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Saturation of Dipole Energy under Rotation of the Sample. Slow 
Rotation 

T.Charpentiert, F.Dzheparov, J.-F.Jacquinot 1 , J.Virlet1 

1 C.E.A Saclay, 91191 Gif-sur-Yvette, FRANCE. 

An extension ofthe well known Nakajima-Zwanzig projection technique for consid
ering time-dependent projection operator is presented. The present theory is adopted 
for quasiadiabatic evolution and saturation of dipole energy is studied in details. 

It is known that, in static sample, a homonuclear dipole-coupled spin system can 
be settled in a. quasiequilibrium state characterized by two inverse spin temperatures 

pq. '" 1- /3zwolz - /3D1I.'D (1) 

where 11.'D is the secular homonuclear dipolar Hamiltonian. Under rotation of the 
sample, 1I.'D becomes time-dependent and doesn't commute with itself at different 
times: [1i'D(t) ,1i'D(t')] -I 0 producing a saturation. If time-dependence of 1I.'D(t) is 
slow the relaxa.tion theory can be based on the time dependent projection operator 

1f(t)A=(A)+I (Alz ) +1-l' (t)(A1-l'D(t» ( ) T [ ] (2)
z (Ij) D. (1I.'b(t» I '" = r ... 

Using natural definitions 
__ J:.-.-(IZ1fp) /3D= (ll'D1fp)

/3 (3)z - Wo (Ij) , ( 1i'b ) 

and starting from the Liouville equation 

~ = -i(1I.'D(t),p(t)] == -i£D(t)p(t) (4) 

one obtains after some calculations the exact master equations
 
d{3z d{3D {3D d ( ,2 ) r
dt = 0, dt = -Tdt In (11. D(t) - J M(t, r)/3D(r)dr (5)

o
 
where the memory function M(t,r) is
 

M(t, r) = (il'D(t)1f(t)S(t, r)1f(r)1l'D(r) )/( 1I.'~(t) (6) 

S(t, r) = Texp {-i lr [£D(U) + i1i-(u)1f(u)] dU}' 1f(t) = 1 - 1f(t) (7) 

For convenience, a slow variable /3s(t) is introduced through 

(3D(t) :::: (1i'~(O) )/( 1I.'~(t) )r/
2 
/3s(t) (8) 

which evolution is given by 
d{3s [t
dt == - io Ms(t,t - r){3s(t ~ r)dr (9) 

1 2 
Ms(t, r) = [(1-l'~(t» (1-{';(r» r / (1l'D(t)7f(t)S(t, r)7F(r)H'D(r» (10) 

The Eqs. 5-10 are exact. The contribution irw '" WR can be neglected in the slow 
rotation regime with respect to £D '" WI (where Wi = ,fM2 is usual local frequency). 
Then 

Ms(t, t - r) ~ (1l'~(t» (il'D(t)e- ic /)(t)T1l'D(t») (11) 

Finally one obtains 
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(12) 

where 

1 l TR 
W S = - Ws(t)dt (13)

TR 0 
1Ws(t) = 2 roo (1L'D(t)e-iCv(t)T1L'D(t) )dr (14)

(1-l'D(t)) 10 

The results for Ws(t) are very similar to usual forms of relaxation rate if il'D(t) is 
considered as the perturbation of the main Hamiltonian 1-l'D(t). It can be checked 
that W s rv wJt/w/. 

An initial state with large dipole order can be produced in usual way by the well 
known Jeener-Broekaert pulse sequence. 

We studied the saturation of dipole energy in experiment as well [2]. Measurements 
on adamantane for various orientations and values of the rotation spinning speed were 
carried out. As a result Eqs.12,13 give excellent description of the experiment for 
WR« w"~ 

Our theoretical treatment of the quasiadiabatic processes is quite general and it 
can be successfully applied, for example, to all problems discussed in [lJ. 

The case of fast rotation is presented in a second contribution. 
The work was fulfilled in the SCM laboratory at CEA Saclay (France), it was 

supported by a grant from CNRS. 

[1] Jeener J., Bell J.D., Broka.ert P. et al. / / Adv. Magn. Reson. 1990, V.14, P.95. 
[2J Charpentier T. Thesis, 1998, SPEC, CEA, Saclay. 



3 

Saturation of Dipole Energy under Rotation of the Sample. Fast 
Rotation 

T.Charpentierl , F.Dzheparov, J.-F.Jacquinotl , J.Virletl 

lC.E.A Saclay, 91191 Gif-sur-Yvette, FRANCE. 

The creation and evolution of dipole order under fast sample rotation (WR :» wt) 
is investigated for the first time. It is shown that the Jeener-Broekaert sequence is 
still efficient for creating a pseudodipolar order. 

In static sample or in the limit of adiabatic rotation, a homonuclear dipole-coupled 
spin system can he prepared in the quasiequilibrium state 

where 1{'D is the homonuclear dipolar Hamiltonian. Under fast rotation of the sample 
when WR is stronger than w, (where w, = v'AG is usual local frequency), the above 
expansion is no longer valid and an appropriate effective Hamiltonian, mastering 
corresponding quasiequilibrium and saturation can be constructed. 

Under rotation of the sample, the dipole Hamiltonian may be expanded as 

1{'D(t) === Ho + L Hme-imwRt. (1) 
m#O 

It is possible to reduce the time-dependent part of the Hamiltonian by canonical 
transformations [1] by a factor € = Wt/WR « 1 and handled it as a perturbation. The 
spin temperature approach can be applied then to estimate the saturation of dipole 
order. Let 

S(l)(t) = +i L Hm e-imwat (2) 
m,eO rnwR 

The Liouville equation of p(t) = e+iS(1) (f lp(t)e- iS(1)(t) is 

d
i--.!!. = [H(l) + H(ll(t) p-] (3)
dt " I " 

where to first order 

(4) 

Hy) = L _l_[Hm, Ho]e-imwnt + ! L _l_[H , H_n]e-i(m+n)wRt + o(e2 ).m

m,eO rnwR 2 Oi'm,en,eO rnwR
 

The procedure Eqs. 1-4 can be iterated leading to a new fast oscillating Hamiltonian 
"JH?) eHy) and so on. The convergence of this expansion must be checked in 

calculation of the rate of saturation by comparison of rates and states calculated 
after n and n + 1 iterations and the method works when difference is small, that 
corresponds to high rotation speed in leading terms. 

The analysis of the behavior of the new effective dipole-dipole Hamiltonian H.P) 
wiiih respect to 3d rotation in spin space reveals that H!l) is the sum of a zero and 
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second rank tensor. Then, the Jeener-Broekaert sequence is efficient for preparing 
the spin system with high dipole order corresponding to 

pq. == 1 - !3sH!I) 

By standard theoretical treatment in relaxation calculation, the saturation of this 
order by the time-dependent perturbation H?)(t) can be easily obtained. Calculations 
lead to 

W, == L /00 Mm.m(r)e-imWR"dr, 
m>O -00 

1 -(I) -(1)
Mm.n(r) == (H;) ([Hs,Hi.m(r)J[H,,_n(r), H.]), 

jf(l) (r) = em•.,. H(l) (r)e- iH.".
J.m J,m 

According to modern point of view on high frequency asymptotics of spin correlation 
functions [2,3] we can expect, that logWJ <X -WR/WI, where wi == (JJ+)/U+L), 
J = [1+, H!l)L and ( ... ) == Tr( ... )/Trl. 

Measurements on adamantane for various orientations and values of the rotations 
were carried out. High-spinning speed pseudodipolar spectra were obtained and the 
predicted decrease of saturation with respect to WR was observed (4]. 

The work was fulfilled in the SCM laboratory at CEA Sac1ay (France), it was 
supported by a grant from CNRS. 

[lJ Goldman M. Spin Temperature and Nuclear Magnetic Resonance in Solids, Claren
don Press, Oxford, 1970 
[2] Zobov V.E., Lundin A.A. / / ZhETF 1994, V.I04, P.I097 
[3] Abov Yu.G., Gul'ko A.D., Dzheparov F.S. at al. / / Phys. Part. Nucl. 1995, V.26, 
P.692 
[4] Charpentier T. Thesis, 1998, SPEC, CEA, Sac1ay. 
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From 1010 Spins To a Single Spin Using Scanning Tunneling Microscope. 

F.I.Dalidchik, A.A.Lundin, B.R.Shub
 
N.N. Semenov Institute ofChemical Physics, Russian Academy of Sciences, 117334
 

Moscow, Russia
 

The possibilities to observe the ESR signal ofa single spin with use scanning tunneling 
microscope (81M) and the probable mechanisms of this phenomenon are analysed. 

The sensitivity of conventional ESR is about 1010 spins. The ordinary ways to 
improve it are both by icreasing the observed magnetization and improving the 
efficiency ofdetection by observing high energy photons. 

The detection sensitivity can be extended to a single spin. In the optical methods of 
the magnetic resonance detecting the microwave irradiation changes the single 
molecule fluorescence. Perhaps the alternative approach to the single particle ESR 
study is the use of STM. So far as the scanning tunneling microscopy is the only 
possible method allowing us to study the structure of the conducting surfaces with 
atomic resolution [1 J, the joining one with ESR opens promising perspectives in 
surface science because the ESR is one of the most of powerful traditional techniques 
to explore the local characters ofa condensed matter. 

Recently some articles were published [2-5J contained, as suggested, results of 
experimental observing by S1M of the ESR signals of a single local paramagnetic 
center located at a SI(lIl )7x7 surface which was thermally oxidizing. Unfortunately 
as mentioned by authors of Ref. [2-5] their results perhaps are not has one meaning. 
There is why the problem of the joining the S1M and single spin ESR-spectroscopy 
actual still now. 

We assume that at the room temperature and for the moderate external magnetic 
fields (Hrr100+10000e) the most ofperspective type of the paramagnetic center ESR 
ofwhich affects the tunneling current are a pair of impurity atoms (ions) with nonzero 
spins coupling by appropriate exchange interaction. Let us mark, that one of the atoms 
can be situated at the tip of STM as well. Let us name these pairs as singlet-triplet 
scattering centers (STSC). 

Probably there are some different concrete types of STSC in semiconductors. The 
first type of STSC what we should like to notice is the positive ion (e.g. Cr+, Mn2+, 
Nt, ...) locates at the semiconductor surface. We can assume also that it confines one 
of the vacant electrons and so generates something like hydrogen atom. The radius of 
this atom varies from 30 up to 100 AO in dependence of the dielectric constant. The 
second one type we should like to notice appears if the pair of donor atoms (e.g. 
phosphorus atoms in silicon) located not so far one from another one. In this situation 
atoms forms something like a hydrogen molecule. The ESR spectra of this exchange 
coupled system was studied by Ch. Slichter [6]. So, the most of simple spin
Hamiltonian of the above STSC is 

H = flO) IS:1 + nro 2S:2 + JS\S 2+Hint (1) 
In Eq. (1) 81 and S2 are electron (or atom) spins, 00\ and 002 are their Zeeman 
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frequencies differs e.g. because of different values of g-factors or their anisotropy or 
the slope of constants of the crystal field and so on, J - is the exchange constant, Hint 

includes all other interactions i.e. hyperfine one. Though the constant of the hyperfine 
interaction sometimes exceeds the constant J, we shall suppose hyperfine constant to 
be weak.. The strong one and it anisotropy will not affect the qualitative picture. Zero 
approximation for the Hamiltonian (1) means that spin singlet and triplet are right 
functions. But because of different Zeeman frequencies in Eq. (1) the above functions 
will be mixed with the parameter of mixture about: a oc h(ro I - ro 2) / J. If the constant 
J is not too large the mixture is quite effective process. So, the natural ratio of 
populations of the singlet and triplet states 1:3 will change (to oscillate) with the time 
and whether there is the time-dependent magnetic field HI with the Larmor frequency 
this changing will become irreversible if the relaxation is omitted. As the difference in 
the scattering amplitudes of the tunneling electrons on the singlet and triplet states 
reaches 100%, the changing ofpopulations can dramatically affects the resistance and 
thus acts on the tunneling current Our estimation demonsrates that we can achieve 
conditions needing to observe ESR effects with the experimental equipment described 
in Ref. [2-5]. 

At low temperatures and for a large amount of the external magnetic field Ho, 
anybody has more ordinary and simple situation to study ESR of a single spin by STM. 
As known at low temperatures the resistance basically depends on the scattering of the 
carriers by impurities and the dependence of the cross-section scattering on spins due 
to the mutual exhange interaction. So the spin polarizations of electrons and impurities 
act on the resistance: 

I:1p / P = (PE;"SR - p)/ P oc1t(a.~ -a,2)~~(SI +se -sls~)1 p. (2) 
p t.e =th(h (j)/,/2kTt.eJ - are polarizations of the local paramagnetic centers (e) and of the 
free carriers (l), 8} and 8e are saturation factors, as and at are scattering lengths for the 
singlet and triplet scatterings. There is why the tunneling current will affects by 
microwave irradiation. 

[1] Kohler U.K.,Demuth J.E., Hamers R.J. II Phys.Rev.Lett. 1988, V.60, P.2499. 
[2] Manassen Y. et al. II Phys.Rev.Lett. 1989, V.62, P.2531. 
[3] Shachal D., Manassen Y. II Phys.Rev.B 1991, V.44, P.l1528. 
[4] Shachal D., Manassen Y. II Phys.Rev.B 1992, V.46, P.4795. 
[5] Manassen Y. et al. II Phys.Rev.B 1993, V.48, P.4887. 
[6] Slichter C.P. II Phys.Rev. 1955, V.99, P.479. 
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Ergodic Theorem for Subsystem of Impurity Spins in a Crystal 
F.S.Dzheparov 

Ergodic hypothesis is one of the most important fragments of modern statistical 
physics. More than 30 years there coexist opposite points of view on the status of 
related proofs [1-7] and on possibility to construct the theory of irreversible processes 
within (quantum) mechanics and known interactions [6,7]. Terminological barriers 
between physics and mathematics are very high in the field. Therefore it is useful to 
find a simple enough and rich in context system to check and develop main ideas of 
ergodic theory. We studied the subsystem of impurity nuclear spins in a crystal as 
such simple and instructive example. As a realistic image a spin subsystem of lOTAg 
can be considered in AgF, enriched by isotope 109Ag. Other example is subsystem 
8 Li _6 Li in LiF [8], but main idealizations are not fulfilled here so well. 

Subsystem of impurity spins h., k = 1, ... , N, isn't isolated and its dipole energy 
isn't conserved. But z-component of total subsystem spin Iz. = Ef::::1 Ii. is an additive 
integral of motion in a strong external magnetic field B = (0,0, Bz ) with very good 
accuracy. Therefore in typical conditions, when dipole temperature and heat capacity 
of matrix spins are infinite, we can expect, that, starting from any realizable state, 
subsystem will came to Gibbs equilibrium PG = exp(~ - ~I,,), according to ergodic 
hypothesis. Here cJl and { are defined, as usual, by the conditions: TrpG = 1, TrI"PG = 
(I,,). 

The process is mastered by tl:e equation [9] 

PD = -2
1 

LWjh[ItI,;,[I; It,PD]], (1) 
j1c 

where Wjle = a;1c'T2 = Wlej, aile DC r:/ is usual dipole coefficient, and PD is a diagonal 
part of P in the representation of eigenstates for operators It. and all their products 
Cm.(jl~ ... ,im) = n~==/IJa: The prime indicates, that all ia are different here. Eq.l is 
valid If RT2 « 1, RTc « 1 [9], where correlation time Tc is flip-flop time for matrix 
spins, T2 DC T2 , and T2 and R are phase relaxation time and typical flip-flop rate for 
impurities. The inequalities are fulfilled very well if impurity concentration c < 0.05 
[9]. Using the expansion 

PD(t) = T~l {I + L .L. 'z".Cm (ill ... ,im)Km (jI, ···,im, tn, (2) 
m~lJl •... ,J... 

Km(jI, , jm, t) =< Cm(jll.·.,im) >= TrCm(jll "', jm)PD(t), 

(with Z~l :: Tr(Cm(j1l ,im))2ITr1) we can obtain the equations: 

Km(iI, ·.. ,im, t) = - L: L: Wil(Km(jll .. ·,im, t) - Km(jl, ···,im' t Iii -t ii)). (3) 
i~[m]/E[m] 

Here [m] == (jl, ... ,im),Km(jll ... ,im,t Iil-tiil is the coefficient Km(jl, ... ,im,t) where il 
is substituted by k Eq.3 is fulfilled if all lie =~. For m = 1 Eq.3 coincides [9] with 
well known random walk equa.tion. 
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The unique steady sta.te solution of Eq.3 corresponds to uniform stirring of initial 
condition Km(jl, ... ,im,t;;;:: 0) on all Nm = N!/(N - m)! different Km, and 

(4) 

If 
pet = 0) = (1 + Il(~~~ 1/:>/Trl, p~ = TrI;p(t = 0), (5) 

then all K...(t) := 0 for m ~ 2, and evolution isn't ergodic. Evolution of 8Li _6 Li 
system [8,9] (with h. -:/: t) isn't ergodic as well. 

If initial state has quasiequilibrium form 

which corresponds to absolutely uncorrelated initial spin states, then 

m' 
Km(jl, ""jm, t = 0) = n p~", 

0=1 

And if P = k'Ep~ <X NO, then Km (jl' ···,i...,t -+ 00) = r +O«m-l)/N). Therefore the 
final distribution coincides with Gibbs one within first m terms up to O(~l). 

If initial spin state has finite correlation radius, so that every spin is correlated 
with no more than Nc other spins, then Qm = j1" +O((m - l)Nc/N), and the system 
is ergodic as well in leading order on (m - I)Ne/N. 

If correlations in initial sta.te are global (Nc f; o(N»), then final state will not be 
Gibbs distribution. 

[1} Kubo R. Statistical mechanics. North-Holland 1965 
[2] Dobrushin R.L., Sukhov Yu.M. ltogi nauki i tekhniki. Sovrernennyje problemy 
maternatiki. MOf!cow, VINITI, 1979, V.14, P.147 
[3J Gurevich B.M: / / Teor. Matern. Fiz. 1992, V.90, P.424 
[4} Martynov G.A. / / Uspekhi Fiz. Nauk 1996, V.166, P.lI05 
(5] Sinai Ya.G. Introduction in ergodic theory. Moscow, Fazis 1996 
[6} Prigogin I. From being to becoming: time and complexity in the physical science. 
W.H.Freeman & Company, San Francisco 1980 
[7) Nicolis G., Prigogin 1. Exploring complexity. W.H.Freeman & Company, N.-Y. 
1989 
(8] Abov Yu.G., Gul'ko A.D., Dzheparov F.S. at al. / / Phys. Part. Nucl. 1995, V.26, 
P.692 
[9] Dzheparov F.S. / / ZhETF 1991, V.99, P.982 
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Nuclear Relaxation via Paramagnetic Centers
 
F.Dzheparov, J.-F.Jacquinot1

, S.Stepanov
 
1 CEA, Saclay, SPEC, Gif sur Yvette Cedex, 91191, France
 

Nuclear relaxation of spins 1/2 in dielectrics proceeds primarily via interaction 
with paramagnetic impurities. This process has been studied for .years (~ particular, 
in relation with nuclear dynamic polarization), nevertheless some mterestmg problems 
are not enough investigated up to now. For instance, in literature on spi~ dynamics 
the fact, that a long-time behavior in such systems is not an exponentIal one was 
not yet elucidated. There is no respective analysis even for 2d- and 1d-systems, 
while experiments with fractal samples are under way now [1]. In continuous medium 
approximation the discussed process is described by a kinetic equation 

8p(x, t)/8t = Dt1p(x, t) - E nzv"o:p(x, t), p(x,O) = 1, (1) 

where p(x, t) is a polarization of a nucleus, placed in a site x of a crystal, d is its 
dimension and D is a spin diffusion coefficient. v..:o = vorV]x - zl6 = C liz - zl6 is 
a relaxation rate of a nuclear spin x, interacting with an electronic paramagnetic 
center (acceptor), arranged in z. nz is a corresponding occupation number, (nz)c = 
c « 1, c is a concentration of impurity, JL = cine is its density and ne is a volume 
of the crystal unit cell. The observable is a total nuclear polarization averaged over 
random distribution of paramagnetic centers: p(t) = n-1 JcFzp(x, t) = (OIG(t)ID) = 
(OI(G(t))eIO). Here we introduced the propagator G"'f/(t), which is a solution of Eq.(l), 
but with another initial condition: G7fI(t = 0) = d(Z - y). 10) stands for a normalized 
vector with components (xID) = 1/v'fi, n is a volume of the crystal, and (... )e denotes 
the average over random positions of impurities. Expansion of p(t) in a power series 
over impurity concentration starts as follows [2]: 

p(t) = (OjG(t)IO) = (OIG(O)(t)IO) +n f tFr(DI[G(l)(t, r)"- G(O)(t)] 10) +O(n2
) = 

= exp[-M(t)(l +O(n2 
)), where M(t) = nf t:Fr(O)[G(Ol(t) - G(l)(r,t)]!O). (2) 

Here G(Ol(t) is the propagator without impurities, G(l)(t,r) denotes the propagator 
when only one impurity is located in the crystal in r. We also took into account that 
(OIG(O)(t)IO) = 1. Due to translation invariance, one may rewrite M(t) in the form: 
M(t) = nn.(o/[G(O)(t) -G(l)(O, t)ID), or in Laplace transform (f(>.) == Jooo exp( ->.t)f(t)dt): 

M('\) = nn(OI( >. ~ A - >. + ~ + U )10) = :? (OIT(>')lO), (3) 
o 

_ 1 (0) _ 1
( ) T >. - Uo1 + G(O)U ' G P) - >. + A' A::: -Dt:1, (UO)ZlI = d:J:lIVzo. 

o 
Here T-matrix T(>.) does not depend on boundary conditions at n -+ 00 due to a 
short-range action of the "potential" V%C. For calculations it is more convenient to 
proceed with the next transformation: 

. nn 1 nn 1 
M(>.) = » < 0IVo>. + A + U (..\ + A)IO >::: T < OlUo >. + A + U 10 >= o o 
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nn 1 
= T < °IUo(A + Uo)(A + A + U ) (A +UolO >=o

nO 1 nO I < nlUolO > 1
2 

=T<OlUo(A+Uo)(.x+A+Uo)UoIO>==T~ (A+En)E~.-·' . (4) 

where the eigen vectors In) are determined by the equation (A+Uo}ln) ::::: ~nln). ResU).ts 
equivalent to (2),(4) were published [3], hut here we used anotherD1ore straightfor
ward and ~onsistent approach [4]. Now we have to diagonalize the opefatqr A+UO.i It 
is obvious, that M(A -+ 0) depends mainly on small ETl • At small A, following [3],one 
may apply an approach, known in the slow particle scattering theory asa scattering 
length theory. At large A series expa.nsion over diffusion coefficient [4] works well. 
The following interpolation relationship gives sufficient accuracy for all t 

Here Mp(t) describes initial (Forster) stage of relaxation and M1 (t) has been calcu
lated according to Eq.(4} in the frame of the scattering length theory. For arbitrary 
dimensionality d we obtained 

M1(t) = t9(d > 2)O'd(d - 2)nDtbd- 2 +2d- 2 (d - 2)2 O'd d)b~n. X (Dt ,d), (6)
f2(2 - i b2 

x(a, d) = roo dz . 1 - exp( -a._x~2)__ 
10 Z3 zd-2+X2-d---2cos[j(d-2)]' 

~= Hr(2-~)/rwr'. b= (~)6 [~g:~~t' .(s~2P!'. 
Here (Ttl is an area of a unit d-dimensional sphere, b is the scattering length and 8 = 6 
is an exponent in the dependence of tJ",o vs z. In case of Dt/b2 » 1 

M (d-2) 41r Dnt Mt(t, d=3)=41rDlmt. (8)1 t, - In(Dt/tr) ' 

M1 (d=1) does not depend on b. In 2d~case this dependence is very week. 

[1] Tahti T., Goldman M., Jacquinot J.F. et al.// J.Chem.Phys. 1997, V.107, P.9239 
(2) Dzhepa.rov F.S. / / ZhETF 1991, V.99,P.982 
[3} Alexandrov I.B. Theory of Magnetic Relaxation, M.:Nauka1975 
[4] Ahov Yu., Bulgakov M" Borovlev S. et al. / / ZhETF 1991, V.99, P.962 
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New Effective Medium Approximation
 
for Nuclear Relaxation via Paramagnetic Centers
 

F.Dzheparov, J.-F.Jacquinot1 , S.Stepanov
 
1 CEA, Saclay, SPEC, Gif sur Yvette Cedex, 91191, France
 

In (1] we developed a theory of nuclear relaxation of spins 1/2 in dielectrics for the 
case of interaction of the spins with paramagnetic centers (PC) under the presences 
of nuclear spin diffusion. The analysis was based on the expansion of the average 
nuclear polarization, p(t), in power series on concentration c of PC. Such an approach 
allows to describe p(t) in the samples with arbitrary dimensionality d, d ~ 1, within 
the first order of variation of p(t). Final formulas are not applicable at long t. Indeed, 
let us consider a contribution to p(t-too) from large empty (without PC) region [2]. 
Polarization decays only on boundaries. Respective solution of a diffusion equation 
for a sphere with the radius R is proportional to exp( -"DtlR2 

), where K. '" 1, D is a 
spin diffusion coefficient. A probability to find such a sphere ex: exp( -nV(R)), where 
VCR) oc. Jld. Thus 

00 

p(t-too) ex: n1 dV(R)exp [-nV(R) - K.DiR-2 
] 0( exp[_(Bt)4~~), (1) 

where B is a constant, which depends on geometry, density of PC and the diffusion 
coefficient. Accurate proof of eq.(l} is given in [3]. A crossover from equations 
obtained in [1] to this asymptote is investigated rather poor. Numerical simulations 
[4] indicate that the asymptote (1) can be observed at pet) < 10-11 

• So we may expect 
that the intermediate region is rather wide and needs an appropriate theory. Mean 
field theories which is also called as a coherent potential method [5], or effective (or 
coherent) medium approximation [6] could be a natural candidates for that. They are 
formulated in Laplace transform for the propagator. However these methods, being 
applied to Id- and 2d-systems, give senseless results even in the leading order. To 
overcome this difficulty we developed a similar theory, but directly in t-representation. 
In this case the propagator G(i) may be written as 

G(t) = (exp[-(A + U)tJ)c = exp[-B(t)], B(t) = A· t + M(t), (2) 

A = -DA., U = L nzUz, U;q = dzqv:r:z, V Z2; = CIlx - z16. (3) 

Here v_ is a relaxation rate of a nuclear spin;,;, interacting with the PC, arranged in z. 
nz is a corresponding occupation number, (nz)c = c« 1, (.. .)c denotes the average over 
random positions of PC. Let us rewrite unknown operator M(t) in the form, similar 
to U: M(t) = L:z MZ(t). It is possible to say, that operators MZ{t) should adequately 
describe an influence of acceptors in a so-called "effective medium", which appears 
after taking average over acceptor configuration. Therefore, it is natural to require, 
that the average propagator G(t) ought to be the same, if one of the lattice sites in 
the effective medium would be replaced by a real site together with the subsequent 
averaging over the distribution of PC: 

G(t) = (exp[-At -lvI(t) + IvJZ(t) - nzU'"tJ)c. (4) 
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Eqs.{2-4) make up a full set of nonlinear operator equations. Now let us proceed with 
"its solution. Taking an average over nO' we obtain 

c(exp( -B(t) - UJlt + M"(t)) - exp( -B(t) +M"(t))) = e-B(t) - e-B(t)+MZ(t). (5) 

The operator Moo ex: c and therefore is small. Contrary M = 'E.z M" is not small, so 
keeping in both parts of eq.(5) leading terms on c, we arrive to 

e[exp(-B(t) - UJlt) - exp(-B(t)) =- i l 
dee-EB(t)M"e-(l-E)B(t), (6) 

which gives 

M(t) exp( -B(t») = c ~)exp( -B(t)) - exp( -B(t) - U.st») (7) 

after summation over z and taking into account translation invariance. Let M (t) = 
[mo(t) +ml(t)]t, where (mo(t)).,q = d",qmo(t). In mo we have separated a part M, which 
is proportional to unity operator. Using Laplace transformation, it is possible now 
to rewrite eq.(7) as follows 

r+ioo 
[ (t) + (t)]t -(A+mdt»t dAeJ..t ",,'" 1 U.. 1 
rna ml'e =cJ._ioo 21l'i ~A+A+ml(t) A+A+ml(t)+UJI" 

This equation is reduced to results obtained in [1J if ml = O. When ml :f. 0 it is 
necessary to find a. convenient way to calculate M(A) from eqs.{5-6) in [1], including 
tenns "" O(k2 

), when 10) -t Ik), where (:elk) = eik:e j../fi. n is a volume of the crys
tal. Within this accuracy (klml(t)lk) = Dt{t)k2• Thus ml simply renormalizes the 
di:ffusio~ coefficient: D -t D + D1(t). Corrections to the effective medium propa.gator 
obtained in BUch a way could be calculated using T-matrix expansions (6], and the 
first non-zero terms will be'" T 4

• To our knowledge, it is an unique way, which allows 
to avoid senseless results in the leading order at small d. Moreover it enables, at least 
in principle, to calcula.te corrections to the leading order for all t and d. 

[1] Dzheparov F., Jacquinot J.-F., Stepanov S. preceding abstract 
[2] Balagurov V.Va., Vaks V.T./ / ZhETF 1973, V.65, P.1939 
[3] Lifshitz I.M., Gredeskul S.A., Pastur L.A.. Introduction to the Theory of Disor
dered Systems, M.:Nauka 1982 
[4J Havlin S., Dishon M., Kiefer J.E. et a1. / / Phys.Rev.Lett. 1984, V.53, PA07 
[5] Ziman J. Models of Disorder, Cambridge Univ. Press 1979 
[6] Dzheparov F.S. / / ZhETF 1991, V.99, P.982 
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Spin Kinetics in Dilute Systems. Variations of Physical
 
Predictions in Cluster Theory
 

F.S.Dzheparov, I.V.Kaganov
 

The main problems of spin dynamics theory in magnetically diluted systems 
(MDS) are produced by very broad distribution of energies there. Two characteristic 
energy constants - interaction of nearest neighbors via minimal distance and inter
action E at average distances, which relation can exceed hundreds and thousands, 
create gigantic width of relaxation times distribution and regular two-temperature 
theory becomes insufficient for many processes [1]. Some problems can be solved 
using the concentration expansion [2], which is useful at Eft::; 1. 

New method of cluster separation was introduced [3] and developed [4,5] to de
scribe evolution of MDS on medium (Et 1 -;- 10) and large (Et > 10) times. Therv 

clue of this theory is separation and exact calculation of singular part of interactions 
which is realized by compact clusters. The rest of interactions might be consid
ered in Anderson - Weiss - Kubo (AWK) approximation (normal random process) 
because, after cluster separation, the local dipole field, produced on every spin by 
extra-clusters spins, is a sum of many terms of the same order of magnitude. After 
the clusters separation the characteristic time of flip-flop transitions in the rest of 
system is determined by interactions at average distances, so the ratio of flip-flop 
time of extra-clusters spins and time of phase relaxation is close to one in regular 
systems. 

Cluster classification, based on comparison of intra- and extra-cluster interactions 
for every spin was used (5] to calculate the free induction decay (FID) and to esti
mate the function of local longitudinal field correlation. However, different methods 
of cluster separation might lead to different predictions and the best method is not 
evident. Therefore we studied the dependence of some theory predictions on some 
important details of cluster classification. We introduce a new classification, more 
natural than one, discussed early in (3-5]. It is based on comparison of intra-cluster 
dipole field and total extra-cluster one. Second moment of the distribution of local 
fields, produced on the cluster by extra-cluster spins, is used as corresponding mea
sure. OUf new construction, as well as theory [5], is based on separation of 2-spin 
clusters ant it produce a possibility to study the dependence of free induction decay 
on the quota n of spins, contained in clusters. 

We studied carefully the physical region of values for It and we choose it as n = 
0.4 -;- 0.6. 

As an example of our results we suggest a new representation for FID: 

G(t) = Tr(S+(t)S_)/Trl = G2 (t) +G1(t), (1) 

00 004D 1 dw 1 dy D2G2(t)=-2 2 2"exp(--2-I(t)w2)cosDty, 
71' 0 W Yo(... ) Y 7I'W 

00

G
1
(t) = exp(-2DJI(t)) _ 4D roo dw 1 dy exp( _~ _ I(t)w2 _ D'ly2l(t)), 

71' 11"2 10 w2 110("') y' 7I'W 2 

where yo(w) = 2w/(7I'J;,D), G2 (t) and G1(t) are FIDs of two-spin clusters and extra
clusters spins correspondingly, D ~ E is Anderson line width, let) = J~ dT(t - T)K(T). 



14
 

Correla.tion of local field wa(t) was taken as (wz(t)wz) = M2zK(t) with exact value and 
distribution for local second moment M2z , depending on position x of spin or cluster. 
K(t) = exp(-~) with Tc ~ 4/D were chosen for numerical estimations. General 
discussion of similar approximations is carried out in [4,5]. 

A generalizations of Eq.l waS developed to take into account diffferences in fluc
tuations of local fields on clusters and extra-clusters spins. 

Results, obtained within different cluster approaches, developed in this work and 
in preceding article [5] are similar qualitatively. FID is close to Anderson exponential 
relaxation during first order of the decay, then it deviate to Foerster like behavior, 
predicted in Ref.2, but it is realized for very sma.ll values of G(t) [5]. Dependence on 
It and on the type of cluster expansion are studied for the first time and they have 
the same order of value. These results give the possibility of experimental verdict 
a.bout type of cluster classification which is "actually realized", and, therefore, what 
kind of processes is more important in the spin dynamics. 

[1] Atsarkin V.A. / / Magn. Reson. Rev. 1991, V.16(1), P.1 
[2] DzheparoY F.S., Lundin A.A., Hazanovich T.N. / / ZhETF 1987, V.92, P.554 
[3] Dzheparov F.S. Ext. Abstracts of the 26th Congress Ampere, Athens, 1992. P.380 
[4] Dzheparov F.S., Khenner E.K. / / ZhETF 1993, V.104, P.3667 
[5] Dzheparov F.S., Kaganov LV., Khenner E.K. / / ZhETF 1997, V.112, P.596 
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A New Semi-Phenomenological Theory for Problems of Spin
 
Spectral 'fransport in Disordered Media
 

F.S.Dzheparov, LV.Kaganov.
 

The equations 

(1)Pzy = - E(w~nzP"1I - w",zn",P:oy), 
:0 

describe random walks in disordered system with site disorder [1]. Here Pzy(t) is a 
probability to find a walker at a moment t in a site x of a crystal if it was in y at 
initial moment, Wn; is a rate of transfer from x to z, Wzz = 0, nz is an occupational 
number, nz = 1 or nz = 0 relative to is or isn't site x occupied by a donor, that is an 
impurity, which can carry a walker. Strong disorder is realized when c..: = (nz ) « I, 
where (...) means averaging over donors' distribution. 

Dipole transport such as spin diffusion like processes [1,2] or localized electron
ic excitation hopping [3] are among the most important applications of Eq.1, and 
the problem to find the solution, averaged over random donors distribution in the 
crystal belongs to most complex and important in modern physics [2,3] due to wide 
a.pplications and because the problem has no real small parameter and it is relat
ed with very compJ~x field theories. Among many approaches developed to solve 
particular subproblems of the problem (see [1-4] and references therein), only semi
phenomenological theory (8PT) (1] gives an uniform approximation for all c., and t if 
~ = c S 1. But this kind of theories fails if c..: isn't a constant, that is very impor
tant for problems of spectral transport in optics [3], when x incorporates spatial and 
spectral coordinates. Our interest is stimulated as well by similar difficulties, related 
with the spin spectral transfer like one studied in [4). 

We constructed a new 8PT which has no defects, mentioned above. The theory 
reproduces known value of diffusion coefficient for spin delocalization [5] with satisfac
tory accuracy and it has (for the first time) right behavior for all important limiting 
situation in the spectral transport. 

8PT is the simplest theory of mean field class. It starts from the fact, that 

is mastered by the equation 

(2) 

and it uses an hypothesis, that we can choose some simple auxiliary process to cal
culate m;c(t) and then to solve general problem (2) using these kernels [1]. Exact 
kernels N::o(t) can depend or not depend on initial position y of the walker relative 
to what kind of memory is preferable for treatment: 1) geometrical, when m:o(t) de
pends on y, but it decays fast with time t; or 2) temporal memory, when Nz.. (t) does 
not depend on y, but time decay has slow diffusion liketail, which one-to-one defines 
the asymptotics 1',,,At -7 oo} if c..: « 1 [1]. First kind of kernels was justified within 
technique of Nakajima - Zwanzig projectors[l]. Second (temporal) type is connected 
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with projector Af~ = (n-z/c-z}{n,Jz) for arbitrary f~. Second kind of kernels is simpler 
and preferable for three dimensional systems, if we aren't looking for asymptotics of 
P1l1l(t ~ (0), because SPT can not give Nzz(t ~ (0) correctly. We studied both type 
of kernels, but only second will be discussed below for the sake of brevity, and label 
y will be canceled. 

Next model task was chosen as auxiliary: 

>..Rz = nz - (nzw~ + bz)Rz + nzwzzR" , >"Rz = -(n-zwzz + bz)R" + nzwz-zRz, (2) 

where Dq = Aq Er#.z W rq1'l.r, q == {x, z} and Eqs.2 are written in Laplace representa
tion with Rq(>") = fooodtexp(->..t).Rq(t). Multiplier Aq takes into account that walker 
can go away and back. It is defined self-consistently below. According to SPT, 
~ == (~) is mastered by the equations: . .. 

(3) 

with Dq == p.q ~tq Nrq , Nz,,(>") == 1;0 dt exp( ->..t)N"",.(t). Here Jl.q is another multiplier, 
which is analogous to Aq and is not equal to it in general. The result for Cq « 1 is 

Nzz (>")== wz"(QzQ,,)-l(n,,,[(>.. + Dz )(>" + Dz) + wz"(>" + D",,) + w",,,,,(>.. + D",)]-l) (4) 

with condition of self-consistency Qz == (>.. + D",t1 == (>.. + DlIl)'-l). The method (in 
difference of preceding SPT) is exact in first order in Cq , with the same accuracy we 
must average Dz and Dz in (4) independently. One condition of self-consistency is 
not enough to determine Aq and Jl.q both. Another one is the condition that diagonal 
part of propagator, obtained using kemel (4) must be the same as the diagonal part 
of propagator, obtained using cumulant expansion in Laplace representation. We can 
~ormulate this demand because of exceptionally high precision of cumulant expansion 
in Laplace representation [1J in case of dipole interaction. Precision of this approach 
in case of interaction WOz "'" 1/x8 is shown in the next table: 

s 6 10 12 15 20 30 40 50 
'Y 1.026 0.96 0.93 0.88 0.83 0.77 0.74 0.72 

Here i is ratio: correct third term of concentration expansion over third term of 
cumulant expansion [1] of diagonal part of propagator. The new SPT might be 
used for many kinetic problems of dipole transport in disordered systems, especially 
for the problems of spectral diffusion (relaxation) in diluted paramagnet, studied in 
experiments [4]. 

[1] Dzheparov F.S. / / ZhETF 1991, V.99, P.982 
[2] Abov Yu.G., Gul'ko A.D., Dzheparov F.S. at al. / / Phys. Part. Nuc!. 1995, V.26, 
P.692 
[3] Basiev T.T., Malyishev V.A., Przhevuskiy A.K. / / SOy. Phys. Materials of Gen. 
Phys. Institute 1994, V.46, P.86 
[4] Atsarkin V.A. / / Magn. Reson. Rev. 1991, V.16(1), P.1 
[5] Dzheparov F.S., L'vov D.V., Nechaev K.N., Shestopal V.E. ! / Pis'ma v ZhETF 
1995, V.62, P.639 
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Diffusion in a System of Impurity Centers with Dipole-Dipole Tran
sition Rates 

F.S. Dzheparov, n.v. L'vov, V.E. Shestopal 

Transport of nuclear polarization in a system of impurity nuclei belongs to prob
lems of random walks in disordered media (RWDM) with dipole interactions. Their 
experimental studies were perfonned by the methods of ~ -NMR [I], time dependent 
narrow band laser spectroscopy [2], depolarization of fluorescence [3] and degenerate 
four-wave mixing [4]. Various theoretical and numerical approaches were applied in 
research of these systems. However there is no agreement in resolution of the most 
important question about the fonn and parameters of the longtime asymptotics. First of 
all the diffusion coefficient values differ significantly. Although the diffusive behav
iour of the asymptotics is generally accepted, its mathematical proof is not found. 

Basing on a new theoretical method for studying of the longtime asymptotics in 
RWDM models [5] we investigate the migration on simple cubic (SC) and face cen~ 

tered cubic (FCC) lattices at arbitrary impurity concentration. 
Incoherent transport in a system of randomly distributed impurity centers is de

scribed by the kinetic equation: 

PI'" = - ~)VjIPj/11 - vijP}",), P;/1,{t == 0) = 0;"" 
} 

where Pi., is the probability to find a walker at time t at the center with a number j 

(placed in site x) of regular lattice L) if it was initially at the site m. In the standard 

model of dipole transport Vjp} =Yoro 
6 IXi - X j ,~, V ij =O. Positions of impurities are 

assumed to be uncorrelated. In the limit of low concentrations the characteristic time 
scale is determined by Forster's constant P=(16/9)n:3(r:/O)2 c2yo where n is a 
prime cell volume and c is a dimensionless concentration of impurities. We consider 
random configurations with a large period Rei where e l are prime cell vectors of L 

and introduce the quantity Pj(k,t)::= LP}II,(t)exp[ik(x", - x})}. The quantity Pi is 
RI 

periodic: x; - x} :0 RM, MEL, entails pj == PJ' Thus we obtain the system of N 

equations on Pi (N is the number of impurities in the periodicity volume) and solve 

them numerically [5]. The quantity of interest is P{k,t IN)"== 1_ fp; .Calculations 
N i=1 

show that lnP(k,pt» 11 N)/(~t) tends to a fmite positive value for all considered 

configJrations where N == 200 + 2000 and for small kr where r =co/C)"3 is the 
average distance between impurities. As the result 

P{k,~t» 11 N) == aexp(-Dk2t + ok 3t). 
where the coefficient a is known exactly [5]. It is convenient to write the diffusion 
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coefficient D in a fonn: D =(1C I 6)6;02 . 
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Fig. 1. Quantity 1( as a function of concentration for SC (left) and FCC (right) 
lattices and its analytical approximation. 

When f3t tends to 1000 the diffusion coefficient D monotonically decreases 
but remains within three percents from its value at Pi = 40 for concentrations 
1%<C<lOO%. For each value of C we considered from 3 to 5 various pseudo-random 
configurations of impurities to average obtained values. The results are presented in 
fig.I. The values of K., == K(C= 1) are well known: K.,(SC):;;; 0.2999, 

K., (FCC) =02895 . The least square approximation with the expression 

K=1(., +(1() +K2 c+K 3c
2 )(1-c) produces for the SC lattice the values 

K\ =-Q.0050±O.OOO6, 1(2 =0.164±O.004, 1C 3 =-O.ll±O.04. Quantity K 
II 

+K 1 corre
sponds to the diffusion coefficient at c~ 0 . In the case of FCC lattice 
K) =O.OO66±O.0007, K 2 =0.132±0.004, K3 =-Q.09±O.04. One can see that values 
of le" +K j for FCC and SC lattices coincides within the accuracy of calculations. 
Such an agreement must take place because at small concentration average distance 
between the impurities is large, r» 70 , and therefore at vot» 1 the propagator 

should not depend on a lattice type. 

[1] Abov Yu., BulgakovM., Borovlev S. et aJ II ZhETF 1991, V.99, P.962. 
[2J Gapontsev V., Dzheparov F., Platonov N. et of II Pis'ma v ZhETF 1985, VAl, 
P.460. 
[3] Gochanour c., Fayer M. II J. Phys. Chern. 1981, V.8S, P.1989. 
[4] Gomez-Jahn L., Kasinsky J.• Miller R II Chern. Phys. Lett. 1986, V.125, P.500. 
[5] Dzheparov F., L'vov D., Nechaev K., Shestopal V. II Pis'ma v ZhETF 1995, V.62. 
P.639. 
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Tensor of Spin Diffusion for Polarization Transport on Rare Nuclei. 
F.S. Dzheparov, D.V.L'vov, V.E. Shestopal 

A process of spin polarization transport has been under intense investiga
tions for many years [1]. A theoretical description of the process at moderate 
times was given by a method ofconcentration expansion [2] and an autocorrela

tor <: P > was measured in [3]. The measurements of the long-time asymptotoo 
ics are carried out now for disordered system 8[j_6[j by ~-NMR method. 
Numerical simulation [4] shows that in disordered system with isotropic transi
tion rates of dipole type diffusion asymptotic realizes and dependence of diffu
sion coefficient on concentration was studied [5]. We consider here'long-time 
asymptotic behaviour of the process of random walks with anisotropic transi
tion rates which take place in real spin systems. 

Spin migration in a system of impurity nuclei is described by the kinetic 
equation [1]: 

ifi (, _ _ - n 
d~"<Y = - ~nxn:\v~"p\), - vx:~.v t ~).(t::; 0)::; ;' 8,\;Vt (1) 

where P.'Q' is polarization in lattice site x at time t with initial condition of unit 

polarization in Yt n.t is the occupation number. Polarization transition rate 

v r 6 (1- 3cos2 9 )2o o xvv = . 
.\y Ix- y\6 

where S .l}' is an angle between H1IOZ and (x - y), '0 is a period of simple cu

bic lattice L. We study the limit of low concentrations c of impurities when 
the disorder of environment appears to be significant. The characteristic time 

scale is detennined by the Forster's' constant ~ = (2561 243)1t 3 (ro
3 In/e 2vo 

wh~re n is the prime cell volume and:c is the concentration of impurity nu
clei. Lets introduce the quantity 

Px(k,t) =L ~).(t)exp[ik(y"": x)] 
y 

where the vector k is in Brillouin zone. 
In the numerical simulation we placed pseudo-random configuration of 

impurities in cube with an edge Rrrp R_:» 1 and then periodically continued 
this configuration (but not the initial condition for Eq.(l» to the entire infinite 

lattice: nx =nnRM' Me L. In this case P.\.::; P.t+RAI and we obtain 'the finite 
system of N equations which was solved numerically: 

Px =- Lnxn=(~\.(O)px - U(,,(k)p), pAk,t == 0) =n.t Ie, 
XEV 
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where x, z are the sites in the periodicity volume V and 

Wx::(k) = LVx.=+RM exp[ik(z - x - MR)]. 
MeL 

The quantity of interest P(k,tl N) =~ LPx can be considered as a 
N xev 

Fourier transform of propagator, which is averaged over all configurations that 
may be obtained from the given one changing its "initial" site within periodicity 
volume. In order to explain this statement we note that the generator in [1] is 

symmetric, i.e. P~ = Py.< and therefore the index x in P.T can be considered as a 

coordinate of the site which contained excitation at t = O. 
At long t we approximate P(k,tl N) by the expression: 

P(k,tlN)=aex~- tD;k/t+<J(k)t), 

where tenn <J(k) -ik13 can be calculated analytically by the Poisson-Evald 
method 

a(t) = 31t 
2 

-':"V r. 6 (lk I3 + k:lkl + k; 1. 
32 n 0 0 2 3 21kV 

The quantities D, are the components of the diffusion tensor which is di
agonal in the basis. In order to display concentration dependence of D; we 

write it in a form D; =lei f3 f l where f = roc- IIJ 
• From the calculations we see 

6 
that the quantities D; decrease monotonically with time and stabilizes with ac

curacy 5% at f3t = 40. The system (4) was solved for various pseudo-random 
configurations of impurity nuclei at concentration c = 1% + 6% and N:5: 2000. 
It was obtained that leI = 1(2 =0.270 ±0.003, K 3 = 0.510 ±0.003. The value 

of leI 11(3 is in a good agreement with the prediction of all theories considered 
in [1]. 

[I] Dzheparov F. II ZhETF 1991, V.99, P.982. 
[2] Dzheparov F., Smelov V., Shestopal V. II Pis'ma v ZhETF 1980, V.32, 
P.51. 
[3] Abov Yu., Bulgakov M., Borovlev S. et al II ZhETF 1991, V.99, P.962. 
[4] Dzheparov F., L'vov D., Nechaev K., Shestopal V. II Pis'ma v ZhETF 1995, 
V.62, P.639. 
[5] Dzheparov F., L'vov D., Shestopal V. Preceding abstract. 
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Spin Dynamics in Diluted Systems.
 
Testing of Cluster Based Theory with Direct Numerical
 

Simulation
 
LV.Kaganov 

Main problems in the theory of spin dynamics in diluted spin system are in relation 
with huge range of characteristic energies there. Very large dispersion of relaxation 
times prevents the usual description for many situations [1). Method of separation 
and exact consideration of singular part of interaction, generated by clusters of small 
number of close spins, was introduced [2] and developed [3,4]. Other interactions 
are considered in Anderson - Weiss - Kubo (AWK) approximation (normal ran
dom process). This approach was used [4] for calculation of free induction decay and 
function of local longitudinal field correlation in case of spin S = 1/2. The only 
serious test of model might be the experiment, at least numerical. Direct integration 
of equations of spin motion with calculation of correlators, averaging over different 
Gibbs ensembles and spatial configurations gives possibility of testing the theory (at 
least on small and medium times) and of determination of non-determined strictly 
parameters of theory (for example, characteristic time of flip-flops in system). to
day's computation possibilities demand the simulation of motion for classical spins. 
In the high-temperature approximation the transverse correlation function. (free in
duction decay) has the fonn in standard notation G(t) = ((S+(t)S-)o)c/((S+ S-)o)c' 
Here (.. ')0 = Tr( ...)/'1\-1 is Gibbs averaging, (.. .)c is averaging over different spatial 
configurations of spins. Evolution goes under influence of secular part of dipole-dipole 
Hamiltonian. After separation of the clusters, the local fields on spins of mass and on 
the clusters is far closer to a normal process than before. Let separate the pairs from 
the system and neglect the dependence of the field induced by the system outside 
the pair from the position of point inside cluster [4]. Using techniques, analogous 
(4], one can obtain explicit expression for G(t). Line width in Anderson model D. is 
characteristic scale parameter in case of spin S. Let, further, consider longitudinal 
spin autocorrelation function, which determines behavior of G(t), be e-~ on av
erage times (Forster exponent) [4]. Parameter T c is characteristic time of flip-flop in 
system. Then G(t) may be calculated directly for any spin S in considered model. In 
general, behavior is analogous for any spin and convergence of functional sequence 
G(t) = G.(t) when S -+ 00 is very quick, so case S = 5 or S =6 already may be used 
for approximation of infinite spin with very good precision. 

The main problem of any numerical experiment is problem of validity of results. 
There are two independent possibilities for testing of numerical results in considered 
case (except varying of concentration, number of spins and configurations): com
paring with analytical results in Anderson model in case of Anderson Hamiltonian 
and comparing with exact results of concentration expanding. Note, that G(t), cal
culated in theory has correct :first non-trivial order. The computer simulation was 
done by direct integration (Runge-Kutta, method of 8th order by Dorman-Prince) 
of diluted in lattice system of classical spins jij, which move under influence of secu
lar dipole-dipole interaction with periodic boundary conditions. Followed calculation 
of correlators qJ:(t) = 1-'0(t)f'o, q:c(t) = J.t~(t)p~, p~(t)p- (Jt± = p!li ± iftY , p% :::: L;i Iti, 
JAY = L;j JA~) and averaging of them over different spins, different Gibbs ensembles 
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(over random distribution of direction of ;1;(0) with equal probability of each direc
tion (high temperature)), and different configurations, gives final result. Testing of 
program showed that deviations are no more than 5% on considered interval of time 
(Doot ~ 3). Functions ((qz(t))O)e, ((qz(t))o}c and G(t), obtained numerically are in exact 
agreement with cluster expanding. If to suppose ((qz(t))O}e has form e-(t/re)o, one can 
obtain from these results for ((q..(t)o)c that a ~ 0.66, Tc ;:::::: 9.0D;;;'! using maximal con
sidered time. Basic numerical results were received with number of spins 350, number 
of Gibbs ensembles 350, number of spatial configurations 30, relative concentration 
of spins 10-2 , local error of integration 10-6 • Substitution of Te , founded above, in
to our theoretical formulas was done and result was compared with G(t), obtained 
numerically. These two curves are in precise agreement. Resulting curve damps like 
exponent, but some more slowly on considered interval of time. It is one of the most 
important predictions of theory [4]. 

We see that theory [4] describes behavior of free induction decay on average times 
rather precisely. ((q.t(t))o)c is really almost Forster function, but characteristic time 
of flip-flop is ,.., lO/Doc (in [4J it was considered reD = 4). Obtained results may be 
useful for more deep understanding of processes in disordered paramagnet. 

[1] Atsarkin V.A. Magn.Reson.Rev. //1991, V.16(1), P.1 
[2] Dzheparov F.S. Ext. Abstracts of the 26th Congress Ampere, Athens, 1992. P.380 
[3] Dzheparov F.S., Khenner E.K. / / ZhETF 1993, V.104, P.3667 
[4] Dzheparov F.S., Kaganov LV., Khenner E.K. / / ZhETF 1997, V.1l2, P.596 
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Asymptotic Similarity of Time-Correlation Functions and the Problem of 
NMR Line-Shape in Solids. Scaling Approach.
 

A.A.Lundin
 
N.N. Semenov Institute ofChemical Physics, Russian Academy of Sciences, 117334 

Moscow, Russia 

The problem of the shape of the free-induction decay (FID) signal in a solid is solved 
analytically, on the basis of hypothesis advanced here that a similarity exists between 
the time-correlation functions (TCF) arising in an infinite chain of gearing differential 
equations for the NMR FID signal and the TCF which are associated with this signal, 
for crystals with a large number of equivavalent nearest neighbors surrounding any 
spin in the lattice. It is demonstrated that the similarity law is a consequence ofscaling 
relations between the coefficients appearing in the chain of equations for TCF. Also 
the procedure of scaling transformation of the system of TCF is developed allowing to 
derive the explicit solutions for a FID signal. Moreover, the proposed similarity law is 
confrrmed for the first two TCF by a direct numerical calculation for fragments of a 
simple cubic lattice with periodic boundary conditions and linear crystalline 
polyethylene. 

Oscillations in the NMR FID signal (FID is the Fourier transformed NMR line
shape) in the solid CaF2 were first observed experimentally in 1957 by Lowe and 
Norberg [1]. Despite the fact of numerous of articles (see e.g., [2,3] and references 
therein) have been devoted to this problem and to closed problems of spin dynamics 
this area is far from complete. There is great interest in this problem, on the one hand, 
as specific problem of nonequilibrium statistical mechanics - the problem of 
establishment of equilibrium in systems of many interacting bodies. On the other hand, 
the shape of magnetic-resonance spectra contains information about the crystal and 
electronic structure of the sample and about the mobility of atoms and atomic groups 
i.e., it contains a substantial fraction of information accessible to NMR and in solids 
part of this infonnation is, as a rule, masked by the main broadening mechanism (the 
mutual dipole-dipole interaction of the nuclear spins). Let us mark also, that the NMR 
line-shape problem is related to spin-diffusion problems. the problem ofcalculating the 
magnetic part of neutron scattering by paramagnets and the spectra of Raman 
scattering from quadrupole solids and it has deep analogies with many other problems 
in the statistical physics of condensed matter. 

The Hamiltonian of a spin system with the dipole-dipole interaction in ordinary 
notations is 

;>/ I'>.i 

In the coordinate system rotating with a Lannor frequency, the observed Fill is 
proportional to the TCF 

AiI(t) = (l!Sp(S;»Sp{Sr(t)S..} -= (11 Sp(S+S-»)Sp{S+ (t)S-}, (2) 
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where Sx == I;S,r; , is the x- component of the total spin of the system and Sit) is the 

solution of the Heisenberg equation S.• = (i Ih)[H,S.l. As is shown in [4], the problem 
of calculating TCF (2) is equivalent to the solution of the infinite system of 
differential equations 

A == l A 1 +v 2AI) 
(3) 

n \. n- n n+ 

with the initial conditions Ao(O)=I, An(O)=O, n> 1. The functions { An(t)} are 
"multicommutator" (multiparticle) TCF because every differentiation ofFill (2) adds 
the commutation operation and thus, generally speaking I adds another operator with a 
new summation index over the lattice. The parameters {Vj}. whose properties 
determine the solution of the system, are related to the moments of absorption line 
[4]. 

Let us note that in accordance with the results ofRef. [5,6] the relation (3), which 
are, in principle, determined for the entire crystal, can be related only to the 
component of the Fill that is due to the spins of a '"cell" [5,6] which are, to say 
roughly, are the equivalent nearest neighbours of a spin in the lattice. The scaling 
relations between the constants {vj }, resulting in the "'freezing" of them with the 
nwnber j (j marks the begining of freezing) dermes the "fix point" of the symmetry 
group bring us to the similarity relation 

• . 2 
A (I) ~cx.Ao +a.A (t)t (t), t(t)=l/vo t (4)

2 o
which involves the equation for Fill AO+ (~ I t).Ao+ (~ + 1)\1 ~ A

O 
= O. Ao(O)=I 

with the solution ofit describes by the formula 

AO(/)=CJJ.. (.[rf+lvot)/(~~ +lv 
O

t)A. =CJJ.. (bt)/(bt)J.. (5) 

being in the excellent agreement with the experimental results for the systems with 
the large number of spins in the "cell" and where the present theory only valid. Here 
are A.=IP-11/2. J). - is a Bessel function of order A, and C is a normalization constant 
supports the initial conditions. 

[1] Lowe I.J., Norberg R.E. II Phys.Rev. 1957, V.107, P.46. 
[2] Zobov V.E., LundinA.A. II JETP 1994, P.79(4), P.59S. 
[3] LundinAAIIZh.Exp.Teor.Fyz.1996,V.11O,P.1378;JETP 1996, V. 83 (4), P.59. 
[4] Lado F., Memory J.D., Parker G.W. II Phys.Rev.B 1971, V.4, P.1406. 
[5] Lundin A.A, Provotorov B.N. II JETP 1976, V.43, P.1149. 
[6] Bodneva V.L., Lundin A.A. et aLII Theor.Math.Phys. 1996, V 106, P.170. 
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New Exactly Soluble Models of Random Walk in Disordered
 
Lattice Media
 

V.E.Shestopal 

A lot of interesting physical systems are described in terms of lattice migrations 
with random jump rates between sites [2, 4, 5, 6]. These problems generated many 
mathematical [1, 7,8), numerical [9), and heuristic investigations [9J. 

We give new asymptotically exactly soluble models of continuum time random 
walk on the lattice Zd with stochastic jump rates. The following properties for the 
first time combined in our models are of great importance in many physically interesting 
systems: I) translation invariance of jump rates distribution; 2) arbitrary large num
ber of independent local stochastic parameters per site; 3) long-ranged interaction, 
e.g. power-like decreasing of rates at infinity; 4) the symmetry requirement: a jump 
rate from one site to another is the jump rate between them. 

This work continues the investigations of exactly soluble models of random walk 
in disordered media [7, 8]. 

The first class of our new models is described by the equations: 

N 

dP-mn/dt - _( A{3p)mn - _ '"" '"" miAii (3il p-ln p-mn(t _ 0) _ r r 
o:v - a "'Y - L.J L.J a.. "'-z z ZlJ' Z1J - - °:l:tl°mn, (15) 

:t. i,i,l=-1 

where x, y, z run the lattice Zd formed by (fictitious centers of) elementary cells, 
and i, j,l, m, n = 1-:- N enumerate site types within a cell. P;:;t(t) is the probability of 
finding a migrant at time t at site (x; m) if it was initially at (y; n). 

Our main task is obtaining of the longtime asymptotical expansion of mean prop
agator p.;;n(t) =-< p;;n(t) >- where averaging (denoted by -< f >- or E(f») is performed 
over the distribution of {(az,,8,,,) I x E Zd}. 

Our special conditions are: 
el) at different x's pairs of N x N-matrices (aij,,8~j) are Li.d. random matrices 

and ,8:r;a", has a fairly large number of moments: -< ({3",a",)-r ~, r > 0; 
C2) a resolvent of the operator -A at ). ~ 0, Re().) ~ 0 uniformly in k E [-1I",:S; 11"] 

satisfies estimations: IE", e- ik"'( -< l3),a >- +A)-l)~nl = O(I).-r\ I), J:". dkl Ez e-ik%«( -< tOt >
+A)-1 )~nl = O(I).-r11), Tl + T2 < 2, T2 < 1; 

moreover, we need some ofthe moments E(a",), E(a;I), E(,8",), E(,8;l), E(atax), E(/3",,8;n 
and one of the resolvent properties: 

!( X-1-,8~ A+a+ ). +~A,B )::ml or I(). + ~A,B ). +,8:A+a+ )~ml = O(I).rra). 

We use three different forms of development in )'((/30:)-1- -< (,8a)-1 >-). 
In many interesting models we obtain the leading asymptotical terms (one or two) 

of resolvent P().) at ). ~ 0 from the approximations: 

P().) ~-< o:Ga-1 >- or ~-< ,8-1G,8 ~ or ~-< ,8-1 [G + G)'1JG] a-I] )-, 

1 .. 
G = (). + A -< ,8-0: ~ -!)-l. 
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The substantial (exactly soluble) generalization of (15) consists in an application of 
t.he more general operator valued functions; 

N 
- mnjdt _ '"' '"' mi Ai; I~jl nlndP"'lI - - L.J L.J aZ1J~-wfJw"r~II' 

v,w,z i,i)=1 

and the following main condition is supposed; 
the independent (or correlated at finite distances) identically distributed random 

operators Ct and /3 have inverse operators of the type 

J 

((3 -1 )mn == '"' /3mn1i 15 /3mn1i+ J . 
'Zl/ L.J '" .,-y-bj 71 )

;=1 

the function x ~ (a;, ... ,a;J; {3; ... ,/3;/) contains all the disorder of medium. 
Author is very grateful to Professors F.S.Dzheparov and R.A.Minlos for their 

interest to this work and several important remarks. 
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