'fi' =0 and (1- ’fl’)ﬁn = ;}_ED = ﬁD~ (13)

Multiplying Eq.12 on the left by 7 and 7 leads to the two equations
.d 5
7r—ld';)—> = —ilp|p) =0, (14)
—d k —a — A =
fr~l£—>— = —ixtly (R +7) | p) = —ilo7| p). (15)

Therefore, introducing 7 = d# /dt and similarly 7= —4, one obtains

ngqp):fﬂp):v‘rfrﬁp)ﬂ*r?fp)y (16)
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and
2510) = Flp)+75) = (i +F)p) ~iLoFl)
= —iit| p) — i (Lo — i) 7| p) (17)
Eq.17 can be formally solved by introducing the propagator
$(t,7) = Texp {4 [ (Lola) - iA(w) du}. (18)
The result is
#p(t)) = — [ 8t T)F(r)| p(r) . (19)

It can be checked directly by substitution of (19) into Eq.17 and taking
into account the initial condition #|p(t = 0)) = 0. Therefore, combining
Egs.19 and 16 , we arrive at the master equation

d . FN At A [ RPN
Gt p)=mhlp) —&x |5t T)R(T)R(T)| p(T) )T, (20)
and to the other important equation

*:f?"f' p) = =i [ S(t, m)A(r)7(r)| p(r) ybr, (21)

which follows immediately from (20) by multiplying on the left by # and
taking into account that #x# = 0.

With the preceding equation, the evolution of the spin temperature may
be, at least formally, calculated. Approximation for having more tractable
expressions are detailed below.

2.3 Master equation for the spin temperatures.

[t can be checked that the Zeeman order is unaffected by the rotation
of the sample. Indeed, multiplying Eq.21 by (.| and remembering that
(IHy) = 0 and ( [;H, ) = 0 we immediately obtain that

d
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The master equation for By can be derived directly from Eq.21 by mul-
tiplying it on the left by (Hp()| and taking into account the relations (11)

and

(Ho | (Bl i) = Bot2) + 2 8 122) = (122 (o + 222 0.
As a result
%%1 N ﬂ; o (n(H3(1)) = i M(t,7)Bo(r)dr (23)
where the memory function
M(t,) =1 ,ﬁ(t) (Ho () | 7(®)S(t, )7(T) | Ho()), (24)

is proportional to the (auto-)correlation function of the perturbation THy(t).

The first term of Eq.23, as discussed in 2.1, is the adiabatic contribution
to the evolution of B;. Its order of magnitude is ~ w,fp while the second
term of order ~ (wf /w;) Do, is much smaller. The saturation occurs on a
time scale which is much longer than the rotation time 1/w,. Therefore a
new slow-varying spin temperature Gs(t) can be defined by

Bo(t) = [( H2(0))/(H2(1))]* Bult), (25)
which evolves as
5‘-‘@5 = —/ Ms(t,t — 7)Bs(t — 7)dr. (26)

The new memory function Ms(¢,7), in this new representation which
may be seen as an adiabatic frame, is

1
V(HS(2)) (H3())

This last equation is ezact for any kind of motion of the sample and
useful simplifications will be introduced in the next section.

Ms(t,7) = (Ho(t) | 7(8)S(t, )R (7) | Ho(r)).  (27)

2.4 Approximations and calculation of the saturation rate.

For slow rotation (or adiabatic evolution), the contribution —é7 in the
propagator Eq.18 can be fully neglected with respect to £5,. On the time
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scale T ~ 1/w; << 1/w,, the variation of £(t) can be also neglected (the
free precession decay is much shorter than the period of rotation). Thus
s (t,t — ) may be simplified as

$(t,t — 7) = Fexp { i ﬁb(u)du} ~exp{—ilo(t)r).  (28)

Of course, this equation is strictly correct only if replaced in the memory
function Eq.27. As a function of 7, Mg(t,t — 7) decreases in a time which
is of the same order of magnitude as Tp and the latter is smaller than the
typical evolution time of 3s(t). Moreover, the difference between Hy(t —7)
and Hy(t) and, Hy(t — 7) and Hp(t) can be neglected leading to

1
(H3(®))

My(t,t — ) ~ (Ho() [F()e DR () | Holt)),  (29)

and the upper limit of integration in Eq.26 can be extended to oo which

gives J ,
B - sy, (30)

where the instantaneous saturation rate Ws(t) is
Walt —if,,(t)‘rT ;
s(t) = H?(m B (8 |7 (t)e DO (1) [ Hy(e) hdr. (31)
With the same order of accuracy, an averaged W may be used
Be(t) = Bu(O) exp{ - [ Ws(r dT} ~ Bs(0)e 7, (32)

Ws=

/mWs (t)dt (33)

rot
here Trot = 27/ w;,.
As usual, the correlation function

1 3 = —iLly ()T %
flt,r) = mDGj%(T)H—ID(E(HD(t} [ 7(t)e Lot #(t) | Ho(t)) (34)
may be simplified into
1 - t)T 1 )7
flit,r)= (Dz(t))<D(t)e DT [)(f)e (0T ) (35)
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D(t) = Hy(t) — Ho(t)(Ho(t)Hy(2))/{ H3(t) ). (36)
A natural scale for dependence of f(¢,7) on 7 could be defined by an
instantaneous second moment mg(t) given by
([Ho(t), Ho(t)] [Hp(t), Ho(t)])
. 37
me(t) = (00) 0
Then saturation rate Wy takes a form
Ay(t) (D*(t))

Ws(t) = == , 38
S0 = e CH20)) )
where dimensionless value A4(¢) is defined by the relation
o0 T
Aty = [ drflt,——= 39
) '/0 i ( ms(t)) (39)

It is natural, that (under slow rotation) in order of value m, ~ Mj§* = w?,

where M5! is a second moment for static sample. Therefore Wg ~ W2 fwy
which is in agreement with the previous theoretical approach [§].

For polycrystalline sample the law (32) must be averaged over crystal-
lites orientations to obtain an observable value (/(?)),.. Rather good
results are obtained from the usual simple approximation:

(Bs(t) e = (B(0) exp { - [ Ws(ar}) =

pe
~ B0 exp({~ [/ WS(T)dT} ) = BO)e "ot (40)

Averaged saturation rate { Wg )pc does not depend on time ¢, because
general rotation of the sample around the n, is one of elements, which
define an orientation of the crystallite.

Similarly we make the following approximation

A (DA®) () ((D%) e
<WS>”C_<\/mS(t) (H?(t)> ms)pe ((HZ) ),

Accuracy of approximations (40),(41) will be discussed below in Ap-
pendix B, as well as calculations giving

((D*) ) e
((HE)),

(41)

1—¢n
1+¢€q

2
= 3(1 4 e))w?sin? Py, (ms dpe = 3 (M5 Yoo (42)
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Small numbers ¢, and ¢, are defened in (90) and (92). With this results
2

(Ws)pe = 3\J_gnm< As)pe - \/Z%;ﬁ) -sin® 9 (43)
pc

where Ky = (1 + €4)?/(1 — €n)3, and for FCC lattice £, = 1.025.
Some models and problems related with calculation of correlation func-
tion f(¢,7) and A,(t), will be discussed in sections 4 and C.

3 Experimental results

Experiments have been performed on a DMX-300 spectrometer with a
commercial Bruker MAS probe (4mm). Adamantane was purchased from
ALDRICH and used without any further purification. To check the quality
and purity of the sample the free induction decay was measured for a
powder in static conditions, and the second moment was in agreement
with theoretical expectation, given in Appendix B. Polycrystalline sample
has been used in the studies because the variation of the saturation rate
with spinning speed and orientation of the rotor has been investigated only.
Thus the measured saturation rates could be considered only as effective
ones for the powder.

Experiments were performed for three orientations of the rotor axis with
the values of the angle 95 between the magnetic field Hy and rotor axis
n, set to g = Ipas = 54.7(1)°, 1 = Inmas + 2.7(3)°, and Jo = dpras +
7.4(8)°.

Dipolar order was produced by Jeener-Broeckaert sequence i.e. by (%)z
pulse (whose phase defines the z direction in rotating frame) followed by
a (g)y pulse [11].

Measurement of dipolar order at time ¢ after the Jeener-Broeckaert puls-
es was achieved by applying a "reading” (g)z pulse and measuring the
amplitude of the signal in the £—channel of the receiver.

The spin temperature hypothesis is experimentally confirmed by the
observation of a dipolar spectrum and signal for slow spinning speed (figure
1). No differences are observed for various spinning axes angle in agreement
with the fact that the rotation is only a perturbation of the static case.
As shown in figure 2, the spin temperature decay is, after a thermalization
delay of ~ 200us, correctly described by Eq.32.




—— 8=MAS
------- 8=MAS+5°
— - - 8=MAS+10°
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kHz

Figure 1: Comparison of dipolar spectra of a rotating adamantane powder
sample at w,/27 = 200 Hz for different orientation of the rotation axis 1
and acquired with identical experimental conditions.

T — T T T |
Bp(t)
99 9
i L i 4 | —tn L L B I S— |
00 20 40 60 80 100 120 14000 200.0 400.0 600.0 800.0
T (ms) T (us)

Figure 2: Variation of the dipolar spin temperature in a rotating adamantane
powder sample w,/27 = 200 Hz at the magic angle. Left figure shows the
fit used for evaluating the saturation rate (here Ts = 3 ms). Right figure
shows the short time behavior of the spin temperature. Thermalization of
the system is obtained for Trygam. =~ 200us.
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Figure 3 displays the variation of f3(7) for different spinning speeds
at the magic angle, similar results being obtained for other angle. The
variation of the averaged saturation rate with respect to the spinning speed
plotted for different spinning axis orientation, is in agreement with Eq.43.
For spinning speeds in the range 1 kHz < w./2m < 3 kHz no more dipolar
order has been observed, although the zeeman spectrum at wr [2r =1kHz
is practically identical to the static spectrum.

T T T T T T T )

*—® @y = 200 Hz
O——0 gy = 300 Hz
- @y, = 400 Hz
00 Gy, = 600 Hz
*— ;= 800 Hz

o—0 9=MAS
0——0 8=MAS+5°
*— 0=MAS+10°

50

W; (ms™)

0.0 A —
0.0 0.2 04

, 06 08 1.0
O qor (KHZ')

Figure 3: Top : Variation of the dipolar spin temperature fp(7) in a rotating

adamantane powder sample at the magic angle. Bottom : variation of the

saturation rate W with respect to w?.
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4 Discussion of the results

The least mean square treatment of experimental dependence of (Ws )pc
on w, and Jg by the law (43) in the form

(Ws)pe=1a- (%)2 -sin’ Oy (44)

produces the values g., = 0.01271(18)s, x*/n = 13/13, assuming 5%
error bars for Wy in fig.3. One exponential approximation produce rather
good fitting for time dependence [y(¢), nevertheless only time interval
250us < t < 2000us was used for checking the law (44) in order to overcome
the influence of multiexponential decay, natural for polycrystalline sample.
Measurements, carried out in the work [7] on polycrystalline adamantane
for one angle 9y = 7 give ¢ = 0.0123s, that is in reasonable agreement
with our result, and produce additional strong support for dependence (44)
of (Ws),. on Jn.

If correlation function f(¢, ) is chosen as Gaussian f(£,7) = exp(—3ms(t)7?),
then relation (39) produces (A;),. = Ag = ‘/;f, and taking into account
the relation (42) and theoretical value { Mj*) . = (2r)® - 16.86 kHz* we
obtain, according to Fq.43, that corresponding q is g¢ = 0.007222s. The
deviation of the relation gep/qe = 1.76(4) from 1 seems as large enough
to require some better approximation. This problem is considered in Ap-
pendix C, where more satisfactory value gieor/gc = 1.66 is obtained,
basing on simple general ideas of high temperature spin dynamics.

5 Conclusion

A new theoretical approach has been proposed for the description of quasia-
diabatical relaxation ‘phenomena in pp.2.1-2.3. The method is quite rig-
orous and general. In the limit of very slow motion, studied in p.2.4, the
method reproduces results of the theory, constructed by Jeener at al. on
a quite different mathematical formalism [8]. Qur theory is based on very
simple and reliable physical basis; it is a theory derived from first principles
and it leads to physical results by the simplest and straightforward way. As
usual, calculation of kinetic coeflicients in our theory, outlined in pp.2.4,4
and in Appendixes B,C, requires estimations of some correlation functions;
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we found a way to solve the problem by taking into account important gen-
eral properties of the process. We hope that developed methods can be

applied to many other problems.
In our experimental study, performed on a rotating powder sample,

the angular dependence of saturation rate ( Wg )pc of dipole subsystem
on orientation of the rotor axis was investigated for the first time, and
very simple sin’dy law (44) was established. Rather strict checking of
theoretical results was carried out and reasonable agreement was found.

A Some properties of the time-dependent projection
operators.

The general properties of the time-dependent projections operators are
summarized in this appendix:

#(t)+7(t) =1d <= #(t)+7(t) =0 (45)
TR0 =0 = AE)F(E) +#(1)7(t) =0 (46)
T)F(E) =0 <= F(B)F(t) + ()7 (t) = 0 (47)

From the previous relations, we obtain the two-terms products
ROR() = #(O)F(), (48)
#OF(E) = —#(H)7(), (49)
TWx(t) = #(t)7(t), (50)
w(t)i(t) = F(t)F(t), (51)
#O)i(t) = —7(B)7(), (52)
() = —7(t)7(t), (53)

and the three-terms products

FOFRDF) = o, (54)
FOROE) = o, (55)
#(OF (D7) = 0, (56)
#t)r(O7(E) = 0. (57)
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B Calculation of the moments.

Usual dipole-dipole Hamiltonian for homonuclear spin system of the crystal
in strong static magnetic field Ho = n¢Hy contains secular part only and
is of the form (2]

1
H, = 3 Z bijT;j, :Tij = 3(11{1,‘)(11;1_,’) — I,'Ij, (58)
i#j
b,'j = boPg(nijnf)r{j3, n;; = r,-_,»/rij, rjj =T; — Ij.

Here by = —+?h,7 is gyromagnetic ratio, I; is a spin operator for i-th
nucleus, placed at r;, and Py(¢) = (3¢% — 1)/2. Indices 7 and j in (58) run
the values 1, 2, ---, N, where N is total number of (proton) spins in the
sample.

Every adamantane molecule contains zp = 16 protons and at room tem- .
perature fast rotation around its geometrical center takes place. This ro-
tation averages to zero intramolecular dipole interactions. Molecules are
arranged in FCC crystal. Therefore Hamiltonian (58) can be written as

Hp = lzﬂb,ﬂ'g , (59)
2%
~ &0 -
T'ig = 611[3(nf1‘30)(nf1_(7)) - I?I?] ] I? = z:l Ija,, 61] - 1 b (Sij .
a=

Here and below a symbol 5 represents the sum on Ny = N/z lattice
sites in simple FCC lattice, ¥, is a sum over spins inside one molecule, and
bj; = 0. I? represent total nuclear spin of j-th adamantane molecule, these
operators have the same commutation relations as usual one-particle spin
operators, but (12)2 is an operator as well, in difference of one-spin case,
where (I;,)2 = I(I + 1) is a constant.

Let us to suppose that a sample is rotated around an axis n, with an
angular velocity w,. We can choose a coordinate frame with z-axis directed
along n, and y—axis — along [n, X ng]. Only n;; depend on time in Eq.58.
Therefore, using well known relation

4r 2 .
Py(n;jne) = 3 Z2Yvi(nij)yn2. (mg), (60)
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where Y2 is a spherical function, we have

2
bij(t) = Zze’"‘“’tbiﬁ , (61)
m 2¢ 2(..0Y,.—3 m _ 47Tb
b; = BoYnm (nf)Ym(nij)rij , =0, Bo = 50
and ) .
Hy= Hy(t)= ¥ Hpe™', Hp= 3 Y RT (62)
m=-2 ij

Here n; = n;;(t = 0), and Y,2*(ns) = Y;2(ns) by definition of n¢.
One group of values, required to calculate ( Ws),,. is connected with

1 . 1
< igtkl > - 6J261J(61k5]l + 6116_7]:) J = §< (I?)‘!) = 5[(1 -+ 1)20 . (63)
With these definitions

(H(t)) = 3J2N0\; b3 (t) = 3J2NgZe'("‘"‘)“”tz b by, (64)

(Ho(t)Hy(t)) = Zdt(HZ(t)) (65)
(HE(t)) = 3TNy "0, (t) = 3J2N0w22mne in= '"Wz B, (66)

Other important group of values is connected with a commutator

K(t) = [Hp(t), Hy(t)] = tw, 3. mX ppelm ket (67)
Xmn = [HmvH:] = Z ( :? ?I: k] i )@ijkv (68)
Oy = —ibi;[T, ]~5uk[ (Fipk = Fijs) — Higg, (69)

Fijk = (Ling)(ng[I; x Ik]), H;jr = L[I; x IkL 5¢]k = 80k -
It should be noticed that two-spin terms are absent in (67) and (68),
because

(Hy, TJ) = Ebkl[Tklv = Zbkl[Tklv THI(1 — 8ikbjt — Subsk)

and last expression contains three-spin terms only.
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Direct calculations produce

(©4jxOi ik, ) = 18.7%8:5185, (8iiy Okky — ity Ok ) (70)
and
Z(t) = (K@K (1)) =9J%] ¥ muem oIt Z (71)
mnpy

mnuy __ mn;w ZINUY (kg m ¥
mﬂ#" - Z 61szz]k EI: gk ZI]k ( iy Yik T k] ]t)(bl] ik Ic] Ji ) .
8

In order to take into account random orientations in polycrystalline sam-
ple we introduce a basic frame for every crystallite with axis Z, §, Z directed
along crystal directions [100],[010], and [001] correspondingly. Then

by = b9, 9,7) = (72)

2 ,
= Po¥;m (1) _22 af;Di(,9,7) = boYem(nig) 2 afe! TN (9)
where D2 (¢, 9 'y) and d2,,(¥) are standard Wigner rotation matrixes [12],
=Ya(ny)/r,  Yilng) = YD, d5) (73)

and angles 19,'1-, ¢,-,- are defined relative to the basic frame of crystallite.
Dependence on 7y in our problem is the same as on rotation angle w,t,
and therefore it will be omitted below.
It is useful to introduce a tensor

S = z° ol =Y agral; . (74)
j
If the basic vectors of FFC lattice are chosen as
e =ap(0,1,1), e =ap(1,0,1), e3=ap(1,1,0), (75)
then, according to cubic symmetry
Smn = Snm = S = g *[OmBunn + Uy —n(Bmz + S, —2)] , (76)
where

o9 =0.1072, o0y =0_,=0.1682, o3=0_,=0.1377, p=—0.03051.
(77)
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Taking into account these definitions we obtain, that

(H2(t)) = 3J%B3 Noag® ¥ Amn, (78)
mn

(H2(t)) = 3J2B2Noag® Y- mnAma (79)

Amn = Y2(ng)Y,2(nr)[cos((m — n)wyt) fun + 2 cos((m — n)wrt + 46)gmn| »
Z(t) = 18NgJ*w2Bag P {hi (t)ha(t) — |hs 1, (80)

where
2
fmn = fmn(ﬂ) = Z dumdum 9mn = /-‘dg,md?-lm ) (81)
y==2

1
hi(t) = 3 mn®p, (), ho(t) = mz Dn(t), hs(t) = 5,;!(7”—")@'""(25) ,
| | | | (82)
Buun(t) = Y] (06) Y (06) [ frnn + € PG + € gom] - (83)
Formulae (78),(79) can be averaged on crystallites orientations directly
with a result

6
(CHEO))e= Niblastow, om =% Tom=5" (%) = 1807,
. . (84)
((ER) e = 36 sin® O ((HAD)) Yoo ({Ho(®)Ho(t)) )= 0. .
85
Well known relation [12]
(1229 = [} d9sin 3|2, (B) = ¢ (36)

was used here.

It should be noticed, that connection between { { H2(t) ) )pe @nd { HX(t)) )pe

can be obtained as well from the relation
( i),'jbk[ )pc = 3&)3 Sin2 191.1( b,'jbk[ )pc, (87)

that follows immediately from (60),(72), and (86).
Averaging the Eq.80 we obtain

(Z),. = 18NoJ*wiBitaz' , £ =9.636-10""sin’ Oy , (88)
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= Z [mn"i‘(m_'n’)z]A(m—n"u_‘_y)yfszﬁpu(nf)[( fmnf;w + 29mnGuv >pr .

YR (0e) = Y (00) Y7 (ne) Y, (ne) Y, (ne)

Here A(m) = 8o is Kronecker’s symbol, and numerical constant as well
as dependence on angle ¥y were obtained by computer calculations.

If we apply to calculation of (Z ), the same decoupling method as in
Eq.41, then

(Z),. ~ 18NoJ*w2Ba5 " [( h1 ) pol B2 ) o1 s ) ol’] = 18NoJPw2 005"

. (89)
b = (:—f)iago sin? 9y = 9.817- 107 3sin’9p ,
It is evident from (82), that (hs),. = 0. The value
em = (£ — &)/& = 0.0185 (90)
gives one of estimations for decoupling in our problems.
By the same way
: 9
((HoHp)*)e = 7(I*Bomuon)’ts (91)
&= m;pu A(m -n—-p+ V) (m - n)zyrgz)pu(nf)u fmnf;w + 29mnguu >p,_ )
and, with computer calculations according to (91), we come to
< ( HDHD >2 >p
= P 0.0103 . (92)
(CHE) el (HB) )pe

It should be noticed, that ¢, and ¢; do not depend on ¥j.
Combining relations (36) and (92) we get

({(D*()) )pe = (1 + €)((H3()) ) o = 3(L + ea)o? sin® O (HR(t) ) )

(93)
Second moment for absorption signal in polycrystalline adamantane can
be calculated by standard way with a result

(M5") e = (L, HollH, L] ) )/ (12) = 9J§3 (B0 pe= (99)
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= %bgaaﬁaoo = 4n? . 16.86 kH 2
The values 2ap = 9.45 - 10~%¢m. [13], v/2m = 4.2576 kHz/G, and h =

1.0546 - 10727 CGS were used here.
One particle second moments m;, m, and m, are introduced by the

relations
e = 1y = iy = (95)
— (U0, Hol (Hon )/ () = (U1 HollHo, T VAT I ) = M
m. = (1, HollHo, 181)/{ ()?) = S M (96)

The second moment (m; ),,, according to relations (39), (88-90) and
(96), can be written as

(e = (/D)= 5 (M), (o)

It should be noticed, that small values for parameters ¢; and ¢, are not
very surprising, if we take into account, that relation

((2mM3") "2 exp(~w?/ (2M35Y)) ), & (2w Mag) "% exp(—w?/(2May))

is valid for w?/My; < 16 with meansquare deviation g = 6-1074, if fitting
parameter My, = 0.9925 - ( M3* )pc. Similarly, for the same w,

In ((2mM3") 2 exp(—?/ (2M31) ) s~/ (2Myy) — 2 In(2m M)

with meansquare deviation ¢ = 0.03, if Ma; = 0.9828 - ( M3*), .

C Calculation of (Ag),.
Duration of the function f(t,7).

The simplest way to improve the theoretical value of ¢ = ¢¢ indicated in
Section 4 is to take into account, that longitudinal and orthogonal (relative
to external field Hy) components of spin operators have rather different
evolution. For example, behavior of orthogonal components can be de-
scribed well if we know only second moments for corresponding correlation
functions, whereas estimations for longitudinal components requires more
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refined argumentation, which have to take into account, that a correlation
function f,(¢,7), introduced below by the relation (99) has at least three
important part of evolution. It starts as 1 — M,7%/2, then its decay is
o exp(—2BT), and final part is oc 7732 [14]. The values M, and B will be
estimated below.

For the sake of simplicity we can rewrite D from (36) as D = Hy,. This
relation is correct up to small correction proportional to ¢4, that follows
from relations (92) and (93). Then, using notations of Appendix B (see
Eqgs.58,59),

D=D,+ D,, , (98)

D, = b I I, Dy = —igbﬁ([fwg— + 1710

The correlator (35) can be rewritten as

Ft7) = p2folt,7) + payfry (8, 7) (99)

fa(t,7) = { Da(t)e™ 07 D, ()07 ) /(DI (1)), a=2z,3y,
pe=(DN/(D*) =%, poy=(DE,) /(D) =1 .

A second moment for f,(¢,7) is

My = ([Da, Ho|[Hp, Do] ) /( D7) . (100)
D, is two spin operator, therefore we can expect, that

M, = 2m, . (101)

Then, using definitions (95) and (96) of one spin second moments m,, we
obtain, that total second moment for f(t,7) is

_2
3

in full agreement with relation (42), derived in Appendix B by more rigor-
ous and long way.
Primary orthogonal one spin autocorrelation functions

gz(ta T) = gy(tv T) = gzy(ta T) = (103)

— <I;)ze—-iH,,(t)‘rI;h:eiHD(t)'r >/( (I;)a‘)2 ) — (I?+e—iHD(t)TI?—eiHn(t)T )/( ]:?+[;)— )

Mg = 2(pm; + Prymy) M3, (102)
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can be approximated as .
Gay(t, 7) = exp(=7/(2mq(2))) - (104)

This representation does not reproduce exponential wings for
o dr

gz(w) = /_w Py exp(iwT)g;(7),

which are natural at large w according to modern knowledge [15, 16}, but
Eq.102 is appropriate in the range w? < m; [15, 17] that is important for

our study.
We can expect, that, in full analogy with (101),

foy(t,7) = (gmy(t, 7))° (105)
At small and intermediate 7
f:(7) = f2(7) = exp(~2m, /{]TdTl(T——T]_)K(ﬂ)), K(r)= e 3maT (106)

Here simplest approximation for K(7) is applied and its second moment
was estimated by the same method as M, and m, in (101),(102). The
duration of this initial part of the evolution is given by the time

o= /O°° drfO(r) = 1.804/(2m,)!/? (107)

In evolution of f,(¢,7) at t > 74 the conservation low ¥j, I3,(T) = const
should be taken into account. We can rewrite f,(¢,7) as

-1
fult,r) = (z 6?,) ¥ bbuGi(r) G (r) (108)

Here G%;() = (I*(m))*)/((I}7)?). Starting with time 7 > T = 1/w
the evolution of G%;(1) is mastered by the equation

ij == ; (WuGi; — WaGi;) . (109)

Therefore, T G2, (7)GE;(T) = G¥;(27), and as consequence of translational
invariance,

1
”Zk b,‘jb,{}cG;k(ZT).

£t ) = (42: ’%) —IUZH% 26N Gia(r)ba = (%i’?j)
(110)
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Averaging on polycrystalline orientations with application of relations
(87),(72) and (73) we obtain, that

fn = (STEF) Trarchend.

Here enumeration by radius-vectors r and x of molecules is used instead
of numbers ¢ and j, symbol a7" is introduced in (73), and symbol (---),.
is omitted. Comparing the Eqs. 110 and 106 we see, that if 7 > T3 then
In f(r) & ~2B7, where B = ¥x Wyr = \/m;.

At larger 7 propagator GZ,.(27) becomes a smooth function of x -,
and corresponding lattice sums in (111) can be substituted by integrals
with a result

£(7) = $aGuo(27) ¢—36_-(111)2~2428 (112)
2\T) = @dlroo\ 4T ), d-Uoo 3q) T e
where Q = 242 is a prime cell volume. It should be noticed, that Goo(7 —

o0) oc 732,

It is known [18] that Tpsa = [§°dTGpo(27) = 1.265/(2B) for simple
cubic lattice. The same method of calculation produce 7p = 1.21/(2B) for
FCC lattice of adamantane. Therefore the time

= [ dr(Go(2r) ~ exp(~2Br)) (113)

represents effective duration of diffusion long time tail of Ggo(27) ~ 77%/2.

According to (112) the tail is multiplied on ¢q in the case of f,(7), therefore
its effective duration must be estimated as ¢47;. Connecting all these results
together, we come to

A, = \/m8(70+¢d71):2.11'AG. (114)
Therefore, as a whole,
A
L = L5 [p, A, + 2pa(ms/M2) 2 AG] JAG = 1.66 . (115)
¢ Ac

Of course, rather precise agreement of this value with experimental
Qezp/qc = 1.76(4) is nothing more than coincidence, but our discussion
indicates direct way and necessary methods for more quantitative analysis.

It should be noticed, that good agreement between calculated and mea-
sured values of ( Ws ), was obtained in Ref.{7] as well. But calculation of
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this article was based on very special hypothesis, which in our notation is

of the form 1
fir)=1/(1+ §m3‘r2). (116)

This phenomenological relation, suggested for other, but related correlation
functions in Ref.[19], was thought to be a very good approximation at that
time, but is has no justification within the more microscopical treatment,
outlined above. One of its weakness consists in contradiction to relation
(112), which is rather general and it is based on existence of spin diffusion
and dipole long range interactions only. On the other side, the hypothesis
(116) was introduced in Ref.[19] to explain nearly exponential dependence
on w of the correlation functions in frequency representation. Similar nearly
exponential dependence can be obtained within our approach as well. More
extended discussion of related problems can be found in [15].

The work was partially supported by RFBR (project N? 99-02-17440).
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