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The superspace formulation of supergravity is convenient to obtain the
equations of motion for its fields. But there is no simple way to construct the
lagrangian by these equations. In this paper the minimal Jagrangian (i.e. one
which contains not more than 2-nd power of derivatives) of D=10, N=1 dual
supergrvity is obtained.

The dual version of supergravity has been introduced in [1]. Its multi-
plet contains: e,”- graviton, ¥,,*- gravitino, ¢ — dilaton, y,— dilatino and
Mp,...m¢— antisymmetrical potential (we do not consider the contribution of
the gauge matter here). The equations of motion for these fields depend on
the constraints imposed on the components of the correspondent superfields.
We use the coustraints introdused in [2] which are supposed to be the sim-
- plest ones. Equations of motion in this system of constraints (after some fields
redefinition) have been obtaned in [3) and are listed in Appendix A of this
paper. These equations have important property: they are linear in fields ¢
and x. Hence the lagrangian must be linear in dilaton and dilatino:

L= (¢S5 +x.57) T (1)
(the vertical line denotes 0-component of superfield).

In order to find S, and SJ it is necessary to use the torsion Bianchi identi-
ties. In this set of constraints they do not fix the components of the curvature
Rbeq and the torsion Ty, and 7,7, General expressions for 87 and S9 through
these components, which contain not more than 2-nd power of derivative, are:

S]':R“"aTz, S‘."—'br‘bTab» ‘ (2)

where R = Rgy™ , T? = T, T |, T,y denotes T,,°%; the general factor before
the lagrangian is not important here. The quantities S; and S; must vanish on
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shell. But the torsion Bianchi identities guarantee, that the following relations
are valid on shell (see [3]) .

R-%T’:o e

7T, =0 ' (4)

(in the set of constraints presented in Appendix A; however the analogous
relations take place in some other systems of constraints, for instanse in [4] -
[5]). Hence @ = —1/3.

In order to find factor b it is necessary to consider some equation for en*,
Ym Ot Mpm,. m,. For this purpose we must write down the 0-components (see
Appendix B) of the relations (A.3)-(A.7) and .ransform it to the form in
which they may be derived from the lagrangian immediately.

‘We shall show, how ene can do it for the potential M, ., To write down
the O-component of the relation (A.5) let us express the derivative with the
flat index D, through the derivative with the world index Dp,:

Dni = e‘m ml - l¢a¢D¢| (5)

We take the spinor derivative D T.,k &om the solution of the torsion Bianchi
.identities (see [3]):

1
DTae =~ Tan* T + a LoD T, . (6)

(the Bianchi identities give us only on shell fields values, i.e. while [T, = 0;
so one can choose arbitrary o in (6)). Then let us substitute the expressions
(B.3) and (B.4) for the connection ¢m,’| in the derivative D,, according to
(B.2) and after that substitute the components of the torsion T,;"| and Tos
from (B.5) and (B.6).

The terms

1 . 1 ;
ﬁ¢[arbc(¢PITa’;f-Dd]x~3—s'Pd]Tx—EZTFJ‘;XN=9 (7

N U
7 Ylsea( Dx + 5T x)l =0 (8)

are equal zero ou shell and thus can be added to resulting expression with
arbitrary factors 8 and y. However the lagrangian must be invariant relative



to the transformation

Mm,...n. hand Mm,.‘.ms +6[m,fm,...mg] Y (9)
which does not invelve other fields. Consequently it must contain Mo, _m, only
throught the strenght O;m, Mim,...m,). So the variation of action with respect to
the potential must be the full derivative. This claim fixes all unknown factors
_ unambiguously: a =1/2,83=3/2,y=0.
As a result we derive the equation of motion for My, m,:

1 3 |
(6 Miosc = 3 & YT T g Ty, + 3 Vil x )i =0 (10)
where 1
Mubc = gi F.nkd‘"'d?Mdl...dg:d'l )

" the semicolon denotes the ordinary covariant derivative which depends on the
ordinary vielbein. : ‘
Taking into account (see (B.5), (B.6), (B.8)) that O-components are

Rl:%Mﬁk+...; Tusel = Muc ... r@*r“|a—%u.kr“¢=+...;

where the dots denote the terms of the lower order in the M-field, it is easy
to see that the equation (10) can be derived from the lagrangian (1),(2) with
b=2.

So the lagrangian must be O-compouent of the following stuff:

c=¢(n—§1")+2xr°"m (11)

But there is an ambiguity in the field representation of the quantity R|.
Indeed, it is necessary to know the curvature components with the spinor
indices in order to calculate R| from the formula R| = ESNEMR,y ,v“bl. We
can take it from the solution of the torsion Bianchi identities in [3]. But as
mentioned before the Bianchi identities give us only on shell fields values.
Consequently R| may be presented in different forms which are equivalent up
to the term

Yol T*TL| , (12)
vanishing ou shell. One of the possible variants (B.8) is presented in Appendix
B. It contains the terms with M,;. which lead to

1 1 B | .
(n-§T=)|= -EML+—4§¢,F[“MF")¢5+...




where M = M°*T,,,.

Substituting this expression into (11) one can derive the lagmngxan which
leads ‘to the true equation for M, . .m, (10). But if we added the term (12}
to (B.8) we would get a wrong equation, different from (10). So the only
expression for R| suitable for us is (B.8).

" We see that equations (3), (4), (10) fix all the terms in the lagrangian
without the equations of motion for e,* and ¥,,*. But the straightforward
calculation show us that variations of L with respect to ep*; 1,,*~ fields vanish
if one takes into account the equations of motion (A.3) — (A 7), derived from
the solution of Bianchi identities. So all the assumptions about the lagrangian
structure are confirmed. '

Finally:

1 1
L=¢R- '2'¢¢¢Iw¢c;b - 5 ¢:a¢urb¢b + 2¢er¢bx-,b+
~ M+ g ¢¢.,rf'*m"’*¢b - T XTY M

& (VT aaserd’ )’ +a ¢(¢,n¢=\’+ ¢(¢“r"¢°)(¢. ) —

3. 256

~ e ST + 5 (xrwg)(wﬂr‘w“) - [T T)  (13)

We shall write below the supersymimetry transformations for the fields of

the multiplet. They are the variations of the correspondent superfields under

the shift 6z = ¥, | = (0,£*) aud may be easily obtained for em®, Ym, o

and x. To derive the supersymmetry transformation for Mpy,. m, it needs to

write 0-component of variation 6Tu = £€* DaT s, taking D,Tus from (6) and

Tobe| from (B.6). Choosing a = 0 in (6) one can transform this variation to

the form:

C Engmany (O Moy e + 3 Ymi Ima.me€ )imy = 0 (14)

The relation (14) defines §M,,,. ., unambiguously up to the transformation
of the form (9).

So the supersymmetry transformaticas in the system of constraints (A.1)
and (A.2) are:

—

ben’ = Pl

N

b = 26 — %2-(31“'1*,,. + Do) e — %c,,.,,rwe
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647 = —XE.
bx = —lq&. I""£+l(¢ x)I™e + —1—¢T|s
X="g%m g \¥m 36
6Mm1...mg = -3 w[m,rm;mg] € (15)

where 1
Cum = ¢ (29T 1¥m) + Vilatbm) -
A lot of work need to be dome to check the invariance of lagrangian (13)
relative to transformations (15). The following speculations allow to reduce
it.

Let ns divide the supersymmetry transformatiors on two parts:
 6fel=[eia+B)e (16)

where e = det e,,%. Part A contains all terms which can be written symbolicaly
in powers of fields and derivatives:

A= (x+ ¢¥) x (R+ 8 + MO +°8)
Terms in B do not contain derivatives:
B = (x+¢¥) x (M* +¢’M +¢*)

(except of the derivative inside M: here A denotes the strenth M, but not
potential).

Straightforward calculations show that 4 = 0. But hence it appears that
B = 0 toe. ,

To prove it let us suppose that fields obey the equaticns of motion. Then
one can express the terms of kind 4 through the terms of kind /’ and substitute
it in the right band side of {16). Because the left hand side of (16) vanishes
on shell then B = — A = 0. But part B does not contain derivatives, therefore
it is not changed after this substitution. So B = 0 in any case, not only on
shell.

Let us suppose now that some terms with derivatives remain in A because
they cannot be expressed through the terms without derivatives by means the.
equations of motion. In this case we have a new differential equation 4 = 0.
But all the equations the fields can obey are the equations of motion or its
consequences. Ag a result we came to contradiction.
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So in order to check the invariance of action relative to supersymmetry
transformations it is necessary to show only that 4 = 0. It was made by
author of this paper.

The lagrangian (13) does not contain the kinetic terms of dilaton and
dilatino.! Therefore these fields cannot be interpreted in the traditional man-
ner. Moreover one cannot formulate the perturbation theory with them. How-
ever, it is possible to transform the Einstein’s term of action ¢R to canonical
form by means the vielbein conformal transformation and the dilaton kinetic
term appears as a result. The dilatino kinetic term could arise if one diago-
nalize the terms with the derivatives of ¥ and X in (13). Indeed, the field
change {®;} — {&,'}

’
emd = e8¢,

, , 1 .
¢m=2e¢/m(¢m - mrm’x')

¢= e—4¢‘/3
2v2 _
x=-2%2e /2, f
. Mo me = ZMM:-"NG’ . £ an

.leads to the lagrangian L' :
[ el =4 j er
with the ca.nonical kinetic terms:

- .
= —I't" + - ¢M¢ a = fi -wM - l‘f?a'rd"i’q&"*’ “X'F‘X;l'_

f¢ Y0 TP ' + ~e“‘" (9.TeArTy,) + f 2X T M P )+ ..., (18)

where the dots denote the terms of 4-th order in fermionic fields. It is easy to
see that lagrangian (18) is the well known lagrangian of dual supergravity [7]
rewritten in the notations used here.

Note in conclusion the lagrangian (13) in fields parameterization [3] is sim-
pler than lagrangian [7] in fields parametrization [8]. It allow us to hope
that nonminimal terms which must be added for cancellation of anomalies
presented in theory are more simple in this parametrization too.

* Absence of the dilatoa kinetic term was noled in [6] for lagrangian obtaised there.
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Appendix A: constraints and equations of motion

Constraints, solution of Bianchi identities and equations of motions are
taken from [3]. Rabed , Nase here correspond to —Reeed , —2 Naae in [3]; all
other notations are the same. All necessary properties of I'-matrices ane can
find in [8]. .

‘We use the foilowing constraints for the torsion components:

Tagc = I‘,,g‘, T,a = qu =0

) .
T = (TT.)s', where T =T"T,,. (4.1)
Bianchi identities for the 7-form N = dM relate the torsion components Ty
with the components of N-field which are the strenght of potential Mo,

NaBn;...a. = _(ra‘...u)ﬂﬂ ) Nﬂk = Tabe (A'z)
where 1 ’
Nac = ;n—f.;.““" N,y s

all other componenta of N are equal zero.
Equation of motion for the graviton e’

SR + DiuDuy$ ~ 35 $1aT? + Tl Ty x = 0 (43)
Equation of motion for the gravitine ¥,.": '

’ 1.4 | P
¢I“T..—D¢x-§r.Tx-§Tl‘.x=0 {A4)
Equation of motion for the M, _n,:

Diu($Tet) + 3 TiaTet X + 5 $Tlacg = 0 (4.5)
To;ether with the equaticus (3), (4)

. 'R—-;-.'Iasﬂ ' ‘ (A.ﬁ)
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T, =0 (A7)

they form the complete system of eguations of motion definig the fields dy-
namics. -
Although the ¢ and x enter in the lagrangian in the noncanonical manner,

they also obey the wave equations which can be easy derived from (A.3) +
(A.6) and (A4) + (A.7):

D°D.g+ - 4T =0 | (4.8)
bx+%f‘x=o , (A.9)

Appendix B: 0-components of superfields

The method of transition from superfields to 0-components is standard and
has been described in [9]. We list bere only the expressions for it. The vertical
line denotes O-component of superfield.

Superspatial vielbein:

: 1 .
Emal = en’, Emul = E’J’m

| E =0, E°=6 : (B.1)
Connection @a,’, corresponding to Dy, is defined by means ]
DaV® =8y V® + Vigp®, (B.2)

where M = (m, n), V° - a vector. We suppose:

P’ = wma®, Guatl =0 | (B3)

In the system of constraints (A.1) the connection wgc = €™wmi takes the
form:

Wabe = ‘(,2+%T¢|+C* (B.4)
where )

Cote = 5 (24aFeby + Tt ),

w‘(,z- ordinary connection depending on only ordinary vielbein e,,°.
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Torsion T,;* in the system of constraints (A.1) is:

Tl = ¥wa = 37 (T + TNy + ;T Cos (B5)

the semicolon denotes the ordinary covariant denvatlve with the connection

R;:lation of the N-field components with world and flat indicés (see (A.2))
give us:
1 .
Tabe] = Nase| = My — g»d)dfﬁfda?f (B.6)
where
Moy = —éd-d‘ U M. ddy s May.ag = €a,™ - €ag™ Mpm, .y -
The supercurvature R, corresponding to the connectmn Drma’, i8:
Romna’ = 28 m Paja’ — 2 Bimial” Pae’ (B:7)
The explicit expression for 0-component of Rq| through ordinary curvature

Rabed , cortesponding to the connection wg,), , is very cumbersome. So we
present here only the expression for R{ = ‘R..,;,‘“{

Rl= R= 3 6T + 3 (PT#) + { Thd + § daBsge Mo

< (el$)” + 535 (DI TY) - - 4Ty (BY)
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