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1 IDtrodueiion 

To analyse the hadronic spectra and interactions one is to consider the Green 
functions for many quark system in the confining gluonic fields'. Making use of 
the Feinman-Schwinger proper time representation II}, these Green functions 
can. be expressed in terms or. the average of Wilson loops corresponding to the 
hadrons participating in the process under consideration. In the simplest case 
of the qq system the area ,law for < W (C) > enables one to study the dynamics 
of quarks connected, by the string. The .quantization of the "minimal" QeD 
string (corresponding to the minimal area asymptotics for < W (C) » with 
quarks has been done in (2J. For high energy scattering the interaction of 
two Wilson loops was considered in [3J in eikonal type approach, while for 
low and intermediate energies the problem of evaluating decay and scattering 
amplitudes in terms of Wilson loops average is still awaiting for the solution. 

The purpose of the present paper is to derive the expressions for the average 
of two Wilson loops in terms of gauge invariant field strength correlators, and 
to obtain the generalization of the area law asymptotics for this case. 

We use the cluster expansion method {4,5] which enables one to write out 
the Wilson loops average in terms of irreducible in space corre1ators (the so­
called cumulants). Our basic assumption is the existence of the field strength 
cumulants with finite correlation length T, [5,6], which have the &tntcture 
of Lorentz index~ containing the" part expressed only in terms of Kronecker 
delta funciions 6~. The second order correlator of this type (defined in the 
ga.uge invariant way [5]) 

< F~(z}Fpt1(1I) > ..... (oppowr - olMThvp) 

was measured recently by lattice simulations {7]. We also make extensive use 
of the condition that there is no fixed direction in colour space. In the case 
of one loop tht" preSf'nCf" of 6uC'n C'umulants If'ads to tht" appe&fence of long 
rangf' intf'raction betwt"f'n quarks and allows to obtain the minimal art-a law 
asymptotics for large contours [5]. which is also obsf"rved on the lattice. 

'h'e prt"st"Dt thr- gt>ueralizatioll of th~ area law for the case whrn our loops 
aN' f'mbedded into the same plaue (Fig.l), or int.o tht> plaut'S with distance 
between them less than the gluonic correlation It"ngth T,. To obtain the 
genera.li~ed area law it appears necessary to reduce the initial SU(N) matrix 
problem to the rfff'rtiw ..alar one with ,horl rangf' scalar c-unlUlants. While 
a 8inglf" Wilso~ loop corresponds to tht" circulation of colour charge in fun­
damental npl"f"M'ntation along thr conloUT. for the cue of two loops {with 
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the geometry of Fig.l) one ac:tuaJly baa the circulation of colour cl1arges in 
various irreducible represenfations in accordance with the decomposition 

N SR == Binglet E&. adjoint 

for oppositely directed loops, and 

N (8)N = ,~ric e a'Btisymmetric 

for paraUelly directed loops,so that th.e average of two loops can be (symbol­
ically) presented as 

< W{C1)pW(C2)1 >= 
(.in1let):(Binglet)~+ (N2 

- 1)(ad.joint)i(adjoint)p 

or 
< W'{C1);W(C2)J >= . 

N(N+1) ... N(lV-l) .' . . .
····2 (sym)4'7(sym)", + 2 (anttsym)O'l' (antuym)p6 

As a consequence, for large contotU'S in quasiB.at geometry the following 
expressions are obtained: 

< SpW(C})8pW(C2) >= ED(1")ezp{-a(J)(81 ·- 82) - a(r)82}, 
r 

81 > S2~ Sh5vJ::> T: 
where D(r) is the dimension of the given irreducible represent&ti(\:G. {r}, (1(r) 

is the corresponding string tension, and Q'(f) is the fundam.ental string tension 
entering the area law for a singleloop. Therefore we connect the average of two 
Wilson loops (in fundamental representation) to the a\l'~ta.ge of single "'Tilson 
loop in representations in accordance with the geometry of the COD.tours. "fie 
expressions for the selfintersecting loop (with the geometries of Fig.2) are also 
obtained. 

We perform the reduction of our resuts to the 1+1 gauge theory, and 
find the agreement With the calculations [8,9] based on the Migdal-Makeenko 
equations [10] and Don-abelian Stokes theorem [111. 'Ve note that recently in 
1+1 QeD the average of arbitrary number of Wilson loops on an arbitrary 
two-dimensional manifold has been calculated and the relation to the string 
theory of maps was obtained [121. 

Correlation of Wilson loops was also studied numerically in lattice simu­
lations [I3}. The case when one of tile loops is small and serves as a probe 
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to study the field distribution around· the string is a topic of a vivid interest 
for several years [14.16]. When the loops .are large, both measurements and 
interpreta.tion are .much more difficult a.nd accuracy is not yet enough. 

The plan of the paper is as foll~s. 
In Section 2 we introduce the cluster expansion on the example of a single 

Wilson loop, using the Fock-Schwinger gauge to simplify our derivation. 
In Section 3 We derive expressions in terms of the cumulants for the average 

of two loops. 
The explkit answers in terms of the corresponding string tensions and areas 

are given in Section 4 for the ~ase of large ·contoursembed.ded into the r.ame 
plane. 

Discussion and compa~isonwith the two.dimensional SU(N) theory is done 
in Section 5. 

Two appendices A and B are devoted to the derivation of scalar clusteriz3r­
tion condition B.nd the relations between string tensions for 1+1 SU{N) theory 
respectively. 

Cluster expansion method. 

Before proceediJig with the cue of two loops we remind theese~tialsconcern­
ing one loop; the details Illay be found in (5]. The quantity to be considered 
here is . 

< W(C) >=< Sp P ezp ig Ie Apdz# >, (1) 

where brackets mean the average over all gluonic fields with the QeD weight. 
The expression (1) may be rewritten using the non-abelian Stokes theorem 
[5,11 117J in the explicitly gauge-invariant form 

< ~V(C) >=< Sp P ezp ig fsdtTlU'(x)F~",(x,xo)>, (2) 

where S is the minimal surface bounded by the contour C, and 

(3)
 

.(xo,x) = P exp igJ:QAJi/lz~ is·the parallel transporter along the path con~ 
necting the points z and zoo 

We shall use at the intermediate stages the Fock-Schwillger gauge 

(4) 



4 

A:(z) =/01 ~da(% :.. %O).,F:p(Z - :r:O)~ + %0) 

for which ~(zo,:r:) in (3)js equal to UDity, andchoO$e the point %0 inside the 
contour, as it is showB at Fig.3; for such choice the integration in (1) takes 
place actually along the identically deformed contour of Fig.3, and (2) follows 
from (1) in the most straightforward way. 
W~ present the expression (1) in the form 

00 

< W(C) >= N E(ig) ft1", 10 = 1, (5) 
n=O 

1ft = ~P f dz1···dzn < Sp (A(Zl} ...A(zn» > (5C1 
) 

with ommited Lorentz indices. For the contours without selfintersections the 
coordinates {zd on the contour C can be pa.rametfized in the unique way 
by ordering parameres {,a;O· < 'i < 1, which are detetmined, in turn, by 
angular variables {Oil along the contour (see Fig.3). It is naturally to assume 
that for the ensemble of stochastic fields' the angular clusteriza.tion condition 
holds true, 

«A(~1} A(8m»p(A(8"'+1).~.A{sm+n»:>-+ (6) 

-+< (A('l) A(sm»~ >< (A('m+l) ...A('m+n»: > 
if the clUster of poiats {Sl...•m+n} is separated spatially into two clusters, 
{'t",sm} and {Sm+l""m+n}, so that 

IZi - %;1> Tg , iE{l._m}, jE{m+ l..m+n}, 

where ~ is the gluonic correlation length. 
Due to the conditio~ (6) the correlators of a given order in eq.(5) contain 

the smaller order conelators as disconnected parts (the parts' which do not 
vanish at large interc1uster distances), and it is useful to represent < W(C) > 
in terms of the conneded correlators, the so-called cumwants [4}. It can be 
done by calculation of In < W(C) >. Formally, the cumulants ~m,B(Zl•• .zm) 
are defined from the equa.tion [4] 

00 

< (W{C»p >= E (i9)"(In)~ = (1) 
~O 



5 

where 
(~m)p = f ck1 ...tk",K~(Zl ...Zm). . (8) 

It was shown in [4] that if the dusterization condition (6) takes place, then 
the functions K~({%m}) defined in accordance with eqs.(7), (8) vanish if 
the cluster of points {xm } is separated spatially into any number of clusters 
{x-mJ, {zm2}.... Equivalently, for large smooth surfaces the field strength 
cumulants (with the Lorentz indexes structure, which contains the paort ex~ 

pressed only in terms of Kronecker delta tunctioIlS) comin.g to eq.(8) from the 
E'.xpl'ession (4) for Fock-Schwinget gauge lead to the following result for the 
corresponding integrals [5] 

(i9~'" (K:m);= (qm)pS + (Pm)pP (9)
m. 

where SIp is the area/perimeter of the surfacE', and q,P tnay he (for arbitrary 
stochastic ensemble) non-unity ID:atrices. Large and smooth means that both 
the size of the contour and the averaged size of contour irregularities are much 
larger than the correlation length T,. 

The equation (9), however, is not sufficient in general for the "sc~ar" area 
la.w 

< Sp Wee) >...... ezp(-o-S) 

we a.re to have in QeD. The latter is achieved if there is no fixed colour 
direction in the vacuum, Le., in addition to eq.(6), the condit.ion 

< (A(Sl) ...A(sn»p >=63A(81 ...8n), (10) 

1 
A(81 ...8n) = N < Sp(A(s)}...A(sn» > . 

is imposed. Then the "matrix" a·rea. .law (9) is obviously reduced to the 
"scalar" one, 

(K:m )8 = 6$Km , 

«(1m)~ == 6p{Ttfl, (/1m)J; = 8pl l"" 

and for large smooth contours on~ bas [5], up to shape corrections, 
'f 

< Sp n'(C) >= NCTp( ~C7S - pp), (11) 

where 
oc 00 

(f = E (f~1 , 1'= E 11m. (12) 
m=2 m=2 
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(It is supposed that selia (12) for a aDd II- c;anverge). 
The conditions (6) aDd (10) call be combined into the "scalar" clusteriza­

tion condition for the functions .A 

Ii1 < Sp(A('l)~ ..A(sm+t&)) >-. (13) 

1 l ' 
-+ N < SP(A(61)••. A(s.» > .N < Sp(A(sm+1) ••. A(s~» > 

if the duster {SI...8"" ..n} is separated into two dusters {81 ...8M} and 
{Sm+l,,,Sm+tl}. . 

This condition enables one to reduce the matrix exponentiation (7) to the 
scalar one which will be necessary for two loops case analysis. To this end we 
are to tra.nform. the ordere4 in {$} integration 'i+l > s~, into the integra.tion 
over the ",holeregion 0 < Sj< 1, so that ITt in (5) c~ be rewritten as 

(14) 

~! !(dlJi)nA(BI...Sn) (146
) 

where the ordering of ~ol()ur matrices in A(8t .. ,sn) in (14G 
) follows the ordering 

of variables {Si}' In such representation the a.pplication of ordinary scalar 
exponentiation [4} to eq. (5) gives the definition of scalar cumulants K m , 

vanishing at large distaaces due to eq. (13): 

1
2iK2(ZIZ2) = A(ZlZ2) 

1 
3!K3(ZlX~Z3) =A(ZlZ2X3) (15) 

~K"(Xl%2) = .A(XIZ2Z3Z4)-A(ZlX2)A(Z3Z..)-.A.(ZlX3).A.(Z2~4)-.A(ZIZ,,).A.(:C2Z3) 
and so on. Therefore; we demonstrate that the condition (13) leads to scalar 
area law (11). 

Two Wilson loops average 

We start with the evaluation of 

(16) 
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for two contours in the same plane inserted one into another. We have de­
formed the cantours identically by making tentacles from the open ends of the 
contours to the ~int %0 inside the both loops (Fig.4). This point participates 
in the definition (3) of the F~(zy~o) and in the Foa-Schwinger ga.uge (4), 
which is used in what follows..The straightforward applica.tion of the e~po­
nentiatiotl procedure (7) to the expression (16) leads only to the "matrix" area 
law, as it is dear already from the analysis of the one loop case. Moreover, 
in contrast to the one loop case, the condition (10) does not lead, as we shall 
see, 3utomatically to the are& law. 

To develop a regular method we are to express the average (16) in terms of 
the proper scalar short range correlators. Colour structure of the expres­
sion (16) which can be interpreted as the circulation of two fundamental 
colour charges, is. decomposed into the pairs corresponding to the circula.tion 

. of charges in irreducible representation accordingly to the formulae 

N ® N = singlet $ adjoint (17) 

for the oppositely directed loops, and 

N ® N ~ symmetric ffialnti,yrnmetric (18) 

for the parallelly directed loops. 
We prove that scalar corl'elators corresponding to each term of the decom­

position of < SpW(C1)SpW(C2) > in accordance with (17),(18) satisfy thf' 
scalar clusterizationcondition similar to (13). Cons~quently, the app!i(·atiOIJ 
of scala.r exponentiation· separately to ~ part of this decomposhion gives 
the definition of short range scalar cumulants and -generalized area law. 

Instead of eq. (6) for two loop case we consider the average of t~e t:n)(' 

(19) 

where points {zP)} belong to the contour Ct and points {z~2)} belong to the 
contour C2 • FiTst we generalize the clusterization condition (6) for our two 
loops cASetand prove that it leads with necessity to the decomposition (17), 
(18) for the definition of sbortrange scalar eumulants. 

Due to the interad.ion between the loops the average (19) is not reduced 
to· theprodud of &'Yetages if the points on both contours are correlate.d in 
~ defined. WI b.a1fiine t 8t&tting &t~o. ThereCore only if.. 'tlt reaped to a 

6- of .~- {{I) (I) (2) (2J }' ed' ...._1 •the d.US~I: . polu_ 81 ••••m+ft1 -I ....kl 158epalat· In ~eslDto two 
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{ (I) (I) (2) (2)} d {(I) (I) (2) (2)} (th .' tcIusters 81 ""m ,61 ""1 an. 'm+l•••8m+n,S&+1 •••81:+1 e superscnp s 
(1) ~d (2) stand to label the points from the first and the second loop), the 

.generalized c1usterization condition holds true for the ensemble of stochastic 
fields: 

< (A(811» ...A('~»~(A(s~~I) ...A(s~~n)1· (20) 

(2) ) «2) ».p( «2}) «2))p. A ( ( 8hl ...A 'Aa+1 fT A sIt ••• A 81 ~ >..... 
-r< (A(s~I» A(s~)n~ . (A(S~2» A(s~2»)~ > . 

. < (A(S~~I) A(s~n)J . (A(s~~;) A(s~~I»: > 
for opposite ordering of loops, and 

< (A(s~I» ...A(s~J)~(A(s~l) ...A(s~~n)1 > . (2tY) 

.(A(si2» ...A(si2»)~(A(8i~1)···A(si~,»: >­
_< (A(s~1» ... A(s~}»p(A(s~2» ...A(s~2»): > . 

. < (A(s~~I).··A(s~~1\)l . (A(s~~I).··A(s1~,»: > 
for parallel ordering. Again, as for the case of one loop, in the Fock- Schwinger 
gauge with the point Xo inside the loops the c1ustenzation condition (20) is 
actually the angular one. 

In what follows the shorthand notations are used: 

and 

< (A(s\1» ... A(sP»~(A(8~2» •..A(s)2»)1 >=< (aD3Jbj)J > . (21 /) 

To reduce, as in one loop case, the SU(N) matrix problem to the effective 
scalar one we first note, that ~he natural generalization of eq.(lO) is th€' fol· 
lowing expression for the four-point averages (21) and (21/) in terms of two 
scalar functions A, B 

< (ai)p(bj)I >= A(i,j)e5p6] +" B(i,j)b,6; (22) 

< (a.~)p(bj)I >= A' (i,"j)6,6J +B'(i,j)6:5JJ (23) 
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inst.ead of one funetion .A of eqo(lO). It is demonstrated.in Appendix A that 
the use of the decomposition (17) leads to the following scalar correlators, 
satisfying the scal~ cIusterution condition . 

1 
N < .Sp(ai1+i2bj2+il) >~ (24) 

1 . 1 
~ N < Sp(~ilbil) > oN < SP(ai2bj2) > 

and 
2 

N2 _ 1 < Sp(ail+i2A/lb;2+ilAc) >-+ (25) 

2 2 
-+ N2 -1 < Sp(ail~ilAb) > .N' _ 1 < Sp(ai2>'cbj2>"c) > 

. with 

(26) 

and 
N2

2
_ 1 < ~p(ai.\obi..\o) >= A(i,j) = Ji)adj). (27) 

Similarly, from the decomposition (18) we have 

Ne; ± 1) < {Sp(a~1+i2)Sp(bi1+j2) ± Sp{a~l+i2bil+j:l)}. >-+ (28) 

N(;± 1) < {Sp(ah)Sp(bil~:l: Sp(a~lbil)} > . 

.N(~ ± l' < {Sp(a~2)Sp(b~.,) ± Sp(a~bi2)} > 
) . 

with 

N(r: ± 1) < {Sp(aDSp(bj) ± Sp(a~bj)} >= (29) 

- A'(· 0) ± 8'( ° 0) _ J(~.a) - 'I,) I,) - '1 

To take advantage of tb~e scalar correlators we decompose the pairs of 
colour ind~ci's ill < "'(Cl)P~V(C2); > in accordance with the dccOIuposition 
(17).(18), that corrt!spollds to t~ following: 

< SplV(Cl)Sp~V(C2) >= (30) 
1 . . 
N < SP(W(CI)lV{Cz»> +2 < Sp(lV(CI)A.IV{C2)~ > 



IO
 

with 
< Sp(W(C1)W(C2) >= N}:(ig)" IlO) (31) 

n 

N 2 
- 1 rfat(;)< Sp(W(C1).\aW(C2).\a >= -2- ~(ig)"ln , (32) 

for the case of opposite direction in the loops, and to 

< Sp(W(C1))SP(W(C2)) >= (33) 

~{< SpW(CdSp~(C2)+ < Sp(W(C1)W(C2)) >}+ 
1

+2{< SpW(C1)SpW(C2) > - < Sp(W(C1)W(C2» >} 

with 

< SpW(CdSpW(C2) ± SpW(C1)W(C2)) >= (N ± 1) E(i9tJin',a) (34) 
n 

for the case of parallel directions. The quantities fir) (1') stand for singlet 
(0), adjoint (adj), SyIDmetric (8) and antisymmetric (a) representations) are 

I!:) = E I~lj, ~r) =1, 
Hj=" 

...tr) _ pId (1) d (l)d (2) d (2)J(r) (. ')
l;',ij - 'I •.• 8i 81 .•• Sj n -',J (35) 

and J~r)(i,j) are defined in (26),(27) and (29). 
In order to perform the final reduction to the scalar case, as it was done 

for one loop (see eq.(14Q
)), one is to represent the integration in (35) oYer the 

ordered region as the integration over the whole region: 

= E ! f (ds)i+i J~r)(i + j) 
i+j::o::n n! 

where the integration is performed over the whole contour C1 + C2 , and the 
ordering of the fields (and .;\ matrices - insertions in eq. (27» follows the or­
dering in {s }.Due to the eqs. (24)-(29) the averages J~r)(i+i) sa.tisfy the clus­
terization condition for angularly separated clusters. Therefore the scalar ex­
ponentiation procedure applied separately to each term in eqs.(30),(33) leads 
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II 

to the cumulaa.tswhkh vanish (4] if the po1Dts on loops from any clusters are 
sepa.r&ted in ItIQIles. ' 

The result of·~ expcmea'$ia.tion ·iJ 

<Sp(W(C1)SpW(02» >= (31) 
l 

a:p f (igr ~,:) + +(N 2 _ 1lezp f (ig~'"A:<,:t'1 
m=2 m. ~ m. .
 

.for oppositely c:lirected loops, ap.d
 

< SP(W(C1)Sp(W.(C2» >= '(38) 

N(N +1) ..'~.. (ig)m y(,) + H(N -1) ~ (ig)ln "'(0) 
ezp 4..t ,'~ . 2 ezp 4..t , , 1\.",2 'm::2 m. .. m:=2 m. 

. We have introduced the integrated cumwants x;<~) 

,dr) = '""" ,,(1').. (39)
In ~ ·"','1H;=m 

IC(">.. - f ..1_(1) ..1_(1) ..1_(2) .;J~(2)K(r) . .( ...(1) (1) ...(2) (2» (40)m,IJ - a;,I;t ··.awl l4'I'1 ...Ut., m,ll --1 , "'1 ••• 1 

which are related to J$:) of eq.(36) by the recurrent procedure sim.iJar to 
(7),(15). 

Area law for the average of two Wllson loops 

Let's analyse the expressions (31),(38) for.the large contours C1 and C, of 
FigA, and obtain the generalization of the area law (using the Fock-Sch.winger 
gauge (4». In what follows we neglect the perimeter type contributions, 
which always come as in one loop Case (11). The integrals (40) contain, in 
addition to "angular" integration over {sil, the integration over the radial 
va,riables (zda)h see eq.(4)j this double integration can be. rewritten as the 
summa.tion over the corresponding sectors. Due to the' existence of short 
ra.nge cumulants for a. given angle only the overlaps of the sectors beloniug . 
to different loops contribute to the area law (see Fig.3). Therefore, only the 
K:~~mo are proportional (in the large area. limit) to Sl(Sj > 8 2), and the K~~ij, 
with j -I: 0 are proportional to· 8 2• We stress again that we assume that the 
curnulants <t::: F",,,,Fper > contain the part expressed only in terms of Kronecker­
delta functions (see [5] for the details). It is this part which originates the 
long range interaction between quarks leading to the area law. 
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First we note that due to the condition (10) we have for K:t;~mQ(~l > 82) 

(ig)mK.(r') -(7(/)8' (41)
m! 171,1710 - m ), 

where O'U> = O'm is the contribution to the fund.amental strin:g. tension of 
eq.(12) which arises from the cumulant of m-th order. Second, due to the 
finite gluonic correla.tion length all the K.~!ij with j '# 0 are proportional to 
8 2 , and therefore one can redu.ce the integration over C 1+C2 to the integration 
over C; +C2 , where C2coincides with C2 and directed as Ct. Consequently, 

where K~:ij is defined by integral (40) over Cz+ C2 •. 

Observing tha.t 

D(')e",p{~ (i:r 2;;m ~'j) =< Sp P exp ig!c,(A:A~I)d"" > (42) 

where A(r) and D(") are the generators a.nd dimensions of the corresponding 
irreducible representations r, we finally get the following expression: 

(43) 

(The string tension (7(0) in. th.e- singlet representation is obviously equal to 
zero). 

Now we arrive to the main result of the paper. The a.rea law that follows 
from the eqaations (37), (38) reads 

< Sp(W(C1»Sp(W(C2» >= exp( -0'(/)(51 - 51))+ (44) 

+(N2 - 1)ezp(_(7(/)(81 - 82) - (]'(acO)82),81 > 8'}, 

for Qppositely directed loops, and 

< Sp (W(C1})Sp (W(C1 )) >=N(N - l)exp( -0'(/)(81 - 82 )) - q(4)82)+
2 . 

(45) 
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for parallel loops, with u(cu';) , &(-) and u(-} and (7"<.) givenby(43). We stress 

here that due to eq. (42), (43) we .expresstheaverageof two Wilson loops 
(in fundamental representation) in terms of the proper combinations of single 
Wilson loop averages in representa.tions c.orresponding to the geometry of the 
cO.Qtours. 

If the main contribution to the string tension arises from the lowestcumu­
tant K 2, then, as it ·is shown in the Appendix B, the string tensions O'(r) are 
relat-ed to each. other by the formulae . 

q(at.9) = 2N2 q(/) (46) 
N2 -1 

(a) _ 2(N - 2}~/} . (46')
0' - N-l ' 

o-(-} == 2(N + 2) ~/) . (4ff1)
N+l 

that follow from the relations between quadratic Casimir operators. Lattice 
calculations [18] demonstrate that th~ relation (46) between u<n and u(oce;) 

holds with a good accuracy. This fact allows to hope that the series (12) for 
string tension is saturated to a large extent by the second order contribution. 

One can also write out the expressions for the average of a loop with self­
intersections. For a contour with one selfintersection the usual area. law 

1 

takes place, as it is dear from the given aboy,e coa.SideratioDS,onlyu the areas 
inside both loops do not overlap (FigAt1 

). In the case of Fig 4" the average 
can be calcula.ted similarly to theca.se (33) ofparalleUy directed loops: 

< Sp(W(C,)W(C,» >= i{< SpW(C,)SpW(C, ) > + < SP(W(C,)W(C,» >}..... 

~ 
"i J 

1
-2{< SpW(C1)SpW(C2 ) > - < SP(W(Ca)W(C,» >} 

with thereault 

< SP(W(C1)W(C2» >= N(~+ 1)ezp(-fTcn(Sl - 52} _ g(·)52 )­ (47) 

N(N ­2 1) (I)
ezp(-o­ (51 ­

(.)52)- iT 52). 
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We DOte that eq.(47} isless then zero when 

N +1 < "p(+(t1(.) _ t:r(4»S2)
N-l 

which is adDeved for uft') determined by eqs (46) if 52 is sufliciently large. 
Let us briefly diScus what result is to be expected if the contours· are not 

in tb.e same plane. H the average distuce between the contours is less than 
the correlation .length· T" in the limit of large areas one 'obtains the same 
expressions (44)-(45). ·If the distance between the planes is larger then T, ~ the 
interaction between the loops, in contrast to the fiat geometry case t becomes 
smalL To.extractthe factor corresponding to interaction we first gather the 
terms x:t:mO into the ezp(-0'81) and the terms K:~~om into the ezp(-(182) 

separating in this way the part correlq)Onding tononintera.cting Wilson loops. •. 
The remains of expression (40)a.re responsible for the interaction,. so tha.t 

the explicit dependence of ~i;,i,i =F OOD the distance between the loops 
enters now the answers. One is to conclude therefore that the latter cannot be 
exp~essediJlterms of areas and string tensions, but more detailed knowledge 
of the dynamics of fi.e}c!atnmgth correla.to.Ta is required. When the distanee 
between loeps is much more then T, (and their average sizes) the asymptotics 
of the inieraetion is described .usually fl9] by the exchange of the gluebaJl 
with lightest mass. 

I) Discussion 

Our analysis was performed for the SU(N) gauge theory with arbitrary number 
of dimeusions. In the case of 1+1 gauge thepry our expressions are simplified, 
because in two dimensions the SU(N) theory can be represented [20] as the 
abelian one .choosing the axial Ra.uge 

A~G)(ZhZ%) =O. 

AB the result t only the qu&ch"atic cumlllant exiSts, and. one arrrives to the 
generalized area laws (44), (.i5), (47) with string tensions u(r) ill. various rep­
resentations related to the fundamental string tension u(f) by the eqs. (46). •

For the U(N) theory in two dimensior.s the generalized area law ior severRl 
Wilson loops or fOT t.he WilSOllloop 'With selfintersections was obtained in [11] 
using the non-abelian Stokes theorem. Also on the basis of MigdaJ.-Ma.keenko 
equatioll& thl Wilson loops avera.ge was calculated in 1+1 both for U(N), 



IS
 

N -+ 00 in [8], and for U(N) and SU(N) theory in [9}. Our expresaions 
(44), (45), (47) reduced to the two-dimensional case coincide with the U{N) 
results of [8], [11] for N - <Xl ~d are equivalent to the 5U(N) area..laws 
obtained in [9J. In particular, for a Wilson loop with selfintersection in the 

. geometry of fig.2" the formula of [8] 

< SP(W(C1)W(Y2»>-+ Nezp(-O'(f)(Sl - '.))(1 ..... 2q(nS2) 

N - 00, (7(/) - !JN , 

can be easily obtained fi.-om eq.(47). 
Let us summarize the results. We have expressed the &vet&le of two Wilson 

loops in terms of irreducible field strength correlators. For large contours the 
-' 

generalized area law asymptotics is established, so that the average of two 
Wilson loops (in fundamental representation) is related to the averages of. 
single Wilson loop in the representations corresponding to the geometry of 
the contours. 

The physical interpretation of the expressions (44),(45) can be obtained 
if one considers the problem of nonperturbative field distribution between 
colour charges( in overall colour singlet state). The area law for a single 
Wilson loop corresponds to the formation of the string between qq in t~e 

meson. In our two loops .case the generalized area law reflects the formation 
of stringlike gluonic field configurations in four quarks system. We note that 
in the leading in 1/N approximation (when the interaction b~tween colourless 
systems vanishes [21]) < W(Ct )W(C2 ) >-< W(C1 )- >< W(C2 ) >, so that 
one gets linear superposition of two mesonic strings. 

Our analysis based on the cluster expansion method can be easily gener­
alized to evaluate the average of several Wilson loops or of a loop with more 
than one selfintersection. To this end ODe is to consider the quantity 

(48)
 

and decompose the pairs of colour indeces in accordance With formulae gen~ 

eralizing expressions (17) or (18) de~diDg on the geometry of the loops. 
The expression (48) can be rewritten then as a sum owr combinations cor­
responding to all proper irreducible representations of colour ItOUP with the 
coefficients determined by the dimensions of these representations. With the 
assumption of the existence of a finite correlation length the cluster expansion 
method allows to demonstrate that each term in this sum exhibits the area 
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law behaviour and enables to calculate the string tensions entering this area 
law. 
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Appendix A 

Here we prove that only the linear combinations (26), (27) and (29) obey 
the "scalar': c1usterization condition. To this end we treat the problem as an 
eigenvalue problem, looking for the numbers IJ and v for which . 

JlA(i t + i 2,j.z + il) + vB(i t + i 2, j-J + il) -+ (A.I) 

-+ {JLA(it,il) + vB(i2,i2)}{JLA(i.,i.) + vB(i2,hn 
and 

pA'(i l + iz,il + J,.) + vB'(i l + i 2,jl + ioz) -+ (A..2) 

-+ {p..A'(i.,il) + vB'(i2,i2)}{JLA'(i.,il) + 1IB'(i2,i2)} 

takes place at large interc1uster distances. 
For the oppositely directed loops one gets from (20) 

< (a(i 1 + i2) )~{b(jz + il»J >=
 

< (a(il)):(a(i2))Z(b(j2));(b(jl))~ >-+
 
-+< (a(i l »:(b(jl))6' > . < (a{i2»~(b(j2)); >,
 

or, using eq.(22), 

A(i1+ i2,i2 + il) -, A(i.,jl)A(iz,i2) (A.3) 

B(i1 + i 2,i2.+ il) -+ A(ihil)~(i2,i2)+ A(iz,h)B(iI,jd+ (AA) 

N B(iI,idB{i2,i2) 

Substituting (A.3) and (A.4) into (A.!) W~ have 

JL.A(ibidA(i 2,i2)+
 

+v{A(iI,il)B{i2,j;,) + A(iz,iz)B(iJiI) + NB(-i 1 ,i.)B(iz,i2)}
 

= {JLA(i1,il) + vB(i.,il)}{;tA(iz,j2) +- vB(iz,iz)},
 

that leads to the system of equations 

JL = p.2 
vN=v (A.S)

{ 
p,l/ =v 

which has two non-trivial solutions III = 1, VI = J.V and JL2 = 1, 112 = 0; ; 
first solution corresponds to the eigenfunction (26) and the second solu~on 
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corresponds to the eigenfunction {27} {the latter is evident, if the identity 
(Aa)${'\a)1 = ~66e5J - 2~6p61 is used). 

Similarly, for parallel loops we write the (20') as 

< (a'(i l + i2»;(b'(il + ;2»1 >= 

< (a'(il»:{a'(i2})~(b'Cil})Z(bJ(i2»6 >­
-< {a'(i1)}:(b'(jl)}Z > . < (a'(i2)}~(b'(j2»6 >, 

or, using eq. (23), 

A'{iJ + i 2,il +;,) -+ A'(it ,il)A'(i2,i2) + B'(iI,il)B'{i2,;Z) (A.6) 

8'(il + i'~;l + ;2) ...... A'(i1,jl)B'(i2,i2) + A'(i2,hlB'(iI,il) (A.7) 

Substitut.ing (A.S) and (A.6) into (A.2)we have 

p{A'(it,il)A'(i"i2) + 8'(ih il}8'(i2,i:a)}+ 

+v{A'(ih il)B'(i2,j,) + A'(i2,i2}B'(il,il)} = 

= {pA'{il,i1) + vB'(ihil)}{+pA'(i2,i2) +v'B(i:a,j2)}, 

tha.t le~s to the system. of equations 

:.:~ (A.8){ v. pv 

with non-trivial solutions PI =1, VI =+1 and Jtz = 1, f,/2 = -1, corresponding 
to .the eigenfunctions (29). 

.. 
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Appendix B 

In the case when only the second order cumula.n.ts contribute to the string 
tensions, the expressiens (44), (45) and (41) are simplified considerably, be­
cause in this case a.ll the cudN1&ntl Kl") can be expressed in terms of a 
quadratic correlator of the ....'.. At a result all string tensions can be 
related to the fundamental aiif~ tMf~con'Venientnotations 

8mn~(z~'), z~j)) =< ACWll(z1'»)A(n)(~») >, i,j = 1,2, (B.l) 

where m, n are the colour octet indec~ ...... first that one gets from _. 
(22),(23) 

A(2,O) = A'(2,O) = 1\1";; 1.(z~1),z~1» (B.2) 
.. 

. A(O, 2) == A'(0, 2) = N2 - 1.(z~2) ,z~2» (B..I)
2N 

8(2,0) =8(0,2) == 8'(2,0) = 8'(0,2) =0 (B.-4) 

A(l, 1) = A'(l, 1) = _.2-~z~1),z~2» (B.5)
2N 

B(I,l) =8'(1,1) = !.~(z~1),z12)} (B.6)
2 

Therefore one can .see from (35},(39) that all the ~;) are related to the 
integrals 

cJij = ~ Is. Is; du(Zl (i)}du(z¥»~(zli)~zf» (B.1) 

in the following way 

(B.8) 

(B.9) 

while 

(B.IO) 

(B.11) 

(8.12) 
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For large contours embedded into the same plane we have
 

()u = itSh ~22 = lfSz, ~12 = TO-52, 51 > 82, (B.13)
 

where -(+) stands for the opposite (parallel) directions in the loops, and
 

q = .2!!..-(f{f).
N2 -1 

Substituting (B.8)-(B.13) into the eq. (43) we obtain the relations (46) 
- <oetween string tensions in different representations. 

-.. 



2I
 

Fig~1. Geometries of WIlson loops under consideratiOlL 

a) , 
." 

Fig.2. GeometrieS of Wilson loop with one seUintersection. 



22
 

a) 

/ 

I "0 
\ 

g) 

Fig.3. Transformation of the initial contour a) to the deformed one b) for 
the application of non-abelian Stokes theorem in the Fock-Schwinger gauge 
(4) fOf the case of a. single Wilson loop. 

~o 

\ \\ ...... \ 
'\'" 

~ 

a.) 

Fig.4. Deformed contours for the case of two Wilson loops (16), with 
- angular correlations taken into account. 
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