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1. Intreduction

In this talk I shall report some results of our investigations of the nucleon form
factors within the VMD model framework!.

The experimental progress in studying the electromagaetic nucleon form factors?
stimulates development of the phenemenological models34 capable of the detailed
description of the nucleon form factors at low and intermediate energies and having correct
QCD asymptotic behavior. The experimental data on the nucleon form factors provide us
with the important information about internal structure of nucleons.

In the spacelike region Sachs form factors obey scaling relations

GEgD) = GpmptWip= Gty (L1

with i, and u, being the proton and neutron magnetic moments (in n.m. units). With
good accuracy Ggp(t), Gump(t)/ily, and Gug(t)/j, 2re described by the dipole function
Gp(t) = (1 - V.71)2 (t in GeV?2), the form factor Gg, (1) is positive but small. The physical
origin and justification of these equations remain still mysterious. In the non-relativistic
quark models, the densities of charge and spin coincide, and the 10% deviations from
scaling relations arise already at It | = 0.1(2my)? = 0.35 GeV2. Despite Egs.(1.1) are
useful, simple, and known for many years, they are considered usually as being
incidental.

In Sect. 2 we show that in the VMD models scaling relations can be satisfied
identically to zeroth order i parameters O(I'/my ), O{Bynn/Bonn) and O(am,/my) where
Ty and my are widths apd masses of the vector mesons, gy and gy coupling constants
of the ¢- and w-mesons with nucleons, and am, mass differences of the w- and p-mesons.
The no-width models ase useful as zeroth approximations in constructing realistic VMD
models for nucleon form factors. In Sect. 3 the p-meson contributions to nucleon form
factors arc evaluated from the low-energy unitarity. We give the onc-dimensional integral
representations for the low-energy contributions taking into account existence of the
eikonal vertex function in a way consistent with the low-energy unitarity. In Sect. 4 we
describe the model and compare predictions of this model with the data at spacelike and
timelike momentum transfers.
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2. Scaling Relations in No-Widths VMD Models

i The clectric Ggn(t) and magnetic Gyg(t) Sachs form factors (N = p,n) are defined in
terms of the Dirac and Pauli form factors by

Gnt) = Fin() + Py (t(4my?),
GMN(I) = FlN(t) + FZN(t) (2. l)

where my is the nucleon mass. The isoscalar (s) and isovector (v) components are given
by

Fiult) = (Figlt) + Fin(OV2, _
Fiu() = (Fip(0) - Fip())2 . 22

(i = 1,2). The quark Counting rules$ imply

Fin() = O(142),
Fa(t) = O(1A3) - 2.3)

when t = oo. The additional power of I/t in Fyy(t) occurs due to suppression of the
quark spin-flip amplitude. It follows that .

Gen(t) ~ Gupn(t) = O(1412) Qe

when t —» =. The asymptotic behavior of the dipole function is in agreement with the
quark counting rules.

-

2.1. Additive representation for Sachs form factors

In the no-width limit, the VMD expressions for Sachs form factors with account of
the eikonal vertex function F(t) arising due to summation of the soft @-meson exchanges
can be written in the form
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A3 ] 2 . .
Godd =03, bhe'+ 3 b2 gry @5)
t=0 ksl my-t .

where n is the aumber of vector mesons wim»difféugm masses, bl are coefficients of the
polynomials, ckpy are residues describing contribution of the k-th meson to the form
iactors, and T = EM. The vertex function

Pa(t) = explix(t)) : (2.6)
smbyig;ciw .
[t 2r-amd
Y= @7
2 Ign -0 ¥4 amy? '
where 1o = 4my2,

2

vt 2y,

8n m,
m,, is the o-meson mass, A, is a cutofT parameter. We have ix(t) -» 1 - In{-my?)) as t
— o, The quark counting rules require Feift) = O(17)) as t -» oo, 50 y = j must be integer.
The eikonal ix(t) increases with tup to t,, at L > 1y Reiy(t) = ix(y - 1).

The threshold conditions Ggyn(ty) = Gyn(tp) arising from the definition of Sachs
 ferm factors, give constraints for residues of the form

i-2 n ' 2 "
3 (k- bhedth+ 3 (chy-chod =0, @.8)
120 kal mk.(o

For j 2 1 the quark counting rules are fulfillcd. For j = 0 (Fi(t) = 1) additional
constraints must be imposed

Y iy =0. 2.9)
kwul
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2.1. Multiplicative representation for Sachs form factors
. The additive representation (2.5) can be considered as an expansion of the rational
' function
Paai ) o
Gty =~ ¥y, (2.10)
Boowd

over its elementary ratios. For ‘polysomials PTN, . (1} of powern +j - 2 the quark
counting rules are fulfilled.

2.3 Scaling relations and the OZI rde

In order to satisfy scaling relations and threshold relations Gen{tg) = Gyou(to). Sachs
form factors should vanish at to = 4my?. Extracting from the polynbmials the factor 1 -
t/(4my?), one can write the following representations

. Ep .
Gyft) = GpgfVity = Gt = (1 - u(am,’a}-ﬁ:l-'i(g—ﬁqtt),
| L, a-vmd

Gg,(t).a(x-v«mf»-:;l:&@—?"'(t) ' 21y
Bows ©

which satisfy identically scaling relations, threshold relations, and the guark counting
rules. The normalization conditions for the polynomials ace Ps, , ;_5(0) = 1, PBn, ; (0
= 0. In general case, there are n + j - 3 parameters (in addition to masses) fitting the dipole
curve and n + j - 3 parameters fitting Gg,(t).

The isotopic components can be found to be

-ty B YEMDIPRL ) O Pasy oD o
A -vm).

Fl‘l) = 0.5
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The upper and lower signs refer, respectively, to 1= s,v. These form factors contain in
general extra poles correspending to mesons from opposite isotopic channel. In order to
climinate these poles, their residues must be st cqual to zero. Trivial solutions PEe, , ;_
a(m2) = PEn, . 5(m?) = 0 would imply that meson with mass m, is absent in the both
channels. It is necessary, therefore, 1o look for non-trivial solutions which exist if

1-(e % HJmpdmp 1 _

.19
-lap i, 1

The determinant vanishes for my = 2my,. In such a case Gpy(ty) # 0, however. We thus
conclude that it is impossible to eliminate extra poles.

There is still one possibility. In order to accompany the VMD model with scaling
relations, it is necessary to assume that

(i) the numbers of vector mesons in the both channels are equal,
(ii) these mesons are degenerate in mass.

The first assumption is equivalent to the OZ1 rule: strange vector mesons are decoupled
from the sonstrange nucleons. In such a case the isosinglet channel is represented by the
o-mesons only. The second assumption implies degeneracy in mass of the ground and
exited states of the & and p-mesons. The decoupling from nucleons and the degeneracy
imply in turn absence of the ¢-» mixing, which is again in agreement with the OZI rule.
“Fhe approximate character of the OZI rulé restricts accuracy of scaling relations by valucs
O(gqnun/Baanne) and O(amy/my,).

For zero coupling of the ¢-mesons with nucleons and degeneracy of the 1- states of
 and p, the dipole function Gp(t) can be fitted with any fixed accuracy: a = 3, j = 0 (Fri(t)
w 1), my = my = Y.71 GeV, my ~ 2my,. The limit cannot be reached, since equality my =
2my violates threshold relations Ggn(iy) = Gyn(tg). The model n = 3, j = O predicts
Ggy(t) = 0. The first resonance is identified naturally with the ground-state 1 mesons.
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The equality m; = m;, should be treated as an evidence for existence of light exited 1-
mesons. In papersS existence of the candidates with masses in the interval 1.1 + 1.3 GeV
- are reported (see also” and eerlier issues of PDG). The third resonance can be identified
with one of the well established mesons of masses 1.4 GeV or 1.6-1.7 GeV.
It is clear aiso that for arbitrary set of the meson masses Gp(t) czn be fitted with any
precision in the limit n - .

3. Low-Energy Unitarity in Isovector Channel

The nucleon form factors are analytical functions in the complex t-plane with cuts
(tg, +oo) where tg is two- or three-pion threshold. The form factors can be restored in the
complex t-plane through dispersion relations, given that their imaginary parts at the cuts
are known. From the point of view of the analyticity, the region t > 0 (Imt = + 0) is of the
extreme importance, since it contains information about behavior of the form factors in the
whole complex t-plane.

The behavior of nucleon form factors is governed by nearest singularities, so in
isovector channel tiic dominant effects come from the p-meson pole. The dispersica theory
based on the analyticity, unitarity, and crossing symmetry of the scattering amplitudes
gives a possibility to evaluate the low-energy contribution to the discontinuities of the
scattering amplitudes and of the form factors in 2 model independent way.

3.1 Unitarity relations for nucleon form factors

The unitarity relations for isovector nucieon form factors F,,(t) and F,(t) are the
two-body ones. They can be used for computing imaginary parts of the form factors in
terms of the pion form factor and the p-wave ntN-scattering amplitudes below the NN-.
threshold in the t-channci®.

The higher partiai ‘vave contributions to the backscattering amplitudes near the two-
pion threshold can apparently be neglected, in which case the unitarity relations take the

form®
3

l ;‘n = IELH m(v-1) + BO DUF L),

. “th(V)=
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3
ImF, (v) = -;:ﬁﬁvn’mm(v,-lw.m ‘ G

where k = (V2 - p2)12, i the pion mass, a(s,u.t) = ACXs,u,t) /(s - v), ACXs,u.t) and B¢
¥(s,u,t) are invariamt pion-nucleon scattering amplitudes whose analytical properties are
fixed on the basis of the double spectral representation. The function ofs,u.t) is regular at
s = u, since the amplitode A)(s,u,t) is antisymmetric with respect ta the interchange s +»
. The backscattering amplitudes a(v.-1) and BCXv,-1) (cos@ = -1 in the s- and t-channels)
as functions of the s-channel c.on. momentum squared v are analytical functions in the
complex v-plane with two cuts (-eo, -12) and (0, 4+<o). In the backscattering case = - 4v,
The unitarity relations show that phases of the amplitudes and of the pion form factor
coincide, so the ratios a(v,-1)/Fy(v) and (4ma(v,-1) + B(-)(v,-1))/Fx(v) have only the one
right cut. These ratios are expressible in terms of the observable TN-scattering amplitudes
with the use of the one-subtracted dispersion relations

4 1+B9v.1 4:: 04 su" v 1
@mp(v,-1) + BAv-DYF ) = T 2 PR
SVJ""'M”(V') av'
3J0 evi(v V) Fv'y’

+ *Imfyfv') dv'

2v
1 =2 IREN V(5
a(v,-1)/Fy(v) ll (arll/2 "P3n) -[ v 2(\, -v) F vy

3.2)
where vg = - u2 + p¥(4mp2), f2 = 0.09 the pion-nucleon coupling constant, o = (u? +
v)2 the pion encrgy, 3,0, ap12), a,g,-}“) scattering lengths, f33(v) the pion-nucicon
scattering amplitude in the J = I = 3/2 channel. The second term in the brackets of first of
the equations comes from the pole Born terms. 1t is assumed that the pion form factor has
0o zcros in the complex v-plane.

3.2 Pion form factor in FFGS model

The Frazer-Fulco-Gounaris-Sakurai (FFGS) model®-19 satisfies analyticity, low-
energy unitarity for pion form factor, and crossing symmetry for the na-scatiering
amplitudes, providing a simple relation between imaginary part and absolute square of the
pion form factor
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K 2 k;
77 FoOr’ = ImF (0 D) 33)
. m
. ?
where kg = (mp¥/4 - p2)12, my and Iy the p-meson mass and width, D@) = m2 +
O(ry/my) the value of the D-function at the origin. This equation is valid at itl < 106 GeV?
where the pion form factor falls off like 1/t in agreement with the quark counting-rules.

From the unitarity relations it follows then that imaginary parts of the aucleon form
factors are proportional to imaginary part of the pion form factor multiplied by the ratios
(v, 1)/F(v) and (4ma(v,-1) + BIXv,-1))/Fy(v), and so like in the case of the kaon form
factori! the dispersion integrals can be evaluated explicitly. The pion form factor in the
FFGS model has no zeros in the complex v-plane, so the pole terms in Egs.(3.2) do not
exist and the dispersion relations are valid.

3.3 How o treat eikonal vertex function keeping low-energy wnitarity?

In pucleon form factors, however, there is an additional cut starting from the two-
nucleon threshold. We wish to take into account it explicitly assuming the cut is
determined by the eikonal vertex function (2.6). In such’a case, the low-energy unitarity
relations and dispersion relations should be written for the ratios F;,(1)/Fit) in which the
cut at t > tg no longer exists. '

. In the no-width limit, the right sides of Eqs.(3.1) are proportional to &t - my?), and
so in the one-pole approximation the unitarity relations for F, (tVF(t) take the form

Im(Faxt)lF’j(t)}=cim:6(t-m§ . e

where ¢;, are the p-meson residues. The factor 1/Fei(my?) is absorbed by the residues.
The p-meson contributions to the nuclcon form factors can be evaluated in the no-width

limit with the use of the dispersion relations to give
2

izt m, o
Fud={ 3 big'+ S I (3.5)
t=0 m, -t
The degree of the polynomial is determined by the quark counting rules. The residues c;y
can in principle be computed, whereas the coefficients b;, ! are free parameters.



9

The effects of the finite width can be taken into sccount by expanding Pei(t) in
powers of (1 - my2) up to O(t - m,?)?) in terms LmF ((VPY(t) entering the right side of the
unitarity relations. We define

oL I-P'zw,xv') av P12 - Py Y0 -V vy -v)
=2l T ED) -V H)

where H(v) = Fei(vp) + Fei(vp)'(v - vp) + 0.5F%i(vp)"(v - vp)2, v| and v; are roots of
equation H(vy) = H(v2) =0, v; =v3°, and m.pz = -'4vp. Notice that Ime(v) =
ImF,(v)lH(v)
The function Ry(t) is analytical function in the complex t-plane with a cut (42, -w)
In general case Ry(t) = O(1/t) as t -+ «. In the no-width kimit, Fy(t) = m,%{m,2 - ) and
Ry(t) = Fo(tVFi(m,?).
The unitarity relations can n(;w be writien in the form
ky () 2ﬂ!f2 v i
) = DOl G
.‘“ Tufyqv) gv'
4] a‘v'(v' -v) F‘(v')

In(F ¥ tv)) = nmnm,amx.(vx: @Sln-aila +
3m '] .
* “Imfygv') dv'
g 22 o,y 36
370 v.z(v -v) FLv')

The nucleon form factors in the dispersion theory have normally two-dimensional
imtcgral representations. The first integral comes from the dispersion relation for the
nucloon form factors, while the second one comes from the dispersion relation for the xN-
scattering amplitude throngh Egs.(3.2). Using Eq.(3.3) and analytical properties of the
integrands in the complex v-plane, it becomes possible to cvaluate one integral explicitly,
as a result of which the one-dimensional integral representations can be derived:
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Fiyv)= [t b

DO ok ,,(v>+2“” VRV -VRvD |

1=0 2!' ll Yo F'(vn)*
2 ;’mf,f" 2R YR I,
Fodv)= [fb;v"‘+ : D(Wmﬂ(‘p:n' IR +
w0 3m
r ﬂmf”(v ) 'Rp(': -_VVRJV ) F:Vv DIE. k)

In the no-width limit, qu.(l'l) take the form of Eq.(3.5).

In derivation of Eqs.(3.7) following ideas are combined: (i) low-energy unitarity,
(ii) FFGS model for the pion form-factor, and (iii) existence of the eikonal vertex
funciion.

The onec-dimensional integral representations (3.7) simplify treatment of the p-meson
contribution to nucicon form factors. In particular, it becomes evident that asymptotics of
the non-polynomial part is determined by and the same as asymptotics of the function
Ry(t). In repsesentations (3.7), there are no sestrictions with respect to t for validity of the
quark counting rules, while in the FFGS model such restrictions exist.

‘We thus demonstrated that the p-meson contribution to the nucleon form factors can
be computed in a model independent way using the experimental data on the phase shifis
of the R~ and #N-scatterings. The mr-scattering phases enter Egs.(3.7) through the pion
form factor. In isoscalar channel, the unitarity conditions are much more complicated, and
so this channel should be treated more phenomenologically within VMD approach.

The final-state NN-interaction is important at sufficiently high t (in comiparison with
the region just above the two-pion threshold where the low-cnergy unitarity is exact). The
high energy cuts in the nucleon form factors insert in cstimated based on the low-crergy
unitarity and the dsspcmon rclations ambiguities which should be controlied separatety.
We assumed the rabo",a(v ~1)/Fg(v) and (4ma(v.-1) + BO)(v,-1))/F (v) arc regular at v <

- ji2. The same suggesieon for the ratios o(v,-1)/(Fg(v)R,(v)) and (4mafv.-1) + B X(v,-
DM(F (VIR (¥)) is. howcvu cqually well justificd.
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4. The Model and Resulls

The low-epergy unitarity in isovector channel is effective for computing the p-meson
contribution to nucleon form factors. These computations are in excelient qualitative
agreement with VMD models. However, the p-meson case is exceptional one. In isosinglet
channel the low-energy wutarity relations are already three-body ones, and so they are not
so efficient like for the p-meson. The w-meson contributions to aucleon form factors
should be treated in the spirit of VMD models. The higher radially excited states of the
vector mesons can also contribute to imaginary parts of nucleon form factors.

4.1 The p-meson dominance and low-energy unitarity

A suggestion that the ratios o(v,-1)/Fu(v) and (4ma(v,-1) + BCX(v,-1)}Fy(v)
represent slowly variable functions is equivalent to a hypothesis of the p-meson dominance
in the ntN-scattering amplitudes, since the pion form factor is determined by the p-meson
pole. In this approximation

Im{F,(/F0)] = ¢; JmR () @y -

where ¢;, are "residues”. The p-meson contributions to nucleon form factors can be
reconstructed from Eqs.(4.1) using the dispersion reiation

jaist . o :
Fuo={ 2, b+ RgOFYD. “2
1=0

The function R (t) is essentially deiermined by the p-meson pole. Assuming the the p-
meson dominasce for the TN-scaiictag amplitudes, we reproduce the p-meson dominance
for the nucleon form factors. The tow-energy unitarity allows therefore to justify
qualitatively the p-meson dominance. It gives also predictions for the p-meson residues
¢;v- The representation (4.2) is appropriate for extension of the p-meson dominance to
other vectar mesons.

4.2 VMD model for nucleon form factors
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‘We consider the model discussed in Sect. 2 a5 a zeroth approximation, namely, 6o
strange mesons are introduced (Zyvn = 0) and the numbers of almost degenerate «- and p-
mesons are equal. The nonstrange «- and p-mesons with masses of ahout 1.25 GeV are
incluced to the fit for reasons explained in Sect. 2, The representation for the'nucleoa form
factors of the form

Fy)= r’l‘}:o’ bin‘*»kictmuﬁr*”’m‘ @.3)
- wl i
represents a natural extension of Eq.(4.2). The k-th meson contribution to the form factors
- looks like the contribution of the p-meson for the constant ratios e(v;-1)/Fx(v) and
(4mee(v;-1) + BEXv,-1))Fy(v). The functions Ry(t) are defined like the function Ry(1)
with the substitutions my, I'y ~» My, Fy. The p-meson is treated separately as described in
Sect. 3. '
1n the no-width limit the functions R,,(f) have monopole form. Notice smoothness of
the no-width limit, It ensures the existence in model (4.3) of solutions satisfying scaling
relations with precision O(F/my) + Ofamy/my) and gives therefore an opportunity to
avoid of doing a biack fit.

- 4.3 Results ard discussion
. We fitted first the experimental data at t < O using the simple polynomial
parametrizations of Sect. 2. In this way several models have been selected: withn =3, 4,
and 5 and j = 2, 3. We then continued search for the realistic models, capable of
describing the data at t < 5 and t > . within that restricted class of the imodels.

Table 1. Masses and widihs of the mesons (in GeV).

k 1 2 | 3
w-mesons 0.78 - i0.01 L5-i0.10 | 139-i0.22
p-mesons 0.77-i0.15 1.25 - i0.20 1.50 - i0.24

QOne of the simplest modce!s is the model withn =3 and j = 3. The NN coupling
constant for j = 3 and A; = 2mg can be cvaluated to be gz..uﬂl(4u) = 12 in qualitative
agreement with the NN-scattering data. The mesen masses and widths are shown in Table
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1. The first and the last two mesons are well established, their parsmeters are taken from
PDGS. mmmmdmmwdmuwww
the fit.

Table 2 The coefficicats byl of the polysomisis togrsher with the mesons rosidues ot

"4 O SUR N 25 ¥
b {018 1 09 0.21 0.10
byl oud 003 | 00 — _
el ] 02 1.009 029 | 2009
g2 | 099 200 | 069 4.74

0.77 389 -1.59 5.19

<

The mnltiphiors of the pon-polynomial pares of Eqs.(3.7). The contribution to the By (1) is
given enactly by first of the Egs.(3.7); wheress the contribution 0 the Fay(t) is given by the
wmm&yamm

We have not found sufficiently good fit with the p-meson contribution to the Fay(t)
given by Eqs.(3.7) and increased it by a factor two. The estimates (3.7) can in peinciple be
improved by including the higher partial waves to the t-chaone! backscattering %N-

The coefficients of the polynomials and values of the residues are listed in Table 2.
The model curves togethes with the experimental data are shown in Figs.1-2. The -
experimental vahues IGgn(t)! and IGyn(t) are extracted from the data at t 2 dmp? assuming
wﬁg@(tﬁaﬂm(tﬁmwwkmmnmewhm threshold and no

oo M1 m w1 om
we | Caoot

b
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wf
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mu«:&amw:xzx& may&wvﬂmnm(ﬂmwm arc extracted
from the dais assuming IGn(tt » IGyp(DL ’

louger valid above the threstiold. In the fit presented here, we did not pose any constraints
for these form factoss. It is scen from Fig.2 that splitting between 1Gen(t) and IGnn(t!
sometimes exceeds the experimental erors. In vicw of these uncertainties, it is more
ressonable 1o fit directly cross sections, mmmmﬁmmemormmr
assumption 1GeN(t) = WGup(tl. The resalts of such & procedure will be reported
elsewheret,



hd

»

We did nc: try to reproduce the fast threshold form factor behavior. The lowest point
at t=tg is really very specific one. It refers to annihilation of antiprotons at rest. It means
that the stopped antiproton is captured by the proton to form a hydrogen-like atom. The
antiproton capture is accompanied by the X-ray radiative transition to lower eacrgy levels
and finally by annihilation of the antiproton. The annihilation goes from the subthreshold.
The nucleon form factors contain Gamov's factor which describes the Coulomb effects. It
has pales corresponding to the bound states. The nucleon form factors thus have
complicated comb-like structure just below the threshold. The lowest pole rests at the
ground pp-atom state, while t= tg is a point of accumulation of the singularitics. The
meaning of the experimental form factor value at t =ty is not transparent. These poles are
shifted to the lower half-plane, the shifts are determined both by electromagnetic and
strong interactions, so the aucleon form factors are oot products of the electromagnetic and
strong parts. /

5. Cosciusion

We showed that scaling reiations for Sachs form factors can be satisfied identically -
in the no-width VMD model for zero couplings of the ¢-mesons with nucieons and
degencracy of the 1— states of the o~ and p-mesons. Using this model as a zeroth
approximation, we constructed the VMD model describing successfully the experimental
data at spacelike and timelike momentum transfers. This model takes into account finite
meson widths, correct anafytical properties, and quark counting rules. The p-meson
contributions to aucieon form factors ase controlled with the use of the low-energy
unitarity, however, we found it necessary to increase the p-meson contribution % Fo(t) in
comparison to the estimate (3.7).

Acknowledgements

Xmmmdwmmmﬁmmmwﬂcmsww
support.




16

_ References

M.M.Giannini, E.Santopinto and M.LKrivoruchenko, Phys.Letr. B, to be published.

. W Bartet et al., Nucl Phys. BS8 (1973) 429; K.M.Hanson et al. Phys.Rev. D8

(1973) 753; T Blokhintzeva et al., Yad.Fiz 21 (1975) 850; A.Lung et al, Phys.
Rev.Lett. 710 (1993) 718; S.Rock ct al., Phys.Rev.Lett. 49 (1993) 1139; R.G.Arneld
et al., Phys.Rev.Lent. 57 (1986) 174; 61 (1988) 806; A_S Esaulov et al,, Yad Fiz. 45
(1987) 410; V.Baturin et al., Yad.Fiz 47 (IQSB) 708; P.E.Bosted et al., Phys.Rev.
Lest. 68 (1992) 3841; R Walker et al., Phys.Lert. B224 (1989) 353; G.Bardin et al.,
PRys.Lent. 2558 (1991) 149; 2578 (1991) 514; D Bisello et al., Nucl Phys. B224
(1983) 379; T.A.Armstrong et al., Phys.Rev.Letz. 78 (1993) 1212: C. Voci, Nucl
Phys. News, 3 (1993) 29.

. Flachello, A.Jackson and A.Lande, Phys.Len. 43 B (1973) 191: G.Hohler et al.,

" Nucl Phys. 114 (1976) 505; M.Gari and W.Krumpelmann, Z. Phys. A 322 (1985)

689; S.Dubunicka, Nuovo Cim. 103A (1990) 1417; P.L.Chung and F.Coester,
Phys.Rev. D 44 (1991) 229; P Kroll, M.Schurmann and W.Schweiger, Z Phys. A

338 (1991) 339; A.Buchmann, E.Hernandez and K.Yazaki. Phys.Letr. B26% (1991)
3s.

. M.M.Giannini, Rep.Prog.Phys. 54 (1991) 453.

V.A Matveev, RM.Muradyan and A.V.Tavkhelidze, Lett. Nuovo Cim, 7 (1973)

_ T19; S8.J.Brodsky and G.R.Farrar, Phys.Rev.Lert. 31 (1973) 1153; Phys.Rev.

D11t (1975) 1309; G.P.Lepage and S.J.Brodsky, Phys.Rev. D22 (1980) 2157.

. H.M.Fried and T.K.Gaisser, Phys.Rev. 179 (1969) 1491.
. Frenkiel et al., Nucl. Phys. B47 (1972) 61; S.Bartalucci et ab., Nuovo Cim. 49A

(1979) 207; Burber et al., Z Phys. €4 (1980C) 169, D.Aston et al., Preprint
SLAC-PUB-5657 (1991).

. Particle Data Group, Phys.Rev. D45 (1992).
. W.R.Frazer and J.Fulco, Phys.Rev.Lett. 2 (1959) 36S; Phys.Rev. 315 (1960) 1763;

117 (1960) 1609.

10.A.LLendel, V.LLendyel, V.A Meshcheryakov and B.M.Emst, Yad.Fiz. 3 (1966)

1093. :

11.G.Gounaris and J.J.Sakurai, Phys.Rev.Letr. 21 (1968) 244.
12.M.1 Krivoruchenko, Pisma ZhETF, S8 (1993) 7.



