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The superspace formulation of supergravity is convenient to obtain the 
equa.tions of motion for its fields. But there is no simple way to construct the 
lagrangi~ by these equations. In this pa.per the minimal lagrangian (i.e. one 
which contains not more than 2-nd power of derivative~) of D=10, N=l dual 
supergrvity is obtained. 

The dual version of supergravity has been introduced in [1J. Its multi­
plet contains: emQ- graviton, !/JmQ- gravitino, t/> - dilaton, Xa- dila.tino and 
M"'l ...me- antisymmetrical potential (we do not consider the contribution of 
the gauge matter here). The equations of motion for these fields depend on 
the constraints imposed on the components of the correspondent superfields. 
We use the constraints introdused in [2Jwhich are supposed to be the sim­
plest ones. Equatiolls of motion in this system of constraints (after some fields 
redefinition) have been obtaned in (3] and are listed in Appendix A of this 
paper. These equations have important property: they art linear ip fields ¢ 
and X. Hence the lagrangian must be linear in dilatoD and dilatino: 

·L=(.pSl+XaS2')! (1) 

(the vertica.lline denotes O-component of supcrfield). 
In order to find 81 and S~ it is necessary to us~ the torsion Bianchi identi­

ties. In this set of constraints they do not fix the components of the curvature 
'RtJfx:d a.nd the torsion Tabc and Tabo. Gent'ral expressions for 8 1 and 5:; through 
t.hese compon('nts, which contain not more than 2-nd power of derivative, are: 

8 1 = 'R + a r2
, 52 = bra/lTab , (2) 

where R = 'R.u Gb 
, 1" :: TabeTG/>(" , Tab dl'l1ot.es Tubo; the general factor before 

the lagrangian is not important here. The quantit.it's 8 1 and 52 must vanish on 



2 

shell. But the torsion Bianchi idAmtities panatee, thai the fellowing relatiOD~ 

are valid on shell (He [3]) 

(3) 

(4) 

(in the set of constraints presented in Appendix A; however the analogous 
relations take place in some other systems of constraints, for iusta.nse in (4] ­
[5]). Hence a =-1/3. 

In order to b.d factor b it is necessary to consider some equation [or ema, 
1/Im or Mtnt ...m,a. For this purpose we must write down the O-eomponents (see 
Appendix B) of the relations (A.3)-(A.7) aDd ,tra.usform it to the form in 
which they may be derived from the lagrangian ~ediately. 

We shall show, how ene can do it for the poten.tial Mm1 ••.me. To write down 
the Q..component of the relation (A.S) let us express the derivative with the 
fiat index Do through the derivative with the world index D.".: 

D.I =eo"'D",I- ~"G·Dal (5) 

We take the spinor derivative DaT* from the solatiOll of the tersioa. Biu.clU 
. identities (see [3]): 

DT. =_! r ./"7'111, + a r.r /hTI1I, (6)
2 

(the Bianchi identities give us only on shell fields values, Le. while r/'vr/h =0; 
so one can choose arbitrary a in (6». Then let us substitute the expressiollS 
(B.3) and (B.4) for the connection cPma~1 in the derivative D.". &C\:ording to 
(B.2) and alter that substitute the components of the tormon TuGI and T.I 
from (B.5) and (B.6).
 

The terms
 

I 1 1A A

/3v,·[ar 1K( ¢r T4j/- DdJ X - 36 rdJTx - 24 TrciJ X)\ =0 (7) 

A A1 
11/1r.rllc:tlJ( DX + gTx)\ =0 (8) 

are equal zero on shen and thus can be added to resulting expression with 
arbitrary factors 13 and 1'. However the lagrangian must be illvaDaut relative 



to the transfo-rmation 

M"'l ...me ~ MYra-I."1'Qcj + 8[mJ~",""1' (9) 

which does not involve other fields. Consequently it must contain M"'l ...me only 
throught the strenght q"'IMm,...~l' So the variation of &etion with respect to 
the potential must be the full derivative. This claim fixes all unknown factors 

. unambiguously: a = 1/2, /3 =3/2, "Y =O. 
As a result we derive the equation of motion for Mml ...",,: 

_ 1 tl1...d,
M. = 6j€ak Mdl...~idT' 

. thesemicololl. denotes the ordinary covariant derivative which depends on the 
ordinary vielbein.
 

Taking into account (see (B.5); (8.6), (B.8)) that ()...components are
 

'R.I =41Ml: + ... ; T.I = M. + ... ; r-Ta61::: -81 
M.~,pc + ... ; 

where the dots denote the terms of the lower order in the M..field, it is easy 
to see that the equation (10) can be derived from the lagrangian (1),(2} with 
b=2. 

So the lagrangian must be ()...component of the following stufF: 

C. =. q, ( 'R. - 31 
T 2 

) +. 2 XrNTA6 (11 ) 

But th.ere is an ambiguity in the field representation of the quantity 'RI. 
Indeed, it is necessary to k.nOll· the curvature components with the spillor 

Mindices in order to calculate RI from the formula 'Ill = Eb
N EQ 'R.\fN

4 "1. \Ve 
can take it from the solution of the t.orsion Bianchi ic1cl1t.itit's in [;1]. But as 
mentioned before the Bianchi identities give us only on shell fields values. 
Consequetltly XI may be presented in different fonus which a.re equivalent up 
to the term 

¢.rarkT6le1 , (12) 

vanishing on shell. One of the possible variants (B.8) is prt'scntl'd in Appendix 
B. It contains the term. with M,. which lead to
 

1 2 ) I 1 2 . 1 _I. [el b)
a( 'R. - 3T = -12 M. + 48 lfl.r , Mr 1/J,,+ ... 
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where M =Mallefalle. 
Substituting this expression into (11) one can derive the lagrangian which 

leads ·to the true equation for Mm1...me (10). But if we added the tprm (12} 
to (B.S) we would get a wrong p.quation, different from (10). So the onl)' 
expression for nl suitable for us is (B.B) . 
. We see that equations (3), (4), (10) flX all the te~s in the lagrangian 

without the equations of motion for emea and tPmQ • But the straightforward 
calculation show us that variations of L with respect to emII; .,p""Q- fields vanish 
if one takes into account the equations of motion (A.3) - (A 7), derived from 
the solution of Bianchi identities. So all the. assumptions about the lagrangian 
structure are confirmed. 

Finally: 

L = </JR - i¢'''caFtPC;6 - ~cP;QtPGrb",,6 + 2"of·X.,,+ 

-1\ tI> M~6c + ~8 ¢' '¢eaf~tJ M"r6\tP6 -1 XfUT/JCMalle'­

- 3. ~56 tI>(yl'rd4bcftP
/ )2 + 6~ <!J{,peaf ,,1Pc)2 + 3~ tI>(.,pGf"T/JC)(W.rctPJ,)­

- 1~ cb (tPar"tP,,) 
2+ ~ (xr oJ,1/I~)( tParc1/J") - ~ (xf eafbtP")(tPqrctPC) (13) 

We shall write below the supersyminetry transformations for the fields of 
the multiplet. They are the variations of the correspondent superfields under 
the shift 6zM = eM, eMI = (O,eQ 

) and may be easily obtained for emG,tPm,<P 
and X. To derive the supersymmetry transformation for M mt ...me it needs to 
write O-component of variation 6Tabc = e"Da ToJH: , taking DoT. from (6) and 
Tobel from (B.6). Choosing a = 0 in (6) one can transform this variation to 
the form: 

En1"2"'m 1..•m7'( bMm1 ...me + 31Pm1r ms._fRGe );'"' = 0 (14) 

The relation (14) defines 6Mm1 ...rrae unambiguously up to the transformation 
of the form (9). 

So the supersymmetry transformatiGilS in. the system of constraints (A.l) 
and (A.2) are: 
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6¢ = -xc. 
I 1 1 ~ 

b~ = -2 cP;mrmc + 4" (,pm x)rmc + 36 ¢TI ~ 

6Mml"'~ = -3 ,p[ftl1fma .•.me]E' (15) 

where 

Clt1m = ~ (2tPkf [l,pm] + 1/J,rk1/-'m) 

A lot of work need to be done to check the invana.ni;e of lagrangia.n (13) 
rela.tive t.o transformations (15). The foliJowing speculations allow to reduce 
it. 

Let 115 divide the supersymmetry transformati01:!': on two parts: 

bJeL =Je (A + B) c (16) 

where e = det emCl. Part A contains aU tenus which can be written symbolicaly 
in pow~ of fields and derivatives: 

Terms in B do not contain derivatives: 

B = (X + #) X (M2 + ~2M +",.) 

(except of the- derivative inside M= here M denotes the stftnth M. but not 
poiential) . 

StraightforWard calculations show that A == O. But hence it appears that 
B =0 toe. 

To prove it let us suppose that fields obey the equations of motion. Then 
one can express the terms orkind A through the terms of kiud I; alld substitute 
it in the right hand side of (16). Because the left hand side of (16) vanishes 
OD abeD ~hen B =-A == O. But part B does not contain deriva.tives, therefore 
it is DOC cbaDged after thia aubatitutioa. So B =0 in any case, not only on 
shell. 

Let us suppose now tl1. aome terms with derivati"es rerr.ain in A because 
they cannot be expressed through the terms without d.e.r:vativt'S by means the. 
equations of motioD. In this case we have a nt"w differentia.l equation A :: O. 
But all the equations the fields CaD obey are the equations of motion or its 
consequem-es. A~ a result we came to contradiction. 
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So in order to check the invariance of action relative to sllpeJ"Symmetry 
transforma.tions it is necessary to 'show only that A := O. It was made by 
author of this paper. 

The lagrangian (13) does 'not contain the kinetic terms of dilaton and 
dila.tino. 1 Therefore these fields cannot be' interpreted in the tiaditional man­
ner. Moreover one cannot formulate the perturbation t.qeory with them. How­
ever, it is possible to transform the Einstein's term of action ¢R to canonical 
form by means the vielbein conformal transformation and the dilaton kinetic 
term appears as a result. The dilatino kinetic term could arise if one diago­
nalize the terms with the derivatives or .,pm and X in (13). Indeed, the field 
change {~i} ~ {./} . 

em IS = e;'/s em0.' 

.,pm = 2e;'/12 ( "'m' - ~ r "a'X' ) 
4>= e~/3 

2../2 -11~ /1~ (X=-3 e X 

Mm" ..:".. =2 Mmt•..",.' (11) 

. leads to the lagrangian L' 
/ eL = 4/ e' L' 

with the canonical kinetic terms: 

L' = ! It + ! A,.i ''''''. ' - .!- e-~ M"l ' - !.h 'r-J. +! v'r-v. '­"4 2'1' 
4 

'fI,0. 12 • 2 'Po Yc:;6 2" ,,",. 

- ~tPil,'T/Jo'r.roX'+214e-~(tbQ'r[oM'rh]tP':~.J2x'r-M''':)+'''' (18) 

where the dots denote the terms of 4-th order in ferm.ioaic fields. It.nay to 
see that lagrangian (IS) is the well known lagangiaa of dualn.pergravity [1J 
rewritten in the notations used here. 

Note in conclusion the lagrangian (13) in fields parameterizaiioa 13) is sim· 
pIer than lagrangian [1} in fields parametrization [S}. It allow 118 to hope 
that nonminimal terms which must be added forcanceUaticm of aaomafies 
presented in theory are more simple in this parametrization too. 

1Abseace of the dilatoa metk ttna wu IlOleGm [61· for lapaqi.. obtUaell dlere. 

I"

1 
f·· 
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Appelldix A: constraints andeqUatioD8 of motioD 

Constraints, solution of Bianchi identities aDd equatious of motions are 
taken 'from [3]. Roht:d, Nok here correspond to -~ , -2N. in [3]; all 
other notatiollB are the same. An neceasuy pnperties of f-mairicee ODe can 
find in [8]. 

We use the following constraints for the tonloa compoaents: . 

Tal/ = rail, Tas''' =Tobc = 0 

1 ~ "(
To{J"( = 72 (Tr..)~, where ,1' = r*relk. (A.l) 

Bianchi identities for the 7-form N =: d.M relate the tomioa compoaeaa T. 
with the components of N-field which are the st.r'eDIht of peteatial M"" ..."..: 

(.ti) 

1NrL- 3: -~-L.~••~N,. L- n·- ~......,.t 
an other ....poae:ata of N are .... HIO. 

Equation or motioa for dte pvitoa eva4: . 

t/J'R... ,+ D(aD.)" - ii1 
."",;r2 +Ttf-rr.) X =0 (A.3) 

Equation ofmotioufor the paYitiDet/J-(I: 

'NtYt 1 .. 1­
t/lJ. -.1. -D.x - 36 r.xX - 24 Tr.X =0 (A.4) 

Equaiion of motioll for tile M....s-_: ' 

D(a( t/JTiait) + i Tr-I'dJ X+ ~ .~f-'a'J ,:I: 0 ' (A.S) 

Together with tile equatiGIISl3), (4) 

1
1l--T'2::0 (A.6)

3 . 
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r-T4~ = 0 (A.7) 

they form the complete system of equations of motion definig the fields dy­
namics. 

Although the tP and X enter in the lagrangian mthe DDDcanonical manner1 

they also obey the wave equations which can bt'! easyderiwd from (A.3) + 
(A.6) and (A.4) + (A.1): 

1 . 
lY"D" tP + 18 <l>T

2 =0 (A.S) 

A A1 
DX+-TX=O (A.9)

9 

Appendix B:· O-Components of 80perfields \. 

The metbod of transition from superfields to ().oomponents issta.ndard and 
haa been described in {9}. We list here only the expressions for it. The vertical 
line d_otes Q..compoDe1lt of superfield. 

Superspatial vielbein: 

E 41 4 , E-OI' -- !2'f'..I·mO
I'll =em ... 

E~G! = 0, E"Otf;: 6: (B.l) 

ConDedion 4JJI.6, eorresponding to D., Wdefined by meaDS 

DIIV·.= 8J(VC + v6<PM.a, (B.2) 

WRete M =(m,p), VO - a. vector. We svppO.e: 

,;_6j = LtJntIJ" <;,..(:= 0 (B.3)1 

In the .ystem of COHtraiJlbt (A.l) the COIlDt'diGll "'_ =e.mWmlM: takes the 
t<Jt'Dl: 

• 
(B.4) 

c. = i(Z1Por[6tPcJ + 1Prtr.f/Jc ) , 

w~- ordinary connection depending on only ordinary vie1bein em.G 
• 
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Torsion Tu 1>Q in the system of cona'traiDU (A.I) is: 

1 ~. lYlal 
TaoI =1P[&;I1] - "144 (r[oT +37T[a)I1/J.] + 41 -1I't.C6]ccl (B.S) 

the semicolon denotes the ordinary covariant derivative with the COune<:tiOD 
to)

Wabe • 

Relation of the N-field components with world and tIat indices (see (A.2» 
give us: 

(B.6) 

where 

__ 1 dl •."'" _ m~ meMoi.c = 6!' Eue M.t...de;~, M.,...ae =:= ea, ... e.. M""...... 

The supet'C1ll'\'ature ~", corresponding to the conaectioD t/>m".", is: 

~".= 2qfftq)"\lCl~ - 2 tI>["'lat if>"Jc:" (B;7) 

The explicit expression for O-Component of 1la6ad through ordinary curvature 
R..soed , corr~nding to the connection (J)~ , is very cumbersome. So we 
present here only the expz4Mlsion lor 'Rl =~cai,: 

1 1 1 1 .
'RI =	 R - 2~fI.r·t/Je;. + 2(J/lOf.,,');0 + :4 T:.xl + 81PGr.tP~Ma6c:+ 

+6~ ('!Ja.r,1fJc)2 + ;2 (t/Jar .tPc)(,p·rc1/1") - 1
1
6 (",~rb",")2 (B8) 
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