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Relaxation in quasiadiabatical limit. Saturation of Dipolar Order in slow 
rotating sample: Preprint ITEP 45-00/ 

T. Charpentier,a F. Dzheparov,c J.-F. Jacquinot,b J.Virlet.a - M" 2000 - 24p. 

A NMR study of saturation of spin dipole order due to slow rotation 
of the sample was carried out on polycrystalline adamantane. Dependence 
of saturation rate on the angle iJH between rotor axis and external static 
magnetic field was studied for the first time and simple sin2 iJH law was 
established. A new theory for quasiadiabatic evolution of thermodynamic 
systems is constructed basing on first principles and projection operator 
technique. The theory gives simple conceptually and correct description of 
obtained experimental results. 

PeJlaKCaIUijI B KBa3Ua,n:HooaTH"tJecKoM npe.nene. HaChIllleH:3e ,n:m::IOJIhHOI'O 
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1 Introduction 

The thermodynamical spin temperature concept is the framework of a gen­
eral theory of nuclear magnetism in solids which has been extensively stud­
ied in the past [1, 2]. It has been mostly applied to spin systems in static 
samples. The introduction of the multipulse narrowing methods has shown 
that the spin temperature concept could also be applied to spin systems 
submitted to a strong periodic interaction [3, 4, 5]. Numerous theoretical 
and experimental studies of evolution of dipolar order under influence of 
various external or internal interactions have been carried out; of particular 
interest in connection with the present study are the works related to the 
influence of coherent [6, 7, 8, 9] or incoherent motion of the sample [10, 8]. 

The most widespread line narrowing method in solid state NMR is prob­
ably the magic-angle spinning (MAS) technique. The problem of dipolar 
order in rotating sample is then of physical and practical interest as being 
related to more general problems such as cross-polarization (CPMAS), ffiul­
tipulse line narrowing combined with MAS (CRAMPS) and so on. Irives­
tigation of the phenomenon seems also important for better understanding 
of general spin dynamics, including very deep problems of time dependent 
Hamiltonians and corresponding spin thermodynamics. In order to use 
such dipolar state, it must be understood how it will be influenced by the 
rotation of the sample. Compared to static sample, the (secular) part of 
the dipolar interaction, here denoted HD(t), is time-dependent and does 
not commute with itself at different times. Therefore, the rotation of the 
sample produces a saturation of dipolar order that may be created. 

We have investigated this saturation theoretically and experimentally 
in two limits. The slow spinning speed case, Wr «: Wl (Wi is the typical 
dipolar linewidth) is presented in this paper. The fast spinning case, which 
is physically different, will be presented in a forthcoming paper. Here, we 
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have developed a general theory of dipolar order saturation due to the 
rotation of the sample in the quasiadiabatic limit. The present theory uses 
a time-dependent projection operator approach. 

The problem of slow spinning speed was already studied in experiments 
[6, 7] and in theory [8], for orthogonal orientation of the rotation axis rel­
ative to the external magnetic field. We propose a new fornlal and general 
theory based on an extension of the Nakajima-Zwanzig projection tech­
nique. General part of the theory is detailed in the second Section together 
with simple and general approximations, used to obtain quantitative re­
sults. Third Section gives some experimental results. Here, the variation 

.of the saturation with respect to the spinning speed has been studied in a 
polycrystalline sample of adamantane for rotation axis directed near magic 
orientation. Discussion of the results and approximate calculation of one 
of most important parameter (As)pc is carried out in Section 4. More 
detailed calculations and additional information are placed in Appendixes. 

2 Theory. 

2.1 Spin temperature and adiabatic evolution. 

We consider that the spinning speed of the sample is very slow so that 
the thermodynamical state of the system continuously adapts itself to the 
instantaneous Hamiltonian H(t) = Hz + Hn(t), where Hz = -wLlz and 
Ho(t) represent Zeeman and secular dipolar parts of spin interactions [2]. 
As usual [Hz, Hn] = 0, therefore in this adiabatic limit the system, being 
initially prepared in Zeeman and dipolar order, reaches at each time r a 
state of internal quasiequilibrium corresponding to a density matrix pqsCr) 
of the form 

pqs(r) = 1 - (3z1Iz - f3o(T)Hn(r). (1) 

where {3z and (3n(-r) are Zeeman and dipolar (inverse) spin temperatures, 
and usual high temperature spin dynamics conventions [2] are used. The 
conservation of entropy S. = - Tr {p In p} gives 

(2) 
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Then, during the adiabatic variation of the dipolar Hamiltonian, the spin 
temperature varies according to 

(3D(r) = const/J( H'5{r)) , (...) = Tr { ...} /Tr {1} , (3) 

or, in a differential form, 

~{3D = _{3D ~ (In( H 2{r))) . (4)
dt 2 dt D 

This last form of Eq.2 will be used later. At this stage, no saturation 
processes has been introduced. The expansion 

(5) 

shows that the small term HD(r) (....., Wr/Wl « 1) is the perturbation which 
produces the saturation. Thus, a correlation function like 

. . .--.. ([t+r )
(HD(t+r)UDHD(t)U~), UD=Texp -i lt Hn(u)du (6) 

is expected in a saturation calculation. The Zeeman order is unaffected 
by the slow rotation because /z commutes with HD(r). This results must 
be obtained by any approach and it will be checked below. The set of 
observables of interest, in analogy with the static sample case, are /z and 
Hn(t). Therefore, for the present theoretical treatment, we should intro­
duce a time-dependent projection super-operator -rr(t) which acts on any 
vector IA(t)) in the Liouville space as 

;r(t) IA(t» = (A(t» lId) + (1,( I~\t» II,) + (H(t~!~;t» IHD(t» (7) 

where 
Tr{X+Y} Tr{X}

(XIY) = Tr {Id} , and (X) = 'If {Id} . (8) 

Here X and Y are usual operators in standard Hilbert space of quantum 
mechanics [2]. 

In the remainder of this section, for notational convenience, the time 
dependence will be omitted when not necessary. Thus i(t)j A(t)) will be 
simply denoted i-j A). The projection (super-)operator ;[(t) = Id - ir(t) 
is also introduced. Some useful properties, obtained after straightforward 
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calculations, are given in Appendix A. The Zeeman and dipolar time­
dependent spin temperatures are then defined by 

1 (Iz I*(t) Ip(t) )
f3z(t) (9) 

W L (Ii) 
(Hn(t) l?r(t) I p(t) ) (10)

(H~(t) ) 

and the quasiequilibrium density matrix is of the form 

IPqs(t) ) = ?T(t)1 p(t)) = 11) - wL f3z(t)1 1z) - f3o(t)! Ho(t)). (11) 

The knowledge of the master equation for the reduced density operator 
nl p) is then sufficient for obtaining the evolution of the spin temperatures. 
This calculation is detailed in the next section. 

2.2 Master equation for ?fl p). 

We start from the Liouville equation for the spin density operator Ipet) ) 
which is, in the conventional rotating frame, 

dip) ~ 
-----;It = -il [HD(t) , p(t)]) = -iLo(t) Ip(t)). (12) 

All following transformations of this equation are directed (as usual in 
deriving of master equations (2]) on separation of dynamics of slow and 
fast variables in the problem. From the present choice of slow variables, 
given by the projection operator net) (Eq.7), where lIn commutes which 
each of its component \ one can obtain the relations 

?fln = loir = 0 and (1 - ir)lD = frlD = tD' (13) 

Multiplying Eq.12 on the left by ir and n leads to the two equations 

~ dl p) .~ r I ) a 
1r~ = -t7rJ-,D P = , (14) 

-dl p) - ~ (-) ~ ­= -inLD ir + ir Ip) = -i£.oirl p). (15)irili 
Therefore, introducing ir = dfrjdt and similarly ~ = -ir, one obtains 

:tirl p) = *1 p) = ~1T-1 p) + ~~I p), (16) 
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and 

dt 
d-

1i-1 p) #\ p) + 1i1 p) = #(1i- + *) Ip) - i£o1i1 p) . 

-?1-1i-1 p) - i (io - ifr) *1 p) (17) 

Eq.17 can be formally solved by introducing the propagator 

S(t,7) = f exp {-i it (£o(u) - ifr(u)) dU}' (18) 

The result is 

*1 p(t)) = - fot S(t, 7)?1-(7)1 p(7) )d7. (19) 

It can be checked directly by substitution of (19) into Eq.17 and taking 
into account the initial condition 1i1 p(t = 0) ) = O. Therefore, combining 
Eqs.19 and 16 , we arrive at the master equation 

~ 1i-1 p) = ?1-1T! p) - irfr fot S(t, 7)J1-(7)ir(7) Ip(7) )d7, (20) 

and to the other important equation 

d . rt A • 

1i- dt 1r1 p) = -1T1r 10 S(t, 7)1i-(7)1r(7) 1 p(T) )dT, (21) 

which follows immediately from (20) by multiplying on the left by 1i- and 
taking into account that 1r.fr1i- = O. 

With the preceding equation, the evolution of the spin temperature may 
be, at least formally, calculated. Approximation for having more tractable 
expressions are detailed below. 

2.3 Master equation for the spin temperatures. 

It can be checked that the Zeeman order is unaffected by the rotation 
of the sample. Indeed, multiplying Eq.21 by (Iz I and remembering that 
(IzHv ) = 0 and (IzHv ) = 0 we immediately obtain that 

d
 
dt{3z = O. (22)
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The master equation for {3o can be derived directly from Eq.21 by mul­
tiplying it on the left by (Ho(t)l and taking into account the relations (11) 
and 

As a result 

d13D 
dt 

= _{3D.!!:- (In (H~(t)) 
2 dt 

_ 
tr

10 
M(t, r)13D(r)dr. (23) 

where the memory function 

M(t, r) = 
1 . - ~ - . 

{H[[tT) ( Ho(t) In-(t)S(t, '1)11-( r) IHo(r), (24) 

is proportional to the (auto-)correlation function of the perturbation :rrHo (t). 
The first term of Eq.23, as discussed in 2.1, is the adiabatic contribution 

to the evolution of 130- Its order of magnitude is rv wr {3o while the second 
term of order (W;/Wl) 130' is much smaller. The saturation occurs on arv 

time scale which is much longer thanthe rotation time l/wr • Therefore a 
new slow-varying spin temperature 13s(t) can be defined by 

(25)
 

which evolves as 

df3s rt
dt = - 10 Ms(t, t - r){3s(t - r)dT. (26) 

The new memory function Ms(t, r), in this new representation which 
may be seen as an adiabatic frame, is 

1 . - ~ _ . 
Ms(t, r) = f{JiJ(t) (H5(T) (Ho(t) j11-(t)S(t, r)n(r) IHo(T). (27) 

This last equation is exact for any kind of motion of the sample and 
useful simplifications will be introduced in the next section. 

2.4 Approximations and calculation of the saturation rate. 

For slow rotation (or adiabatic evolution), the contribution -ifr in the 
propagator Eq.18 can be fully neglected with respect to lo. On the time 
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scale T l/Wl « l/wn the variation of .cD(t) can be also neglected (the rv 

free precession decay is much shorter than the period of rotation). Thus 
Set, t - T) may be simplified as 

Set, t - T) = Texp { -i i~r.cD(U)dU} ~ exp{-i£o(t)T}. (28) 

Of course, this equation is strictly correct only if replaced in the memory 
function Eq.27. As a function of T, Ms(t, t - T) decreases in a time which 
is of the same order of magnitude as T2 and the latter is smaller than the 
typical evolution time of 13s(t). Moreover, the difference between HD(t - T) 
and HD(t) and, Ho(t - T) and Ho(t) can be neglected leading to 

Ms(t, t - r) '" (Ht(t)) (HD(t) IiF(t)e-,E.(t)riF(t) IHD(t) ), (29) 

and the upper limit of integration in Eq.26 can be extended to 00 which 
gives 

d'j3 , 
dtS = - Ws(t)fJs(t), (30) 

where the instantaneous saturation rate Ws(t) is 

With the same order of accuracy, an averaged W s may be used 

(32) 

- 1 [Trot
W S = -;:p- 10 Ws(t)dt, (33) 

.1. rot 0 

here Trot = 27r/ W r . 

As usual, the correlation function 

may be simplified into 

f(t, r) = (D;(t)) (D(t)e-iHo(t}T D(t)e+iHDCt}r), (35) 
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D(t) = Ho(t) - Ho(t)(Ho(t)Ho(t))/( H~(t»). (36) 

A natural scale for dependence of f(t, T) onT could be defined by an 
instantaneous second moment ms(t) given by 

( [HD(t) , Ho(t)] [Ho(t) , Ho(t) ] ) 
()ms t = (D2 (t) ) . (37) 

Then saturation rate Ws takes a form 

Ws(t) = 
As(t) (D2(t» 

Jms(t) (H~(t) )' (38) 

where dimensionless value As(t) is defined by the relation 

A.(t} = r drf (t, v'':'(tj) (39) 

It is natural, that (under slow rotation) in order of value m s M/]t = wf,'"'-J 

where M~t is a second moment for static sample. Therefore Ws W;/Wlrv 

which is in agreement with the previous theoretical approach [8]. 
For polycrystalline sample the law (32) must be averaged over crystal­

lites orientations to obtain an observable value (f3s(t) )pc. Rather good 
results are obtained from the usual simple approximation: 

t 
(f3s (t) )pc = (135(0) exp {- kWs(T)dT} )pc ~ 

~ ,8s(O) exp <{- Jot WS(T)dT} )pc = ,8s(O)e-(Ws)pct. (40) 

Averaged saturation rate (Ws)pc does not depend on time t, because 
general rotation of the sample around the n r is one of elements, which 
define an orientation of the crystallite. 

Similarly we make the following approximation 

(W)	 = / As(t) . (D2(t»)) '" (As)pc «D2))pc (41) 
s pc \ ~s(t) (H~(t» pc '" J{ ms )pc « H~) )pc' 

Accuracy of approximations (40), (41) will be discussed below in Ap­
pendix B, as well as calculations giving 

I ) 2 1- Em ( st ) (42)\ ms pc = 3"' 1 + Ed M2 pc' 
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Small numbers f and Ed are defened in (90) and (92). With this resultsm 

w; . La (43)()( W s )pc = 3 - K,w As pc' ./ . sm 'IfH ,~2 V(M~t)pc 

where K w = (1 + Ed)~/(l- Em)!' and for FCC lattice K,w = 1.025. 
Some models and problems related with calculation of correlation func­

tion f(t, T) and As(t), will be discussed in sections 4 and C. 

Experimental results 

Experiments have been performed on a DMX-300 spectrometer with a 
commercial Bruker MAS probe (4mm). Adamantane was purchased from 
ALDRICH and used without any further purification. To check the quality 
and purity of the sample the free induction decay was measured for a 
powder in static conditions, and the second moment was in agreement 
with theoretical expectation, given in Appendix B. Polycrystalline sample 
has been used in the studies because the variation of the saturation rate 
with spinning speed and orientation of the rotor has been investigated only. 
Thus the measured saturation rates could be considered only as effective 
ones for the powder. 

Experiments were performed for three orientations of the rotor axis with 
the values of the angle {)H between the magnetic field H o and rotor axis 
fir set to {)H = (}MAS = 54.7(1)°, {)l = {jMAS + 2.7(3)°, and ih = {)MAS + 
7.4(8)°. 

Dipolar order was produced by Jeener-Broeckaert sequence i.e. by (~t 
pulse (whose phase defines the x direction in rotating frame) followed by 
a (~)y pulse [11]. 

Measurement of dipolar order at time t after the Jeener-Broeckaert puls­
es was achieved by applying a "reading" (~t pulse and measuring the 
amplitude of the signal in the x-channel of the receiver. 

The spin temperature hypothesis is experimentally confirmed by the 
observation of a dipolar spectrum and signal for slow spinning speed (figure 
1). No differences are observed for various spinning axes angle in agreement 
with the fact that the rotation is only a perturbation of the static case. 
As shown in figure 2, the spin temperature decay is, after a thermalization 
delay of '" 200M3, correctly described by Eq.32. 
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-10.0 0.0	 20.0 30.0-30.0 -20.0 

Figure 1: Comparison of dipolar spectra of a rotating adamantane powder 
sample at w" /21f = 200 Hz for different orientation of the rotation axis {} 
and acquired with identical experimental conditions. 

kHz 

0.0	 2.0 4.0 6.0 B.O 10.0 12.0 14.00.0 200.0 400.0 600.0 800.0 
't (ms) 't (J-lS) 

Figure 2: Variation of the dipolar spin temperature in a rotating adamantane 
powder sample wr /21f = 200 Hz at the magic angle. Left figure shows the 
fit used for evaluating the saturation rate (here Ts = 3 IDS). Right figure 
shows the short time behavior of the spin temperature. Thermalization of 
the system is obtained for TTHERM. ~ 200{ts. 
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Figure 3 displays the variation of f30 ('T) for different spinning speeds 
at the magic angle, similar results being obtained for other angle. The 
variation of the averaged saturation rate with respect to the spinning speed 
plotted for different spinning axis orientation, is in agreement with Eq.43. 
For spinning speeds in the range 1 kHz < Wr /21r < 3 kHz no more dipolar 
order has been observed, although the zeeman spectrum at wr /27r = 1 kHz 
is practically identical to the static spectrum. 

.---. ~T = 200 Hz 
o----<:l ~T = 300 Hz

E	 .......--. ~oT=400 Hz
 
0 o--a ~OT = 600 Hzca. 

.....-.-. Cl)ROT = 800 Hz 

Oe+OO 
12.0 14.0 

't (ms)
0.0 2.0 6.0 8.0 10.04.0 

15.0 

---. 
10.0 e--e9=MAS'I 

(I)	 o---a 9=MAS+5°
 
...----. 9=MAS+10°
E---(/) 5.0 

3: 
,__J.--_-'-, _-.-I-I_---'__1__--'---_---'

0.0
0.0 0.2 01 2 0.6 0.8 1.0 

0) ROT (kHz) 

Figure 3: Top: Variation of the dipolar spin temperature J3D(T) in a rotating 
adamantane powder sample at the magic angle. Bottom: variation of the 
saturation rate Ws with respect to w;. 
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4 Discussion of the results 

The least mean square treatment of experimental dependence of (Ws)pc 
on Wr and {)H by the law (43) in the form 

( Ws ) = q . (Wr 
) 2 • sin2 '19H ( 44) 

". 
pc 21r 

produces the values qexp = 0.01271(18)8, X2/n = 13/13, assuming 5% 
error bars for Ws in fig.3. One exponential approximation produce rather 
good fitting for time dependence (3D(t), nevertheless only time interval 
250J.LS < t < 2000Jis was used for checking the law (44) in order to overcome 
the influence of multiexponential decay, natural for polycrystalline sample. 
Measurements, carried out in the work [7) on polycrystalline adamantane 
for one angle {)H = ~ give q = 0.01238, that is in reasonable agreement 
with our result, and produce additional strong support for dependence (44) 
of (Ws )pc on {)H. 

If correlation function J(t, r) is chosen as Gaussian f(t, r) = exp(-~ms(t)T2), 

then relation (39) produces (As )pc = AG = /fI, and taking into account 
the relation (42) and theoretical value (Mit)pc = (2rr)2. 16.86 kHz2 we 
obtain, according to Eq.43, that corresponding q is qG = 0.0072228. The 
deviation of the relation qexp/qG = 1.76(4) from 1 seems as large enough 
to require some better approximation. This problem is considered in Ap­
pendix C, where more satisfactory value qthear/qC ~ 1.66 is obtained, 
basing on simple general ideas of high temperature spin dynamics. 

5 Conclusion 

A new theoretical approach has been proposed for the description of quasia­
diabatical relaxationphenornena in pp.2.1-2.3. The ~ethod is quite rig­
orous and generaL In the limit of very slow motion, studied in p.2.4, the 
method reproduces results of the theory, constructed by Jeener at al. on 
a quite different mathematical formalism (8]. Our theory is based on very 
simple and reliable physical basis; it is a theory derived from first principles 
and it leads to physical results by the simplest and straightforward way. As 
usual, calculation of kinetic coefficients in our theory, outlined in pp.2.4,4 
and in Appendixes B,C, requires estimations of some correlation functions; 
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we found a way to solve the problem by taking into account important gen­
eral properties of the process. We hope that developed methods can be 
applied to many other problems. 

In our experimental study, performed on a rotating powder sample, 
the angular dependence of saturation rate (Ws)pc of dipole subsystem 
on orientation of the rotor axis was investigated for the first time, and 
very simple sin2 'l9H law (44) was established. Rather strict checking of 
theoretical results was carried out and reasonable agreement was found. 

A	 Some properties of the time-dependent projection 
operators. 

The general properties of the time-dependent projections operators are 
summarized in this appendix: 

*(t) + 7f(t) = Id ¢:::} fr(t) + #(t) = 0 (45) 

*(t):rr(t)O = 0 ¢==:> fr(t)~(t) + *(t)#(t) = 0 (46) 

:rr(t)*(t) = 0 ¢:::::;> ~(t)*(t) + rr(t)fr(t) = 0 (47) 

From the previous relations, we obtain the two-terms products 

:rr(t):rr(t) ir(t)~(t), (48) 
:rr(t):rr(t) -*(t)ir(t), (49) 
ir(t):rr(t) = ir(t)fr(t) , (50) 

fr(t)*(t) ~(t)ir(t), (51) 
ir(t)ir(t) -~(t):rr(t), (52) 
~(t)*(t) -:rr(trir(t), (53) 

and the three-terms products 

~(t):rr(t):rr(t) 0, (54) 
~(t)fr(t)li(t) = 0, (55) 
ir(t)ir(t)ir(t) 0, (56) 

ir(t)~(t)*(t) O.	 (57) 
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B Calculation of the moments. 

Usual dipole-dipole Hamiltonian for homonuclear spin system of the crystal 
in strong static magnetic field Ho = DrHo contains secular part only and 
is of the form [2] 

(58) 

bij = bOP2(Dijnr)rij3, nij = rij/rij, rij = ri - rj. 

Here bo = -"'?h, 1 is gyromagnetic ratio, Ii is a spin operator for i-th 
nucleus, placed at ri, and P2(~) = (3e - 1)/2. Indices i and j in (58) run 
the values 1, 2, "', N, where N is total number of (proton) spins in the 
sample. 

Every adamantane molecule contains Zo = 16 protons and at room tem­
perature fast rotation around its geometrical center takes place. This ro­
tation averages to zero intramolecular dipole interactions. Molecules are 
arranged in FCC crystal. Therefore Hamiltonian (58) can be written as 

1 0 rnO
Ho = -2 L biPij , (59) 

if:j 

Here and below a symbol LO represents the sum on No = N / Zo lattice 
sites in simple FCC lattice, La is a sum over spins inside one molecule, and 
bjj = O. I~ represent total nuclear spin of j-th adamantane molecule, these 
operators have the same commutation relations as usual one-particle spin 
operators, but (IJ)2 is an operator as well, in difference of one-spin case, 
where (lja? = 1(1 + 1) is a constant. 

Let us to suppose that a sample is rotated around an axis Dr with an 
angular velocity W'" We can choose a coordinate frame with z-axis directed 
along Dr and y-axis - along [nr x Dr]. Only fiij depend on time in Eq.58. 
Therefore, using well known relation 

(60)
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where Y~ is a spherical function, we have 

'2 
imwrt

b . .(t) - "" e brt1:	 (61)
fJ - L... fJ ' 

m=-2 

4n
bjj = 0, (30 = 5bo , 

and 
2. 1 

HD = Bo(t) = L Hmezmwrt, H m = - L bV1i~ . (62) 
m=-2 2 i-lj 

Here n?j = nij(t = 0), and Y~*(nf) = Y~(nr) by definition of nf· 
One group of values, required to calculate (WS)pc is connected with 

1 ° 2) 1 )J = -( (Ii) = -1(1 + 1 Zo . (63)
3	 3 

With these definitions 

(H~(t) ) = 3J2NOLOb~j(t) = 3J2No 2: ei(n-m)Wrt2:°b(;j*b~j' (64) 
j mn j 

. 1 d 
(Ho(t)Ho(t) ) = 2dt (H~(t)), (65) 

(iI~(t) ) = 3J2No"E°b6j(t) = 3J2Now; L mnei(n-m)Wrt"E°b~*boj' (66) 
j mn j 

Other important group of values is connected with a commutator 

K(t) = [HD (t) , Ho(t)] = iWr L mXmnei(m-n)wr.t, (67) 
mn 

X:mn = [Hm , Hr~] = ;2:°(b7]bjZ - bkjbjneijk, (68)
ijk 

Bijk = -iJijk[Ti~' rlkJ = 8iik[3(Fijk - Fkji ) - B ijk], (69) 

Fijk = (IinrHnr[lj x IkJ), Hijk = Ii[Ij x Ik], 8ijk = 8ij8ik8jk . 

It should be noticed that two-spin terms are absent in (67) and (68), 
because 

[HD , 7i~] =	 "E°bkl[T~l' 1i~) = LObkl[T~l' li~](l - 6ik8jl - 8il8jk ) , 
kl kl 

and last expression contains three-spin terms only. 
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Direct calculations prodlice 

(70) 

and 

Z(t) = (K(t)K+(t» = 9J3w; 2: mp,ei(m-n-#-!+V)Wrt ZmnJ.lv , (71)
mnJ.lv 

""or Z-mn1w - "",OZ-mnJ.lv Z-mn#-!v (bn*btn bn*bnl)(bV b':* bV lI:.*)ZmnJ.lv = L Uijk ijk - LJ ijk' ijk = ij jk- kj ji ij jk - kj ji . 
ijk ijk 

In order to take into account random orientations in polycrystalline sam­
ple we introduce a basic frame for every crystallite with axis X, y, zdirected 
along crystal directions [100J,[010J, and [001] correspondingly. Then 

bij = bij(c/>, {J, ,) = (72) 

2
 
= ,6oY~(nf) L aij1)~m(c/>, {J, ,) = ,6oY~(nf) L aifei(ncP+m'Y)d~m({j) ,
 

n=-2 n 

where 1)~m(4J, '19, ,) and ~m({j) are standard Wigner rotation matrixes [12], 

m -2 3 -2 2 ­ N 

aij = Ym(nij)/rij , Ym(nij) = Ym({}ij, ¢ij) , (73) 

and angles .oij , ¢ij are defined relative to the basic frame of crystallite. 
Dependence on , in our problem is the same as on rotation angle wrt, 

and therefore it will be omitted below. 
It is useful to introduce a tensor 

1 ",0 m* n "",0 m* nSmn = l\T ~ aij aij = L. aOj aOj . (74) 
lYO ij j 

If the basic vectors of FFC lattice are chosen as 

el = ao(O, 1, 1), e2 = ao(l, 0,1), e3 = ao(l, 1,0), (75) 

then) according to cubic symmetry 

Smn = Snm = S;m = ao6 [l'1mbmn + j.tbm,-n(Jm2 + Jm,-2)] , (76) 

where 

0"0 = 0.1072, al = a-I = 0.1682, 0"2 = 0"-2 = 0.1377, P, = -0.03051 . 
(77) 
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Taking into account these definitions we obtain, that 

(78)(H;(t)) = 3J2f35 Noao6 2: Amn , 
mn 

(iJ;(t)) = 3J2{35Noao6 E mnAmn , (79) 
mn 

= Y~(nf)Y;(nf )[cos((m - n)wrt)fmn + 2 cos((m - n)wrt + 4¢J)gmnJ ,Amn 
Z(t) = 18NoJ3w;f36ao12[hl(t)h2(t) - Ih3 (t)12] , (80) 

where 
2 

fmn = fmn('l9) = L al/d~md;n, gmn = J.ld~,md~2,m , (81) 
1/=-2 

h1(t) = ~ mn<I>mn(t) , h2(t) = ~ cI>mn(t) , h3(t) = 2:
1 
~(m-n)<pmn(t) , 

(82) 
<I>mn(t) = ei(m-n)wrtY~(nf)Y;(nf)[fmn + e4irPgmn + e-4irPgnm} . (83) 

Formulae (78),(79) can be averaged on crystallites orientations directly 
with a result 

( ( H;(t) ) )pc = ~J2Nob5ao6"oo , "00 = 4; L "m = yo (~) 6 = 1.807 , 

(84) 
( (H;(t) ) )pc = 3w; sin2 'l9 H ( (H~(t) ) )pc, ( (HD(t)HD(t)) )pc = 0 . 

(85) 
Well known relation [12} 

= 10
1r

(ld~n('l9)12)pc d'l9sin 'l9ld~n('l9)12 = ~ (86) 

was used here. 
It should be noticed, that connection between ( (iI~(t) ) )pc and ( (H~(t) ) )pc 

can be obtained as well from the relation 

. • 2 . 2 
(bijbkdpc = 3wr sm 'l9H ( bijbkdpc' (87) 

that follows immediately from (60),(72), and (86). 
Averaging the Eq.80 we obtain 

(Z )pc = 18NoJ3w;f36~ao12, ~ = 9.636· 10-3 sin2 'l9 H , (88) 
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~ = L [mn-~(m-n)2]~(m-n-J.L+v)Y~~#Jv(nf)[( fmnfJw + 2gmn.9j4v)pc . 
mn#Jv 4 

Y~~#Jv(nr) = Y~(nf)Y;(nf)Y;(nf)Yv2(nf) 

Here ~(m) = omo is Kronecker's symbol, and numerical constant as well 
as dependence on angle f}H were obtained by computer calculations. 

If we apply to calculation of (Z) pc the same decoupling method as in 
Eq.41, then 

(Z)pc ~ 18NoJ3w~t36ao12[(hI )pc( h2 )pc-I( h3 )pc12] = 18NoJ3w;j3t~oaoI2, 

2 3 2
(89) 

~o = (::)4 aBo sin 'l9n = 9.817· 10- sin 'l9H , 

It is evident from (82), that (h3 )pc = O. The value 

Em = (e - eo)/eo = 0.0185 (90) 

gives one of estimations for decoupling in our problems. 
By the same way , 

(91) 

6 = L 6(m - n - J-l + v)(m - n)2Y~~j411(nf)[( fmnfj4l~ + 2gmngj4l1)pc ,
mnlJoll 

and, with computer calculations according to (91), we come to 

( ( HDHD )2 )pc . 
fd = (( H'5) )pc( (1r5))pc = 0.0103 . (92) 

It should be noticed, that em and Ed do not depend on f)H . 

Combining relations (36) and (92) we get 

(( D2 (t) ) )pc = (1 + cd)( (iI~(t)) )pc = 3(1 + €d)W; sin2
{)H( (H~(t) ) )pc 

(93) 
Second moment for absorption signal in polycrystalline adamantane can 

be calculated by standard way with a result 

(M~t)pc = (([Ix! HD][Hn, Ix]) )pc/(I;) = 9J.E ( (bOj )2)pc = (94) 
j 
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9J 2 -6 2 16 86 kH 2= -boao aoo = 41r·. Z 
5 

The values 2ao = 9.45 . 10-8cm [13], 1/21r = 4.2576 kHziG, and n= 
1.0546.10-27 CGS were used here. 

One particle second moments m x , my and m z are introduced by the 

relations 
m x = my = m xy = (95) 

5 
= ([lk,Hn][Hn,IkJ)/((In 2 

) = ([r/;,Hn][Hn,Ii;])/(I:Ik ) = 9M~t 

mz =	 ([It, Hn][Hn, IkJ)/( (Ik?) = ~M~t (96) 

The second moment (ms )pc' according to relations (39), (88-90) and 
(96), can be written as 

2 ) ) 2 (1 - Em) ( st )
(ms)pc= (Z)pc/( ( D pc= 3' (l+Ed) 1'v12 pc (97) 

It should be noticed, that small values for parameters Ed and Em are not 
very surprising, if we take into account, that relation 

((21rM;;,t)-1/2 exp(-w2/(2M;;,t)))pc ~ (21rM2j)-1/2exp(-w2/(2M2j)) 

is valid for w2 / M 2 j < 16 with meansquare deviation ~G = 6· 10-4, if fitting 
parameter M2f = 0.9925· (Mi. t )pc. Similarly, for the same w, 

In( (21rM~t)-1/2exp(-w2/(2M2t)))pc~ -w2/(2M2j ) - ~ln(21rM2j) 

with meansquare deviation ~lG = 0.03, if M 2j = 0.9828 . ( M!;,t )pc' 

C	 Calculation of (As)pc. 
Duration of the function f(t, r). 

The simplest way to improve the theoretical value of q = qC indicated in 
Section 4 is to take into account, that longitudinal and orthogonal (relative 
to external field H o) cOlnponents of spin operators have rather different 
evolution. For example, behavior of orthogonal components can be de­
scribed well if we know only second moments for corresponding correlation 
functions, whereas estimations for longitudinal components requires more 
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refined argumentation, which have to take into account, that a correlation 
function fz(t, r), introduced below by the relation (99) has at least three 
important part of evolution. It starts as 1 - Mz r 

2/2, then its decay is 
ex exp(-2Br), and final p,art is ex r-3/ 2 [14]. The values Mz and B will be 
estimated below. 

For the sake of simplicity we can rewrite D from (36) as D = Ho . This 
relation is correct up to small correction proportional to Ed, that follows 
from relations (92) and (93). Then, using notations of Appendix B (see 
Eqs.58,59), 

D = Dz + Dxy , (98) 
o· 1 o·

Dz = L bijI?zIJz, Dxy = -4~ bij(I?+IJ- + 1?-IJ+) , 
ij 'J 

The correlator (35) can be rewritten as 

f(t, r) = pzfz(t, r) +Pxyfxy(t, r) , (99) 

fa(t, r) = (Da(t)e-iHo(t)7 Da(t)eiHD(t)T) / (D~ (t) ), a = z, xy , 

pz = (D; )/ ( D2 
) = ~, Pxy = (D;y) / ( D2 

) = ~ . 

A second moment for fa(t, r) is 

Du is two spin operator, therefore we can expect, that 

(101) 

Then, using definitions (95) and (96) of one spin second moments rna, we 
obtain, that total second moment for f(t, r) is 

m s = 2(pz m z + pxymx) = 32 M2\ (102) 

in full agreement with relation (42), derived in Appendix B by more rigor­
ous and long way. 

Primary orthogonal one spin autocorrelation functions 

gx(t, r) = gy(t, r) = gxy(t, r) = (103) 

= (IJxe-iHn(t)TIJx eiHo(t)T )/ ( (IJX)2) = (IJ+e-iHo(t)T IJ- eiHn{t)7 )/ ( IJ+ IJ- ) 
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can be approximat~d as 

9xy(t, T) = exp( _T2 j(2mAt))) . (104) 

This representation does not reproduce exponential wings for 

9x(W) = /00 dT exp(iWT)9x(T) , 
-00 21r 

which are natural at large W according to modern knowledge [15, 16), but 
Eq.l02 is appropriate in the range w2 < mx [15, 17] that is important for 
our study. 

We can expect, that, in full analogy with (101), 

(105) 

At small and intermediate T 

Here simplest approximation for K (T) is applied and its second moment 
was estimated by the same method as Ma and m s in (101),(102). The 
duration of this initial part of the evolution is given by the time 

1000 

TO = dTf~(T) = 1.804/(2mz//2 (107) 

In evolution of fz(t, T) at t > TO the conservation low Lja1ja(T) = canst 
should be taken into account. We can rewrite fz (t, T) as 

fz (t, T) = (tr b;jr1 

it.; b'jbkl%(T)Gj,(T). (108) 

Here Gij(T) = (IPZ(T)IJZ)/( (IJZ)2). Starting with time T ~ T2 = l/wl 
the evolution of Glj (T) is mastered by the equation 

6Ij = - L (VVliGfj - WilG1j ) . (l09) 
l 

Therefore, Lk Gtk(T)Gkj(T) === Gij(2T), and as consequence of translational 
invariance, 

-
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Averaging on polycrystalline orientations with application of relations 
(87),(72) and (73) we obtain, that 

fAr) = (2: 2: la~12) -12: L a~*G:a.(2T)a~. (111) 
m r m xr 

Here enumeration by radius-vectors r and x of molecules is used instead 
of numbers i and j, symbol aj is introduced in (73), and symbol ( ... )pc 
is omitted. Comparing the Eqs. 110 and 106 we see, that if T > T2 then 
lnf~(T) ~ -2Br, where B = 2:x W:xr = J~mz. 

At larger T propagator G~(2T) becomes a smooth function of x - r, 
and corresponding lattice sums in (111) can be substituted by integrals 
with a result 

fz( I) = ¢dGoo(2T), ¢d = ~ . (4~)2 = 2.428, (112) 
0"00 3~G 

where n = 2a3 is a prime cell volume. It should be noticed, that Goo (T -t 
00) <X t-3/ 2 . 

It is known [18] that IDsd = f~ dIGoo (2/) = 1.265/(2B) for simple 
cubic lattice. The same method of calculation produce rD = 1.21/(2B) for 
FCC lattice of adamantane. Therefore the time 

1000 

T1 = dl(Goo(2r) - exp(-2BT)) (113) 

represents effective duration of diffusion long time tail of GOo (2T) ~ T- 3/ 2. 

According to (112) the tail is multiplied on ¢d in the case of fz( I), therefore 
its effective duration must be estimated as ¢dT1' Connecting all these results 
together, we come to 

(114) 

Therefore, as a whole, 

.!L = AAs = [PzAz + 2px(ms/Mx)1/2AG]/AG = 1.66 . (115) 
qa c 

Of course, rather precise agreement of this value with experimental 
qexp/qc = 1.76(4) is nothing more than coincidence1 but our discussion 
indicates direct way and necessary methods for more quantitative analysis. 

It should be noticed, that good agreement between calculated and mea­
sured values of ( Ws )pc was obtained in Ref. [7] as well. But calculation of 
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this article was based on very special hypothesis, which in our notation is 

of the form 1 2
f( T) = 1/(1 + 2"msT ).	 (116) 

This phenomenological relation, suggested for other, but related correlation 
functions in Ref.[19], was thought to be a very good approximation at that 

...... 
time, but is has no justification within the more microscopical treatment, 
outlined above. One of its weakness consists in contradiction to relation 
(112), which is rather general and it is based on existence of spin diffusion 
and dipole long range interactions only. On the other side, the hypothesis 
(116) was introduced in Ref.[19] to explain nearly exponential dependence 
on w of the correlation functions in frequency representation. Similar nearly 
exponential dependence can be obtained within our approach as well. More 
extended discussion of related problems can be found i.!lJ15]. 
The work was partially supported by RFBR '(project N° 99-02-17440). 
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PeJIaKCaUHH B KBa3Ha.n:Ha6aTH"tleCKoM npe.n:erre. HaCbIIUeHHe .n:I1nOJJbHOrO cnH­
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