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1 Introduction

To analyse the hadronic spectra and interactions one is to consider the Green
functions for many quark system in the confining gluonic fields. Making use of
the Feinman-Schwinger proper time representation [1], these Green functions
can be expressed in terms of the average of Wilson loops corresponding to the
hadrons participating in the process iunder consideration. In the simplest case
of the gg system the area law for < W({C) > enables one to study the dynamics
of quarks connected by the string. The guantization of the "minimal” QCD
string (corresponding to the minimal area asymptotics for < W(C) >) with
quarks has been done in {2]. For high energy scattering the interaction of
~ two Wilson loops was considered in [3] in eikonal type approach, while for
low and intermediate energies the problem of evaluating decay and scattering
amplitudes in terms of Wilson loops average is still awaiting for the solution.

The purpose of the present paper is to derive the expressions for the average
of two Wilson loops in terms of gauge invariant field strength correlators, and
to obtain the generalization of the area law asymptotics for this case.

We use the cluster expansion method {4,5] which enables cne to write out
the Wilson loops average in terms of irreducible in space correlators (the so-
called cumulants). Our basic assumption is the existence of the fiéld strength
cumulants with finite correlation length T, [5,6], which have the structure
of Lorentz indexes containing the part expressed only in terms of Kronecker
delta functions é,,. The second order correlator of this type (defined in the
gauge invariant way [5]) I

‘ € F o (2)Fu(y) ®~ (6000 — 51-05”) .
was measured recently by lattice simulations [7]. We also make extensive use
of the condition that there is no fixed direction in colour space. In the case
of one loop the presence of such cumulants leads to the appearence of long
range interaction between quarks and allows to obtain the minimal area jaw
asymptotics for large contours [5], which is also observed on the lattice.

We present the generalization of the area law for the case when our loops
are embedded into the same plane (Fig.1}, or into the plaues with distance
between them less than the gluonic correlation length 7;. To obtain the
generalized area law it appears necessary to reduce the initial SU(N) matrix
problem to the effective scalar one with short range scalar cumulants. While
a single Wilson leop corresponds to the circulation of colour charge in fun-
damental representation along the contour, for the case of two loops (with
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the geometry of Fig.1} one actually has the circulation of colour charges in
mnou.s m'edumble represenfations in accordance with the decomposition

N @R = singlet @ adjoint -
for opposxtely rhrected loops, and

N ®N = symmetric @ antzsymmetrzc

for parallelly directed loops,so that the average of two loops can be (symbol-
ically) presented as
< W(C;)5W(C'2)a >=
(singlet)§(singlet)] + (N? — 1)(adjoint)§ (adjoint)}
or

<W(CEW(C)] >=

/ NN-1), - .
ﬂ%i—g(sym)”(sym)p; + ¢ 3 )(afmsym)”(antzsym)g;
As a consequence, for large contours in quasifiat geometry the following

expressions are obtained:

< SpW(o,)spW(c,) >= ZD(')ea:p{—a'm(Sl S;) — d(')32},

Sl > bi, shs3 > T'2

where D() is the dimension of the given irreducible representatiot. {r}, o)
is the corresponding string tension, and o(/) is the fundamental string tension
entering the area law for a single loop. Therefore we connect the average of two
Wilson loops (in fundamental representation) to the average of single Wilsor

_loop in representations in accordance with the geometry of the contours. The
expressions for the selfintersecting loop (with the geometries of Fig.2) are also
obtained.

We perform the reduction of our resuts to the 1+1 gauge theory, and
find the agreement with the calculations [8,9] based on the Migdal-Makeenko
equations [10] and non-abelian Stokes theorem [11]. We note that recently in
1+1 QCD the average of arbitrary number of Wilson loops on an arbitrary
two-dimensional manifold has been calculated and the relation to the string
theory of maps was obtained [12].

Correlation of Wilson loops was also studied numerically in lattice simu-
lations {13]. The case when one of the loops is small and serves as a probe
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to study the field distribution around the string is a topic of a vivid interest
for several years [14-16]. When the loops are large, both measurements and
interpretation are much more difficult and accuracy is not yet enough.

The plan of the paper is as follows.

In Section 2 we introduce the cluster expansion on the example of a single
Wilson loop, using the Fock-Schwinger gauge to simplify our derivation.

In Section 3 we derive expressions in terms of the cumulants for the average
of two loops. .

The explicit answers in terms of the corresponding string tensions and areas
are given in Section 4 for the case of large contours embedded into the same
plane. '

Discussion and comparison with the two-dimensional SU(IV) theory is done

_in Section 5.

Two appendices A and B are devoted to the derivation of scalar clusteriza-
tion condition and the relations between string tensions for 141 SU{N) theory
respectively.

2 Cluster expansion method.

Before proceeding with the case of two loops we remind the essentials concern-
ing one loop; the details may be found in [5]. The quantity to be considered
here is . :
< W(C)>=< Sp P exp t'g/‘;A,,dx“ >, (1)

where brackets mean the average over all gluonic fields with the QCD wﬁght.
The expression (1) may be rewritten using the non-abelian Stokes theorem
[5,11,17] in the explicitly gauge-invariant form

< W(C)>=< Sp P exp ig[gda,,,,(z)F,,,,(z,:ito) >, (2
where S is the minimal surface bounded by the coutour C, and
| F(z,20) = ®(2o, z) F.(2)B(z, 20), - (3)
®(z0,z) = P exp ig Iz Aydz, is the parallel transporter along the path con-
necting the points z and z,.

We shall use at the intermediate stages the Fock-Schwinger gauge

AL(=)(z - 2o)u =0, ' (4)
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Aj(z) = j ada(z - o), Fy,((2 - zo)a + o)

for which di(xa, z) in (3) is equal to unity, and choose the point z; inside the
contour, as it is shown at Fig.3; for such choice the integration in (1) takes-
place actually along the identically deformed contour of Flg 3, and (2) follows
_ from (1) in the most straightforward way.

We present the expression (1) in the form

<W(C)>=N E(‘y)"lu » =1, ' (5)

I= i,—P [da1...dz0 < Sp (A1) Aza)) > | (59

with ommited Lorentz indices. For the contours without selfintersections the
coordinates {z;} on the contour C can be parametrized in the unique way
by ordering parameres {s;},0 < s; < 1, which are determined, in turn, by
angular variables {6;} along the contour (see Fig.3). It is naturally to assume
that for the ensemble of stochastic fields the angular clusterization condition
holds true, : )
< (A(81)-Alsm))3( A5t Alsmin))l > 0
—< (A(81)..A(3m))5 >< (A(8m+1)---A(8msa))l > '
if the cluster of points {s)...8m,n} is separated spatially into two clusters,
{s1...8m} and {s,,._,.l -Smin}, SO that

i — 5| > Ty, ie{l..m}, je{m+1. m+n}

where T is the gluonic correlation length.

Due to the condition (6) the correlators of a given order in eq.(5) contain
the smaller order correlators as disconnected parts (the parts which do not
vanish at large intercluster distances), and it is useful to represent < W(C) >
in terms of the connected correlators, the so-called cumulants [4]. It can be
done by calculation of in < W(C) >. Formally, the cumulants K35(21...2m)
are defined from the equation [4]

< (W) >= § (i9)"(L)3 = 7

fezp 5 B0 G,



where .
(Kn)j = [ d21...dzmKap(21..2m)- (8)

It was shown in [4] that if the clusterization condition (6) takes place, then
the functions K%s({zm}) defined in accordance with eqs.(7), (8) vanish if
the cluster of points {z,,} is separated spatially into any number of clusters
{zm }) {Zm;}--- . Equivalently, for large smooth surfaces the field strength
cumulants (with the Lorentz indexes structure, which contains the part ex-
pressed only in terms of Kronecker delta functions) coming to eq.(8) from the
expression (4) for Fock-Schwinger gauge lea.d to the following result for the
corresponding integrals [5)

% (g = (oIS + (mlr (9)

where S/p is the area/ perimeter of the surface, and o, may be (for arbitrary
stochastic ensemble) non-unity matrices. Large and smooth means that both
the size of the contour and the averaged size of contour irregularities are much
larger than the correlation length Tj.

The equation (9), however, is not sufficient in general for the "scalar” area
law

< §p W(C) >— ezp(~0S) ‘

we are to have in QCD. The latter is achieved if there is no fixed colour
direction in the vacuum, i.e., in addition to eq.(6), the condition

< (A(.,)...A(s,.)); >= 83 A(s1...82), (10)

A(3)...8,) = — < Sp(A(s1)...A(8r)) > .

is imposed. Then the mamx area-law (9) is obviously rcduccd to the
"scalar” one,

(K:m)g = 6E’Cma
(om)g = 5;""1 ’ (l‘m); = 6gl‘ma

and for large smooth contours one has {5], up to shape corrections,
e

< Sp W(C) >= Nexp(—a8 — pp), (11)
where m. ! L o
o= L am y = )_, Hm . (12)

m—2
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(It is supposed that seria (12) for ¢ and p converge).
The couditions (6) and (10) can be combined into the "scalar” clusteriza-
tion condition for the functions A

2 < SPA()- Alsmen) > W

- Tt'“ < Sp(A(s1)... A(sm)) > Fir‘ < SP(A(5mns) o AlSmsn)) >

if the cluster {3;...8m.n} is separated into two clusters {s...sm} and

{8m+‘...8m+ﬁ}.
This condition enables one to reduce the matrix exponentiation (7) to the

scalar one which will be necessary for two loops case analysis. To this end we
are to tranform the ordered in {s} integration s;y; > 3;, inio the integration
over the whole region 0 < 3; < 1, so that I, in (5) can be rewritten as

n = Pfdxl...dsnA(Rl---sn) = (14)

i-! [(dse)"Alsy...50) (14%)

where the ordering of colour matrices in A(s;...3,) in (14°) follows the ordering
of variables {s;}. In such representation the application of ordinary scalar
exponentiation [4] to eq. (5) gives the definition of scalar cumulants K,
vanishing at large distances due to eq. (13):

1
'2"‘K2(31I2) = A(2:122)
1
E;KJ(ijzx's) = A(zlzz.’ta) (15)

1 .
ZEK‘(II:':’) = A(21222324)~ A(2122) A(z324) - A(Z123) Az 274) ~ A(2124) A(£223)

and so on. Therefore, we demonstrate that the condition (13) leads to scalar
area law (11).

3 Two Wilson loops average
We start with the evalnation of
< (W(C)s(W(C)); > (16)
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for two contours in the same plane inserted one into another. We have de-
formed the contours identically by making tentacles from the open ends of the
contours to the point x; inside the both loeps (Fig.4). This point participates
in the definition (3) of the F,,(z,2¢) and in the Fock-Schwinger gauge (4),
which is used in what follows. The straightforward application of the expo-
nentiation procedute (7) to the expression (16) leads only to the "matrix” area
law, as it is clear already from the analysis of the one loop case. Moreover,
in contrast to the one loop case, the condition (10) does not lead, as we shall
see, automatically to the area law.

To develop a regular method we are to express the average (16) in terms of
‘the proper scalar short range correlators. Colour structure of the expres-
sion (18) which can be interpreted as the circulation of twe fundamental
colour charges, is decomposed into the pairs corresponding to the circulation
" of charges in irreducible representation accordingly to the formulae

N @ N = singlet @ adjoint (17)
for the oppositely directed loops, and
N @ N = symmetric @ anlisymmelric (18)

for the parallelly directed loops.

We prove that scalar correlators corresponding to each term of the decom-
position of < SpW(Cy)SpW (C3) > in accordance with (17),(18) satisfy the
scalar clusterization condition similar to (13). Conseguently, the application
of scalar exponentiation separately to each part of this. decomposition gives
the definition of short range scalar cumulants and generalized area law.

Instead of eq. (6) for two loop case we consider the average of the type

< (A=) A=)5(A(2D)-. A=) > (19)
where points { zsl)} belong to the contour C; and points {z(:)} belong to the
contour C;. First we generalize the clusterization condition (6) for our iwo
loops case, and prove that it leads with necessity to the decomposition {17),
(18) for the definition of short range scalar cumulants.

Due to the interaction between the loops the average (19) is not reduced
to the product of averages if the points on both contours are correlated in
angles defined with respect to a halfline, starting at .xo. Therefore only if
the cluster of points {s‘,"...s%,sﬁ’)...sﬁ,} is separated in angles into two
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clusters {s"...s®, s s} and {sG)1...0000, 5%);...80)} (the superscripts

(1) and (2) stand to label the points from the first and the second loop), the
‘generalized clusterization condition holds true for the enseruble of stochastic
fields: .

< (A(s1")... A5 (A(smh)--- Aol )] (20)

(A AG(AGP)... AP >~
—< (A(s!). A(SN)5 - (A(8D)...A(s))2 > -
< (A(S)A(sh)] - (A(s)- A2 >
for opposite ordering of loops, and

< (A(s)... A(sENS(A(sEh ) - A(sSha)] > - (20)

(A1) Ao A(sdr) (sﬁi’,m >~
—< (A(s1)- AGTFA(S)-. ALY >
< (A(sth)--AlsShn)] - (Alefy)- AlsD))2 >
for parallel ordering. Again, as for the case of one loop, in the Fock- Schwinger
gaunge with the point z¢ inside the loops the clusterization condition (20) is

actually the angular one.
In what follows the shorthand notations are used:

< (A A (AGD).. AP >=< (@3] > - (2)
and
< (A()- A3 (A().. AT >=< (al)5(8))] > - (21)

To reduce, as in one loop case, the SU(N) matrix problem to the effective
scalar one we first note, that the natural generalization of eq.(10) is the fol-
lowing expression for the four-point averages (21) and (21') in terms of two
scalar functions 4, B

< (@:)3(5;)] >= A(i,3)838] + B(3,5)85 8} (22)
< (@h)5(¥)7 >= A'(i,5)838] + B'(i,5)636} (23)
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instead of one function A of eq.(10). It is demonstrated in Appendix A that )
the use of the decomposition (17) leads to the following scalar correlators,

satisfying the scalar clusterization condition

1
= < Sp(aqsiabjasin) >—

N
— % < Splanby) > = < S{anb) >
N p 0;-1 51 N 12052
and 9 :
o1 < Sp(an+szf\abjz+j1_f\a) >
2 2 '
- -m < Sp(aiy\ab,y\b) > ‘—m < Sp(aiz‘\cbjzf\c) >
- with 1 : .
: ~ < Sp(ad;) >= A(i, j) + NB(, j) = J'SO)
and | ,,

2 i3 . . i
T < Spladibde) >= A g) = I,

Similarly, from the decomposition (18) we have

1 ' ,
W I < () SeEi) £ Spehirabiny )} >
1 ’ .

NyzD < {SP(a'u)Sp(bjl). + Splalybla)} > -
1 , , '
N T < (SPe)Sp) £ Splabia)} >
with .
NN ET) < (5P(@)Sp(t)) £ Sp(ait))} >=
= A'(i,§) £ B(i,5) = I¢

(29)

(25)

(26)

(27)

(28)

(29)

To take advantage of these scalar correlators we decompose the pairs of
colour indeces in < W(C,)§W(C;)] > in accordance with the decomposition

(17),(18), that corresponds to the following:
' < SpW(C\)SpW (C;) >=

—;7 < SHW(COW(Ca)) > +2 < SpW(C)AW(Ca)Aa >

(30)
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‘with ' _
| < SpW(CW(Cy) >= N E(ig)" 1 @y
< SHWOAI(CA>= Tl sgrren, ()
for the case of opposite direction in the loops, and to '
< 8p(W(C1))Sp(W(C2)) >= (33)
3{< SPW(CSPW (Co)+ < SpW(CIW(Ca) >}+
+3{< SPW(C)SPW(C) > ~ < SH(W (CW(Cy)) >}
with .

< SpW(C1)SpW(Cy) + SpW (CYW(Ca)) >= (N £1) T(ig I8 (34)

for the case of parallel directions. The quantities I{") ((r) stand for singlet
(0), adjoint (adj), symmetric (s) and antisymmetric (2) representations) are

M=y 15, =1,

+j=n

n,tJ
and J{"(4,7) are defined in (26),(27) and (29).
In order to perform the final reduction to the scalar case, as it was done
for one loop (see eq.(14°)), one is to represent the integration in (35) over the
ordered region as the integration over the whole region:

;=P [ds{)...ds{dsD...dsD IO (G, 5) (35)

=3 I'(w py _._/(d,(l)) (dsPY NG, 5) = (36)
i+j=n i J-n
= ¥ o [0+ 5)

where the integration is performed over the whole contour C; + C, and the
ordering of the fields (and A matrices — insertions'in eq. (27)) follows the or-
dering in {s}.Due to the eqs. (24)-(29) the averages J{) (i + j) satisfy the clus-
terization condition for angularly separated clusters. Therefore the scalar ex-
ponentiation procedure applied separately to each term in eqs.(30),(33) leads
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to the cumulants which vanish [4] if the points on loops from any clusters are

separated in angles.
The result of such exponentmnon is

< Sp(W(C1)SpW(Ca)) >= (37
exp "z gﬂ;ﬂ:’ + +(N? = 1)ezp i L'?—)":xf,:*?
m=2 - m=3 M. .
for oppositely directed loops, and
< SpW(C)SpW(Cy)) >= (38)
N(N+1 Z (zg)”' N(N 1) 2 Qg‘l_xz(a)

- We have introduced the xntegrated cumula.uts IC(,,',)

. i+j=m
Ky = [de{)..deded...deP KD (e..zP2(D.2) - (a0)

which are related to J) of eq. (36) by the recurrent procedure similar to
(7),(15).

4 Area law for the average of two Wilson loops

. Let’s analyse the expressions (37),(38) for the large contours C) and C; of
Fig.4, and obtain the generalization of the area law (using the Fock-Schwinger
gauge (4)). In what follows we neglect the perimeter type contributions,
which always come as in one loop case (11). The integrals (40) contain, in
addition to "angular” integration over {s;}, the integration over the radial
variables (zda);, see eq.(4); this double integration can be rewritten as the
summation over the corresponding sectors. Due to the existence of short
range cumulants for a given angle only the overlaps of the sectors beloning
to different loops contribute to the area law (see Fig.3). Therefore, only the
Ki;?mo are proportional (in the large area limit) to 51(S; > S:), and the ICS,',_),»j,
with j # 0 are proportional to §,. We stress again that we assume that the
cumulants € F,, F,, > contain the part expressed oaly in terms of Kronecker
delta functions (see [5] for the details). It is this part which originates the
long range interaction between quarks leading to the area law.
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First we note that due to the condition (10) we have for IC(")m(Sl > Sz)
(19)' ’CS;) - a,(f)s - (41)
m. .

where o'(f }) = o, is the contribution to the fundamental string. tension of
q.(12) which arises from the cumulant of m-th order. Second, due to the
finite gluonic correlation length all the ICf,',},, with j # 0 are proportional to
S;, and therefore one can reduce the integration over C+C; to the integration
over C} + Cy, where C} coincides with C; and directed as Cy. Consequently,

(. r r
m\zg)‘ T kD= —oNs o) 9) x K%,
M. i ml

=+J._m,1;£0 . :+)_m

where ICS,,),J is defined by integral (40) over C} + C».
Observing that .

D(")exp(z (29) 2 9.y =< Sp P exp tg/ (A“A("))da:,‘ > (42)

87
i+j=m

where A and D) are the generators and dimensions of the corresponding
irreducible representations r, we finally get the following expression:

v (1—3"’65'7) =085, - $;) + oS, (43)

(The string tension o!® in the singlet representation is obviously equal to
Zero).

Now we arrive to the main result of the paper. The area law that follows
from the equations (37), (38) reads

< Sp(W(C1))Sp(W(C3)) >= ezp(—al)(S1 ~ 53))+ (44)
+(N? - Dezp(—o(Sy - S,) - a(“*’s,) 81> S,
for oppositely directed laops, and

,N(Nz ezp(—-du’(sl S,)) - a“‘)Sg)

(45)

- < Sp (W(Ch))Sp (W(Ca)) >=

N(N
NN+

5 ezp(—alf(S; ~ §;)) — o) S;)




7 et

—
W

I3

for parallel loops, with (%), #(® and o{*) and o(*) given by (43). We stress
here that due to eq. (42), (43) we express the average of two Wilson loops
(in fundamental representation) in terms of the proper combinations of single
Wilson loop averages in representations corresponding to the geometry of the

coptours.
If the main contribution to the string tension arises from the lowest.cumu-

lant K, then, as it'is shown in the Appendix B, the stnng tensions o!”) are
related to each other by the formulae

) 2
o) Ni"”_ o), (46)
N -2 .
e w
o AN +2
o = (Nn ),,m (46")

that follow from the relations between quadratic Casimir operators. Lattice
calculations [18] demonstrate that the relation (46) between o/ and o*%)
holds with a good accuracy. This fact allows to hope that the series (12) for
string tension is saturated to a large extent by the second order contribution.
One can also write out the expressions for the average of a loop with seli-
intersections. For a contour with one selfintersection the usual area law

< Sp(W(C1))W(Cs) >= Nezp(~a(S) + 52))

takes place, as it is clear from the given above considerations, only if the areas
inside both loops do not overlap (Fig.4®). In the case of Fig 4° the average
can be calculated similarly to the case (33) of parallelly directed loops:

< Sp(W (C )W { Cz)) >= ~{< SpW (C1)S5pW(Ca) > + < Sp(W(C)W(Cy)) >}-——

-§{< SpW(C;)SpW(Cz) > - < Sp(W{C)W(C3)) >}

with the result

N(N +1)

< SpW(CYW(C)) >= ezp(~o!)(S; - S3) - a¥ISy)-  (47)

N -1

5 exp(—a/N(S; ~ 5;) — o1*1S;).
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We note that eq.(47) is less then zero when
N +1

< czp(-{-(a(’) (a))sz)

which is adueveﬂ for a"') determmed by eqs (46) if S, is sufficiently large.

Let us briefly discuss what result is to be expected if the contours are not
in the same plane. H the average distance between the contours is less than
the correlation length T, in the limit of large areas one obtains the same
expressions {44)-(45). If the distance between the planes is larger then Ty, the
interaction between the loops, in contrast to the flat geometry case, becomes
small. To extract the factor corresponding to mteract:on we first gather the
terms IC(,;,,,G into the exp(—c$;) and the terms IC,.,, om into the exp(—oS;)
separating in this way the part corresponding to noninteracting Wilson loops.
The remains of expression (40) are responsible for the interaction, so that
the explicit dependence of lC,,w,z, j # 0 on the distance between the loops
enters now the answers. One is 1o conclude therefore that the latter cannot be
expressed in terms of areas and string tensions, but more detailed knowledge
of the dynamics of field strength correlators is required. When the distance
between loops is much more then T, (and their average sizes) the asymptotics
of the interaction is described nsually [19] by the excha.nge of the glueball
with Lghtest mass,

5 Discussion

Our analysis was performed for the SU(N) gauge theory with arbitrary number
of dimeusions. In the case of 1+1 gauge theory our expressions are simplified,
because in two dimensions the SU(N) theory can be represented [20] as the
abelian one choosing the axial gauge

A zy,2;) = 0.

As the result, only the quadratic cumulant exists, and one arrrives to the
generalized area laws (44), (15), (47) with string tensions o{”) in various rep-
resentations related to the fundamental string tension o{/) by the egs. (46).
For the U{N) theory in two dimensions the generalized area law for several
Wilson loops or for the Wilsou loop with selfintersections was obtained in [11]
using the non-abelian Stokes theorem. Also on the basis of Migdal-Makeenko
equatious the Wilson loops average was calculated in 141 both for U(N),

~

-
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N — oo in [8], and for U(N) and SU(N) theory in [9]. Our expressions
(44), (45), (47) reduced to the two-dimensional case coincide with the U(N)
results of [8], [11] for N — oo and are equivalent to the SU(N) area laws
obtained in [9]. In particular, for a Wilson loop with selfintersection in the
. geometry of fig.2® the formula of [§]

< Sp(W(C1)W (C2)) >— Nezp(—o'(S; — §3))(1 - 2615,)

N_.)m U(I)’VQ’N,

can be easily obtained from eq.(47).

Let us summarize the results. We have expressed the average of two Wilson
loops in terms of irreducible field strength correlators. For large contours the
generalized area law asymptotics is established, so that the average of two
Wilson loops (in fundamental representation) is related to the averages of &
single Wilson loop in the representations corresponding to the geometry of
the contours.

The physical interpretation of the expressions (44),(45) can be obtained
if one considers the problem of nonperturbative field distribution between
colour charges( in overall colour singlet state). The area law for a single
Wilson loop corresponds to the formation of the string between ¢g in the
meson. In our two loops case the generalized area law reflects the formation
of stringlike gluonic field configurations in four quarks system. We note that
in the leading in 1/N approximation (when the interaction between colouriess
systems vanishes [21]) < W(C;)W(C;) >—< W(C;) >< W(C;) >, so that
one gets linear superposition of two mesonic strings.

Our analysis based on the cluster expansion method can be easily gener-
alized to evaluate the average of several Wilson loops or of a loop with more
than one selfintersection. To this end one is to consider the quantity

< (W(C1))5! - (W(Ca))E > (48)

and decompose the pairs of colour indeces in accordance with formulae gen-
eralizing expressions (17) or (18) depénding on the geometry of the loops.
The expression (48) can be rewritten then as a sum over combinations cor-
responding to all proper irreducible representations of colour group with the
coefficients determined by the dimensions of these representations. With the
assumption of the existence of a finite correlation length the cluster expansion
method allows to demonstrate that each term in this sum exhibits the area
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law behaviour and enables to calculate the string tensions entering this area
law. - : '
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Appendix A
Here we prove that only the lirear combinations (28), (27) and (29) obey

the "scalar” clusterization condition. To this end we treat the problem as an
eigenvalue problem, looking for the numbers y and v for which

RA(i1 + 43, f2 + 1) +vB(iL + 43,52 + J1) — (A.1)
— {pAlir, j1) + vB(iz, j2) {HpA(i1, j1) + vB(iz, j2)}
and : , ' 7
pA (i +ig 1+ J2) +vB (i +ig i+ 7)) —» (A2)
— {uA'(iy, 1) + vB (32, o) HuA' (i, 51) + VB‘(%z,n)} |

takes place at large intercluster distances.
For the oppositely directed loops one gets from (20)

< (a(iy +142))5(b(s2 + 11)); >=
< (a(i1)); (a(i2))p(b(42))3(b(41))§ >— ‘
=< (a(i1)); (b(51))5 > - < (a(éa))p(b(42))7 >,
or, using eq.(22),
A(iy + 12,52 + 51) — Ay, 51)Ai2, 72) (A3)
B(i1 + 13, ja. + J1) — Alér, 51)B(43, 72) + Aliz, 52)B(G1, 51 )+ (A4)
N B(i1,3:)B(%a, j2)
Substituting (A.3) and (A.4) into (A.1) we have
BA(iy, 1) Az, 32)+
+u{A(i1, j1)Bliz, jz) + Aliz, 52)B(i151) + NBli:, j1)B(42, J2)}
= {pA(i1, 51) + vB(y, 5:) HieAliz, 32) + vB{iz, j2)},
that leads to the system of equations

p=p :
vN =1 : (A.5)
py =v .

which has two non-trivial solutions u; = 1, vy = N and ;12-= 1, n=0;"
first solution corresponds to the cigenfunction (26) and the second solution
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corresponds to the eigenfunction (27) (the latter is evident, if the identity

(Aa)g(Ra)i = %6‘;6], - 5};636;’ is used).
Similarly, for parallel loops we write the (20°) as
< (@'(s + i2))5(B (G + 52))] >=
< (a'(21))5 (' (G2)) (¥ (31))3 (¥ (42))5 >—
o< (@ ENFE ) > - < (¢'G2))p('(32))5 >,

or, using eq. (23),

A'(3y + 2, 51 + Ja) — A8, 1) A' (82, 72) + B (i1, 31)B (32, 12)

B'(i; + i3. 1 + ja) — A'(31, 1) B'(42, 52) + A'(32, 52)B'(41, J1)
Substituting (A.5) and (A.6) into (A.2) we have

F{A'(ihjl)A,(iz’ j?) + 3'(1'1,.2'1)3'("2, j?)}+
+v{A'(is, 51)B (32, 2) + A'(i2, 2)B'(i1,51)} =
= {uA'(i1, 1) + ¥B'(iy, ) H{+pA (42, 52) + V' B(i2, 52)},

that leads to the system of equations

p=p
u=0

v = pu

(A-6)
(A7)

(A.8)

with non-trivial sdlntions p1 = 1,vy = +1 and p; = 1,v; = ~1, corresponding

to the eigenfunctions (29).
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Appendix B

In the case when only the second order cumulants contribute to the string
tensions, the expressions (44}, (45) and (47) are simplified considerably, be-
cause in this case all the cumulants Kg can be expressed in terms of a
quadratic correlator of the fislds &. As a result all string tensions can be
related to the fundamental ofié. Ifitt6diseing convenient notations

Srn®(2, 47y =< AN A >, 5,5 =1,2, (B.1)

where m,n are the colour octet indeces, we #oté first that one gets from
(22),(23)

CA(2,0) = A'(2,0) = = Q(z(l),zm) (B.2)
CA(0,2) = A(0,2) = @( =, 28 . (B3
B(2,0) = B(0,2) = s'(z, 0) =F5(0,2) =0 (B4)

A1) =A0,1) = -—E—l-@(z(ll),z?)) - (BY)
B(L,1) = B(1,1) = 33(={",2) (B4)

Therefore one can see from (35),(39) that all the X\ are related to the
integrals '

1 § R a. .
¥ = 3 [, f; oo ()26, ) (B.7)
in the following way _
;"(2 0)= @u, (B8)
1 " 1
)d (0,2)= ZN &, (B.9)
while
lx&“’ll)—m‘lé B.10
D) ( WIETN 12y ( . )
1 (i) 1 .
5(5,“"“(1, 1) = fraacl (B.11)
1 e v
E’Cs (1,1) = x—— ; 1‘I’n- (B-12)
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For large contours embedded into the same plane we have

@u == &S], Qz«) = &Sg, @12 == :F&Sz, S‘ > Sz, (8-13)
where —(+) stands for the opposite (parallel) directions in the loops, and
. 2N
& =57 la'(f ).

Substituting (B.8)-(B.13) into the eq. (43) we obtain the relations (436)
- "between string tensions in different representations.
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Fig.1. Geometries of Wilson loops under consideratian.

a) . ¢)

3 Fig.2. Geometries of Wilsen loop with one gelfintersection.
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)

fig_:i.m;l‘ransformation of the initial contour a} to the deformed one b) for
the application of non-abelian Stokes theorem in the Fock-Schwinger gauge
- {4) for the case of a single Wilson loop. ’

1
‘ ’ /
AN \ N /
~ _ AN ~
\ —
..a’%' ‘
) o
2 ’ 2)

- Fig.4. Deformed contours for the case of two Wilson loops (16}, with
" angular correlations taken into account.
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